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SUPPLEMENTARY METHODS 

 

Estimation of total number of clones from single cell data.  This supplement 

derives the expression provided in the main text (methods) for the probability, 

P(N|b,c), of the peripheral blood (PB) being supported by N clones, given that we 

observed b distinct clonal barcodes among c cells randomly sampled. The 

general strategy is to first calculate the probability P(b|N,c) of observing b 

barcodes assuming N clonal barcodes in total, and to then apply Bayes’ theorem 

to obtain P(N|b,c).  

As noted in the methods section, we assume that clones are of uniform 

size (each consisting of approximately 1/N of the total number of cells in the PB). 

This approximation provides a lower limit on estimates of N. Formally, although 

the experiment involves sampling cells without replacement, we can make the 

approximation that sampling occurs with replacement since only ~100 cells are 

sampled out of 105-106 PB cells in each mouse. Enumerating the N clonal 

barcodes as 1,2,…,N, the probability of sampling x1 cells with barcode 1, x2 cells 

with barcode 2, etc, is a multinomial, 𝑃𝑃 𝑥𝑥!, … , 𝑥𝑥! 𝑁𝑁, 𝑐𝑐 = 𝑐𝑐!
!!!⋯!!!

𝑁𝑁!!.  

Since the aim of the analysis to relate the number of barcodes b observed 

in a given experiment to the total number of barcodes N, the precise identity of 
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clonal barcodes (1,…,N) is not of interest. We therefore group together all 

permutations of {x1,…,xN}. These permutations all have the same probability 

𝑃𝑃 𝑥𝑥!, … , 𝑥𝑥! 𝑁𝑁, 𝑐𝑐 , so if 𝑁𝑁! is the number of permutations, then the probability of 

realizing the group in an experiment is 𝑃𝑃 𝑥𝑥!, … , 𝑥𝑥! 𝑁𝑁, 𝑐𝑐 𝑁𝑁!. 

To obtain an expression for P(b|N,c), it is useful to note that each 

permutation group {x1,…,xN} can be characterized by a distinct pattern of clonal 

counts {n0,…,nc}, where n0 is the number of clonal barcodes that are found in the 

mouse but do not appear among the c cells of the experiment; n1 clones appear 

in just one cell, n2 clones appear in two cells, etc. The clonal counts satisfy two 

constraints 𝑛𝑛!!
!!! = 𝑁𝑁  and 𝑘𝑘 ∙ 𝑛𝑛!!

!!! = 𝑐𝑐 , so we only need to consider 

{n2,…,nc}, since 𝑛𝑛! = 𝑐𝑐 − 𝑘𝑘 ∙ 𝑛𝑛!!
!!!  and 𝑛𝑛! =   𝑁𝑁 − 𝑛𝑛!!

!!! . With this notation, 

number of observed barcodes is 𝑏𝑏 = 𝑁𝑁 − 𝑛𝑛! = 𝑛𝑛!!
!!! , and the number of 

permutations of {x1,…,xN} is 𝑁𝑁! =   
!!

!!!⋯!!!
. The desired probability is thus,  

𝑃𝑃 𝑛𝑛!, … , 𝑛𝑛! 𝑁𝑁, 𝑐𝑐 =   𝑐𝑐!
(!!)!!!

!!!
𝑁𝑁!!× !!

!! !!!
!!! !!!!⋯!!!

. 

The first term in this expression is 𝑃𝑃 𝑥𝑥!, … , 𝑥𝑥! 𝑁𝑁, 𝑐𝑐  for all permutations (x1,…,xN) 

with clonal counts {n1,…,nc}; the second term is Np. As noted above, 𝑛𝑛! is not 

independent of {n2,…,nc}, but is included for clarity. For example, the probability 

of each of the c sampled cells arising from a distinct clone is, 

𝑃𝑃 𝑛𝑛! = 𝑐𝑐, 𝑛𝑛! = 0,… , 𝑛𝑛! = 0 𝑁𝑁, 𝑐𝑐 =   !!
!!! !

𝑁𝑁!!.  
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This particular case is well known as the “birthday problem”, which asks about 

the probability that c people in a room will have different birthdays (with N days 

per year).  

With this result we are now set to apply Bayes’ theorem to obtain the 

probability 𝑃𝑃 𝑁𝑁 𝑐𝑐; 𝑛𝑛!, … , 𝑛𝑛!  for the number of clones N, given data on the clone 

counts {n2,…,nc} from c cells. We use a uniform prior for N. We find, 

𝑃𝑃 𝑁𝑁 𝑐𝑐; 𝑛𝑛!, … , 𝑛𝑛! =
𝑃𝑃 𝑛𝑛!, … , 𝑛𝑛! 𝑁𝑁, 𝑐𝑐

𝑃𝑃 𝑛𝑛!, … , 𝑛𝑛! 𝑀𝑀, 𝑐𝑐!
!!!

=   
1
𝑍𝑍  𝑁𝑁

!! 𝑁𝑁!
𝑁𝑁 − 𝑏𝑏 !  , 

where 𝑍𝑍 = 𝑘𝑘!
𝑘𝑘!𝑏𝑏 !𝑘𝑘𝑐𝑐

!
𝑘𝑘!! , and 𝑏𝑏 = 𝑛𝑛!!

!!!  is the number of unique barcodes 

observed in the sample. Noting that 𝑃𝑃 𝑁𝑁 𝑐𝑐; 𝑛𝑛!, … , 𝑛𝑛!  depends only on b and not 

on the individual values of (n1,…,nc), we obtain the main result given in the 

methods section, 𝑃𝑃 𝑁𝑁 𝑏𝑏, 𝑐𝑐 = !
!

𝑁𝑁!
𝑁𝑁!𝑏𝑏 !𝑁𝑁𝑐𝑐.  

  

  


