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SUPPLEMENTARY METHODS

Estimation of total number of clones from single cell data. This supplement
derives the expression provided in the main text (methods) for the probability,
P(Nib,c), of the peripheral blood (PB) being supported by N clones, given that we
observed b distinct clonal barcodes among c¢ cells randomly sampled. The
general strategy is to first calculate the probability P(bIN,c) of observing b
barcodes assuming N clonal barcodes in total, and to then apply Bayes’ theorem

to obtain P(N1b,c).

As noted in the methods section, we assume that clones are of uniform
size (each consisting of approximately 1/N of the total number of cells in the PB).
This approximation provides a lower limit on estimates of N. Formally, although
the experiment involves sampling cells without replacement, we can make the
approximation that sampling occurs with replacement since only ~100 cells are
sampled out of 10°-10° PB cells in each mouse. Enumerating the N clonal

barcodes as 1,2,...,N, the probability of sampling x; cells with barcode 1, x; cells

!
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with barcode 2, etc, is a multinomial, P(xy, ..., xy|N,c) = o~
!

Since the aim of the analysis to relate the number of barcodes b observed

in a given experiment to the total number of barcodes N, the precise identity of

WWW.NATURE.COM/NATURE | 1



AT\ E N SUPPLEMENTARY INFORMATION

clonal barcodes (1,...,N) is not of interest. We therefore group together all
permutations of {xi,...,xn}. These permutations all have the same probability
P(x4, ...,xy|N, ), so if N, is the number of permutations, then the probability of

realizing the group in an experiment is P(xy, ..., xy|N, ¢)N,,.

To obtain an expression for P(bIN,c), it is useful to note that each
permutation group {x1,...,xn} can be characterized by a distinct pattern of clonal
counts {no,...,ns}, where ng is the number of clonal barcodes that are found in the
mouse but do not appear among the c cells of the experiment; ny clones appear
in just one cell, n> clones appear in two cells, etc. The clonal counts satisfy two
constraints Y_,n, =N and Yi_,k-n, =c, so we only need to consider
{no,...,ng}, since ny =c—Y5_,k-n, and ny = N —Y,_;n,. With this notation,

number of observed barcodes is b =N —n, =)5_,n,, and the number of

N!

permutations of {x4,...,xn} is N, = — The desired probability is thus,
gl
P( |N ) _ c! N_CX N!
nl, reny nc ] c) = Hizl(k')nk (N—Zl‘ézlnk)lnllncl'

The first term in this expression is P(xy, ..., xy|N, ¢) for all permutations (xi,...,Xx)
with clonal counts {n,...,nc}; the second term is N,. As noted above, n, is not
independent of {n,...,ns}, but is included for clarity. For example, the probability

of each of the ¢ sampled cells arising from a distinct clone is,

N e

P(n; =c¢,n; =0,..,n. =0|N,c) = (N-0)!
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This particular case is well known as the “birthday problem”, which asks about
the probability that ¢ people in a room will have different birthdays (with N days

per year).

With this result we are now set to apply Bayes’ theorem to obtain the
probability P(N|c; n4, ..., n.) for the number of clones N, given data on the clone

counts {n,...,n:} from c cells. We use a uniform prior for N. We find,

P(ny, ...,n.|N,c) 1 N!

—C

= - N°——,
Yo Plng,..,nM,c) Z' ' (N-b)

P(N|c;ny,...,n.) =

k

where Z=Z,‘;°=1m, and b = };_,n, is the number of unique barcodes

observed in the sample. Noting that P(N|c; n4, ..., n.) depends only on b and not

on the individual values of (m,...,n;), we obtain the main result given in the

methods section, P(N|b,c) = ;Nﬁ;, N
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