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It has been alleged that certain people use statistics as a drunk does a lamp-
post—more for support than illumination. Such a criticism of the misuse of
statistical methods is unfortunately too often justified and probably is the
basis of the somewhat passive but nevertheless widespread opposition encoun-
tered when these methods are first introduced into any biological discipline.
That this first phase of more or less passive resistance is about completed in
bacteriology is evidenced by the ever-increasing references to statistical treat-
ment of the data in its journals. Not so very long ago statistics touched bac-
teriology primarily in just one field—bacterial enumeration—but current
literature provides statistical analysis of data from diverse experiments. As
examples the following are cited: virulence of streptococci for mice (10); relation
between growth of bacteria and the heat stability of their enzymes (25); dete-
rioration of cellulose fibers by fungi (43); reliability of soil counts (54, 55);
disinfection of trout eggs (39); test of fungicides on mold spores (111); prob-
ability of isolating a pure culture in a Petri dish (68). These applications,
with many others which will be described in greater detail in the text, suggest

1 Much of the experimental work by Wilson and his associates selected for illustrative
purposes in this paper was aided by a grant from the Rockefeller Foundation. This mate-
rial was used primarily because of convenience,—the complete original data necessary for
the detailed calculations were readily available.
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that the time is appropriate for a review of the use of statistical tests and control
in bacteriological work.

This paper is somewhat different from that usually published in the Bac-
TERIOLOGICAL REVIEWSs in that the literature serves primarily as a source of
more or less familiar examples useful for illustrating the statistical principles
discussed. Thus, the intrinsic significance or insignificance of the data selected
for purposes of illustration is beside the point. The extension to data which
differ in content but not in the principles involved should not be too difficult
and “is an exercise left for the reader.”

Part I deals with the distributions of variables; application of the knowledge
of different types of distribution is illustrated by examples of statistical control
of laboratory procedures. The important point in this section is an apprecia-
tion of the principles rather than mastery of the details of the calculations. In
contrast, the arithmetic of the statistical tests of significance discussed in Part
II is given in some detail since this facilitates an understanding of their applica-
tion to actual data. Although, at first sight, some of the problems solved in
this part may appear rather complicated and the calculations formidable, close
examination will demonstrate that they involve easily-followed procedures.
In passing, it should be noted that the titles of these major sections refer to the
primary emphasis in that portion of the paper, but the subject matter is not
entirely restricted to that implied by the section heading. Thus, some tests
of significance are necessarily used in Part I in order to illustrate certain aspects
of the distributions of variables. Likewise, the various statistics discussed
in Part II have other functions, e.g., for description of data, as important as
is their use for the statistical tests. In both Parts I and II it has been necessary
to introduce certain technical terms which are precisely defined only in mathe-
matical terminology. To maintain continuity of both style and content in
the text such terms are used without comment and are defined and discussed
in the Appendix.

Finally, it is emphasized that this paper is not intended as a course in sta-
tistics. The mathematical formulation has been kept to a reasonable minimum
and emphasis placed on mathematical assumptions and principles of statistical
theory as they relate to statistical interpretation of experimental results. With-
out special knowledge, it is often difficult to say whether these assumptions
obtain in a given body of experimental data. Blind application of the formulae
may therefore lead to error. This pitfall is best avoided by seeking the aid of a
qualified statistician. Except for a few simple applications, such as determining
means or slopes of lines, the biologist should ordinarily no more attempt the
statistical analysis of his complicated experimental findings without consulting
the trained specialist than he should try to analyze his cultures for an isotope
without the advice of a physicist. It is natural for the biologist to ask: “Then
why should I know anything about the subject?”’ Primarily, to recognize
problems in his research which might benefit through statistical interpretation
or control. Of almost equal importance, to be sufficiently informed so that
he can present his material intelligently and concisely to the statistical con-
sultant.
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Statistical Control. In the foregoing the term, statistical conirol, has been used
frequently and a more detailed exposition of what is implied in this phrase
may be of value. The importance of statistical control of laboratory and field
techniques needs greater emphasis in biological literature. Laboratories using
statistics have employed almost exclusively tests of significance and have
neglected the opportunity afforded for day-to-day check on the reliability of a
routine analytical method. An experimental procedure is said to be in a state
of statistical control when the observations to which it gives rise under what are
assumed to be ‘essentially the same conditions’ fluctuate in a random manner
and are free from trends and non-random shifts in magnitude. Unless a sam-
pling procedure—and in a sense all processes leading to observations are sampling
procedures—is in a state of statistical control, it is not possible to make valid
inferences about the ‘population’ which the observations are supposed to repre-
sent. In the important paper by Fisher, Thornton and Mackenzie (34) this
is stated: ‘“Any significant departure from the theoretical distribution is a sign
that the mean may be wholly unreliable.”

In science, industry, and commerce where decisions must be made on the
basis of results of some series of measurements, the reliability of the methods
must be known. To know that the methods provide good checks or even that
two operators obtain similar results is not enough. It is generally recognized
that in arguing from the particular to the general the wrong decision will occa-
sionally be recommended by the observations obtained, and we should know how
frequently these errors are apt to occur. If too often (in industry, the eco-
nomic consequences furnish a valuable measure of how frequent is ‘too often’),
then the procedure must be altered so as to reduce the expectancy of false
decisions. When a procedure is statistically controlled, the expectancy of a
false decision is a minimum. The Western Electric Company (equipment
manufacturer for the Bell Telephone System) has led the way in applying
statistical control to manufacturing processes, and other large industrial organi-
zations (e.g., General Electric Company, United States Steel Corporation) have
found it profitable to follow suit.” The statistical staff of the Rothamsted
Experimental Station in England has pioneered in showing biologists how to
check their sampling techniques and has stressed the importance of doing so.

More evidence regarding statistical control might well be included when pub-
lishing research, since its absence may modify conclusions profoundly. When a
series of observations exhibits properties widely divergent from those char-
acteristic of random samples of a hypothetical population that is strongly
suggested by intuition, the first inference is that the sampling technique
(which includes laboratory procedures, efc.) is not statistically controlled and
that greater pains must be taken, e.g., in mixing solutions before withdrawing
samples. Experience in biology and in industry over a period of nearly two

2 See Shewhart (81, 82) and Simon (83). Dr. Shewhart is the father of statistical control
techniques inindustry. The results achieved by Colonel Simon through the use of statisti-
cal control at the Picattiny Arsenal, Aberdeen Proving Grounds, have won him
wide recognition and have been a major factor in convincing the Ordnance Department
of the value of quality control.
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decades shows that the foregoing is frequently the correct conclusion, and that
a state of statistical control can be attained by persistent efforts directed toward
improvement in technique. In some instances, however, the divergence is due
to the choice of a hypothetical population which is unsuited to the phenomenon
in question. For example, in studying the occurrence of larvae on a field, the
distributions observed differ widely from those anticipated under the hypothesis
that larvae are distributed on the field independently and at random. Biological
considerations, e.g., the fact that the eggs are laid in ‘masses,” suggest that the
presence of a larva in a given neighborhood increases the probability of there
being others nearby. Accordingly, hypothetical ‘contagious’ distributions have
been devised (69) with which the experimental facts seem to be in full agreement.
In bacteriology such difficulties can usually be avoided by shaking suspensions
well before taking counts, but as discussed in the following sections, other details
of the technique may interfere with the realization of the hypothetical popu-
lation.

PART I. DISTRIBUTIONS OF VARIABLES

A problem common to many branches of science is to determine whether
values taken under one set of conditions differ significantly, in the statistical
sense, from other values taken under other circumstances. The problem arises
because individual values for any measurable quantity are rarely identical but
show degrees of variation. Among the numerous causes may be cited: (a)
errors in measurements because of lack of precision in the measuring instru-
ments or ineptitude of the measurer; (b) variations among the individuals com-
prising the population—all men are not created equal. To decide if one set of
data differs significantly from a second set, the statistician endeavors to define
the characteristics of the populations from which the two sets were obtained
and then to determine whether the two populations are identical in one or more
respects. Our first problem, therefore, is to consider various types of popula-
tions and the methods by which the measurements of a variable can be used to
calculate the significant parameters of each type.

THE BINOMIAL DISTRIBUTION

If the probability of an event occurring in any single trial is p, then the proba-
bilities of it occurring exactly 0, 1, --- , z, - - - , n times in n ¢ndependent trials
are given by the successive terms of the binomial expansion of (¢ + p)», where
¢ = 1 — p is the probability the event will not occur in any single trial.* The
terms so generated form the binomial distribution, one of the most important
hypothetical populations in biological research. It is sometimes called the
point binomial since a variable so distributed can assume only integer values
from 0 to n, and in consequence the probabilities are concentrated at these
points. It is also referred to as the Bernoulli Distribution after its discoverer,
James Bernoulli (1654-1705).

3 For details see any text book on college algebra; particular the topics Binomial theorem
and Probability.
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A count, z, distributed in random samples in accordance with the above point
binomial has a mean np and a standard deviation \/npgq, so that the observed
proportion, p’ = z/n, has a mean of p and a standard deviation v/pg/n. When
n is large, z is approximately normally distributed about its mean with the
indicated standard deviation (23), asis p’ also.' It is often convenient to employ
6 = arcsin /7’ in statistical analyses instead of p’, since for large values of 7,
the variance of 6 is independent of the value of p, which is generally unknown.
Tables are available (5, 6, 35) to facilitate this transformation. The point
binomial possesses a reproductive property: the sum of N independent counts
Z1,%2, -+ , Ty based on samples of sizes n; , n2, « - - , ny from the same popula-
tion, 7.e., p the same in each case, is binomially distributed with n = n; 4+ 7, +
nj-+-+ + ny. In consequence, a composite sample obtained by combining
several independent samples may be regarded as a single large sample. The
observed proportion in the composite sample, p = (1 + 22 + - + zw)/n,
provides an unbiased estimate of p which contains all the information about p
available in the data. For purposes of checking on statistical control it is ad-
visable, however, to keep a record of the size (n;) and count (z;) for each of the
respective samples.

Applications of the binomial distribution are numerous in genetics where
Mendelian theory specifies the value of p. It is possible, however, to test
whether a series of counts has properties characteristic of samples from a bi-
nomial distribution without knowing the value of p. Agreement with the
binomial distribution is taken as evidence of the independence of whatever
operations constitute ‘trials’ and of the constancy of p from trial to trial, which
properties jointly comprise one form of statistical control often known as simple
sampling.®

In sampling biological populations it is often desirable to test for agreement
with the binomial to ascertain whether the sampling technique employed is
statistically controlled. Likewise, when random samples are taken from each
of several parts of a large body of material, or at different times from an ever-
changing population, a test of whether the several samples may be regarded as
samples from a single binomial, constitutes a test of whether p, the proportion
possessing the characteristic under investigation, is the same throughout.
If not, the population sampled is heterogeneous in respect to that characteristic,
and heterogeneous material cannot, for purposes of inference, be treated sta-
tistically as though it comprised a single population.

Ezample: Table 1 (unpublished results of L. C. Ferguson and M. R. Irwin)
gives data on the relative frequency of monocytes in the blood cells of a certain
cow. Samples of 100 blood cells were counted at weekly intervals over a period
of approximately two years; as is shown in the second column of the table, in the
113 samples, 19 contained exactly 4 monocytes, 2 contained exactly 12 mono-
cytes, etc. Of the 11,300 cells counted 673 were monocytes, therefore p =
673/11,300 = 0.059558. The expected frequencies, given by the successive

4 See the discussion of the normal distribution, p. 96 ff.
§ For an excellent discussion of simple sampling and of the various types of departures
from it, see Yule (123).
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terms of
113 (0.940442 + 0.059558)'”,

were computed with the aid of seven-place logarithms. A table of logarithms
of n! greatly facilitates the calculation, e.g., table 49 of ref. (77). These calcu-
lated values are given in the third column of table 1; comparison with the ob-
served frequency distribution indicates that the latter is more widely spread
about the mean (5.9558) than would be expected in binomial sampling.® Various
explanations of this apparent discrepancy are suggested: (a) the selection of the
samples from the bloodstream was non-random; (b) the bloodstream was not
homogeneous in the proportion of monocytes present, %.e., the true proportion
of monocytes varied from week to week; (c) the monocytes tended to occur in
small clusters instead of being distributed at random within the bloodstream.

TABLE 1
Frequency of monocytes in blood of a cow
xmi::o(;:g:%s PER OBSERVED FREQUENCY EXPECTED FREQUENCY
(X) X I'x
0 0 0.2
1 3; 8 1.5} 6.5
2 5 4.8
3 13 10.0
4 19 15.3
5 13 18.7
6 15 18.7
7 12 15.9
8 10 11.7
9 11 7.6
10 7 4.4
11 3 2.3
12 2 12 1.1 8.6
Over 12 0 0.8
113 113.0

It is not possible to infer from the data as arranged in table 1 which of these
explanations is the proper one. From an examination of the original data sheets
and from other evidence, however, it appears that (b) is the correct explanation.

THE POISSON SERIES

A distribution which is frequently of value in the description of biological
material is the Poisson Series, the so-called law of small probabilities. Specif-
ically, it defines phenomena whose occurrence is governed by the following

¢ A more precise method for comparing the two distributions is described in the section
on Testing for Agreement between Observed and Expected Frequencies.
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conditions: (a) the probability of occurrence, p, is very small, 7.e., order of 0.01
or less; (b) the number of individuals exposed to the ‘risk’ is extremely large
so that the mean number of successes, or occurrences, np, is some small number;
(c) the frequency of occurrence is represented by small whole numbers. Poisson
showed that under these conditions, the probability of obtaining various fre-
quencies is given by the series:

e mM —mmE _am® e"m’
[1] e e —,e " =,e e I e
’ 1!’ 21’ 3!’ z! ’

probability of 0, 1, 2, 3, ez, .o

in which m is the average number of occurrences per sample.
A few properties of this distribution should be carefully noted:

(i) Its mean is m and its standard deviation is 4/ m; hence an estimate of m, provides
an estimate of its own error.

(ii) If in N independent samples from the same population an event occurs z, , 22, --- ,
zy times respectively, then the observed mean Z = (2, + z2 + --- + z»)/N, provides an
unbiased estimate of m, the expected frequency per sample, and furthermore, Z contains all
the information about m available in the data (30a, 34).

(iii) % is approximately normally distributed about m with standard deviation, v/ m/N,
for any m if N is sufficiently large, and for any N (e.g., for N = 1 80 that Z = z,) if m is
sufficiently large. It is sometimes convenient to utilize the fact that the variable y =
+/ % is approximately normally distributed about v/ m with standard deviation v/ 1/4N,
which is independent of m, under these conditions (1, 2).

(iv) If T is the sum of N components which are independently distributed in a Poisson
series of parameters m;, ms, --- , my respectively, then T itself is distributed in a Pois-
son series of parameter m = m; + ms + --- + my, so that T may be regarded as the fre-
quency in a single sample from a Poisson series whose mean is estimated as T with esti-
mated standard error v/ T.

(v) For small values of m the stability of the occurrence of events is very high—e.g.,
when m = 1, the probability of no occurrence is 1/e = 0.368—, which is also the probability
of a single occurrence; the probability of 2 occurrences is 1/2e = 0.184—, and the probability
of more than 2 occurrences is therefore 1 — (5/2e) = 0.080. There is considerable skewness
with the ‘tail’ to the right; as m increases, this skewness diminishes although symmetry
is attained only in the limit as m — .

It is of interest that the first experimental tests of the series were concerned
with biological events. Bortkiewicz (8) showed that the number of men killed
from the kicks of horses in each of 14 Prussian army corps for 20 successive
years followed the Poisson law of small numbers. “In 1907 “Student” (89), the
famous chemist-statistician at a Dublin brewery, demonstrated that under
somewhat idealized laboratory conditions the distribution of yeast cells on the
squares of a hemocytometer conformed to a Poisson distribution; he also inde-
pendently derived the law from considerations of how the yeast cells should
distribute themselves in the squares of the counting chamber. Greenwood and
White (44) investigated from the point of view of the Poisson distribution the
ingestion of tubercle bacilli by phagocytes. Bortkiewicz’s treatment contained
the elements of statistical control of experiment, an application for which the
series has been most useful. He discarded the records of 4 corps in which the
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deaths were considerably higher than the others, allegedly, because the men in
charge mistreated the animals so that they were more vicious than the horses
in the other corps. _

Following these publications an increasing number of diverse phenomena
have been compared with the distributions predicted by Poisson series, including:
emission of alpha particles from polonium; number of noxious weed seeds in a
sample of timothy seed; number of umbrellas left on buses (statistical control,
eliminate rainy days); death notices for men over 85 in the obituary column of
London Times; wrong number connections in a telephone exchange, number of
fires in New York City during a year (statistical control, eliminate July 4th and
Election day); defects in a manufactured article; calls for a reference book in a
University library. (See Thorndike (99) for an interesting discussion of many
of these.)

Statistical control of bacterial counts by chamber method. Consideration of the
conditions under which a count of yeast or bacteria is made in the various types
of counting chambers leads to the conclusion that the distribution of organisms
per square should follow a Poisson series since: (a) the probability that a given
organism will be found in a given square is extremely small, but very large
numbers of organisms are exposed to this small ‘risk’; (b) the count per square
will be some small whole number. ‘Student’s” experiments with yeast were
more for the purpose of verifying the law than for testing the methods of count-
ing, but Wilson and Kullmann (114) definitely used the distribution for sta-
tistical control of a laboratory technique. They estimated numbers of the root
nodule bacteria (Rhizobium trifolis) in a Petroff-Hausser counting chamber;
because this organism produces gum, it clumps readily which frequently inter-
feres with the reliability of results. Various refinements in technique were
developed to overcome clumping, and the method as finally adopted was tested
by counting the distribution of cells in the 400 squares of the chamber.

Figure 1 illustrates the results of four trials using the method of Thorndike
(99) for testing agreement with the proper series. She has shown that if the
relative frequency of obtaining at least ¢ occurrences in data from a Poisson
series is plotted on a special graph paper,” the points should follow a straight
line drawn from the number at the base which corresponds to the mean number
of occurrences (m). When the value of m is unknown—the usual case—the
observed mean, £ = (total number of organisms counted)/(number of squares
examined) = T'/N, may be taken as its estimate. The fit of the points to the
theoretical lines in figure 1 is satisfactory in all four cases, especially in the
center where the data are more reliable.

If the plotted points show a negative slope (.e., the points are to the left of
the vertical in the upper portion and to the right of the vertical in the lower
portion of the graph) the explanation of the non-conformance with Poisson

7 Arithmetic probability paper. A scale proportioned to the normal probability curve
is used for the ordinate, a linear scale for the abscissa. Logarithmic probability paper,
with the abscissa scale in logarithmic units, permits the simultaneous portrayal of series
with widely differing values of m.
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sampling is often found in some restraint on large frequencies. Thorndike gives
data on the number of calls in five-minute intervals from a pair of pay tele-
phones which exhibit such a departure from Poisson expectations, ‘“because of
the fact that the number of calls which could possibly be made in five minutes
from a group of two telephones is certainly finite and probably rather small.”
She gives also a sample of Perrin’s data on particles in Brownian movement
which show a similar departure and advances as an explanation that “it is
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Fic. 1. CoMPARISON OF OBSERVED DISTRIBUTIONS OF RHIZOBIUM TRIFOLII WITH
THEORETICAL GIVEN BY PoIssoN’s EXPONENTIAL SUMMATION

The chart illustrates the use of a probability paper for testing whether data follow
Poisson’s law. A straight line is drawn from the point on the abscissa which corresponds
to the mean number of bacteria per square; the experimental points represent the relative
number of squares showing at least 1,2,3 . . . organisms. From Wilson and Kullman (114).

difficult to judge by the eye the number of particles visible simultaneously if
that number is more than three or four.” In bacterial counts such a departure
from expectation on Poisson theory might arise from a tendency to under-
estimate the number of bacteria in crowded squares, or from a real restraint on
large frequencies occasioned by competition among organisms. In either case
greater dilution is a remedy. If the plotted points depart from the vertical
with a positive slope, clumping or heterogeneity of material sampled (i.e., m
not constant throughout) are generally the explanations, although such a
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departure could arise from a tendency to overestimate the numbers of bacteria
in crowded squares. .

Like that of most graphical methods of analysis, the principal advantage
of this method of testing conformance to Poisson sampling is its rapidity, and its
chief defect is its failure to provide an objective criterion for judging whether
the discrepancies observed are meaningful or merely fortuitous. Nevertheless,
with experience it can become a valuable test of experimental technique, and,
when used in conjunction with a method giving a probability measure of the
discrepancies, it provides a convenient portrayal of the diagnosis.

TABLE 2

Comparison of the theoretical distribution with that observed when counting Rhizobium trifoliz
in Petroff-Haussger counter

Mean = 2.50
NUMBER PER SQUARE mon"nm onsr]:vm fo—1i o }; S
0 32.83 34 +1.17 0.04
1 82.08 68 —14.08 2.41
2 102.61 112 Jq 7 +9.39 0.86
3 85.51 94 +8.49 0.84
4 53.44 55 +1.56 0.05
5 26.72 21 -5.72 1.22
6 11.13 12 +0.87 0.07
>6 5.67 4 —1.67 0.49
Totals......... 400 400
X2 = 5.98 P =043 DF.=6

A more exact but slower method for testing the distribution is to compare the
observed frequencies with the theoretical values obtained from the terms of the
expansion

m m m m me
[2] Ne (1+_1+§T+§!‘+”'+ET"')

in which m is the true mean number of organisms per square, and N is the num-
ber of squares examined. When m is unknown, the observed mean number
per square, %, provides the appropriate estimate of m. Tables are available,
which facilitate the determination of the theoretical frequencies, e.g., those of
Soper (86), which provide the values of e”™m"/z! to six decimals for m = 0.1
tom = 15.0. These tables have been reprinted by Pearson (Table 51, ref. 77).

In the example given in table 2, a total of 1000 organisms were counted in the
400 squares, hence Z equals 2.50. A comparison of the observed frequencies
with those predicted by equation 2 (m = 2.50) is afforded by the first three
columns of table 2, and indicates a reasonably close agreement; an exact evalua-
tion of the agreement will be presented later in connection with the chi-square
test of goodness-of-fit. The results of this and other similar trials indicate that
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counts made with a Petroff-Hausser chamber under laboratory conditions
follow the theoretical distribution when sufficient care is taken to break up
clumps by thorough mixing of the suspension, thus confirming the reliability of
the chamber count method when carefully executed.

How many observations should be taken? Property (iii) states that the mean
number of organisms per square, Z, obtained from an examination of N squares
has a standard deviation of \/m/N, where m is the true mean number of
organisms per square. The practical significance of this property is better
appreciated when it is noted that the standard deviation of # is 100/+/Nm
per cent of the true mean, m, and is readily estimated as 100/+/7, from property
@iv), T being the total number of organisms counted. Thus, for the data of
table 2, T = 1000 gives an estimated standard deviation of 3.16 per cent for the
mean (2.50) there shown. It follows, from property (iii), that the probability
is approximately 0.95 that the mean observed here is precise to within 1.96 X
3.169, = 6.0 per cent, that is, the probability is approximately 0.95 that the
interval 2.50 & 0.15 includes the true mean number of organisms per square
for the dilution here employed.®? Alternatively, the precision wanted can be
decided beforehand and sufficient squares examined to _provide that degree of
precision. Thus, if it is desired to have a probability of 0.95 that the observed
mean will be within 10 per cent of the true mean, the total number of organisms
counted will have to be at least 400 since 1.96 X 100/4/400 = 10. As it is the
duty of every scientist to make the right kind of observations, it is also his duty
to make a sufficient number. In the words of Shewhart (82)

‘“The applied scientist in order to be ‘successful’ cannot afford to make too many mistakes
even though they be small, and in no case can he afford to make a mistake that is large
enough to cause serious trouble. He does not consider his job simply that of doing the
best he can with the available data; it is his job to get enough data before making his esti-
mates.”

A modified method of counting. Counting of the 400 odd organisms necessary
to give reasonable assurance that the observed mean number per square will be
precise to within 10 per cent can be accomplished in practice by either: (a)
employing a dilute suspension and examining a large number of squares, or (b)
employing a dense suspension and examining only a few squares. Of these two
alternatives the former is preferable for at least two reasons. First, with low
cell concentration, a true Poisson distribution of the organisms is more likely to
be realized—with heavy suspensions clumping, competition between the organ-
isms, etc., frequently distort their distribution, in consequence of which no
confidence can be placed in the observed mean number of organisms per square
as an estimate of the true concentration. Second, with high concentrations,
mistakes in counting the organisms arise from difficulties in discerning the indi-
viduals and from mistaken estimates of their number.

To reduce mistakes in counting, Tippett (101) has proposed a modified method
which may prove to be of considerable practical value in bacteriological work.

8 See discussion of confidence intervals in Appendix.
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It conmsists of recording as data merely the numbers of squares containing,
0,1,2 ---, ¢ and ‘more than ¢ organisms, where ¢ is some small number, say
3 orless. Whent¢ = 0, so that No and N, the numbers of squares containing no
organisms and the total number of squares examined, respectively, constitute
the ‘data’, the maximum likelihood’ estimate of m and its standard error are

m = 2.303 log (N/No) and ¢, = V/ (e — 1)/N.

Thus, for the data of table 2, No = 34 and N = 400, giving m = 2.46 with an
estimated standard error of 6.65 fper cent in contrast to the estimated standard
error of 3.16 per cent corresponding to the complete enumeration of the 400
squares. Otherwise stated, when m = 2.50, a ‘present-absent’ enumeration of
400 squares is equivalent to a complete enumeration of 90 squares. .

As one might expect, an optimum density exists for each value of . For
t = 0 (‘present-absent’ enumeration) this optimum is m = 1.6; the standard
error, of m from 400 squares in this case being 6.19 per cent in contrast to 3.95
per cent for a complete enumeration of all 400 squares. Alternatively stated,
when m = 1.6 a complete enumeration of 160 squares is slightly less accurate
than a ‘present-absent’ analysis of 400 squares. When ¢ is greater than zero,
the equations determining the maximum likelihood estimate, 7, of m cannot
be solved directly, and solutions must be obtained by iteration. However,
Tippett gives charts for ¢ = 1, 2, and 3 from which the value of m is readily
obtained. He gives also a graph from which the standard error of 7 can be
estimated. Thus, for ¢ = 3, the relevant ‘data’ of table 2 are the total number
of squares examined and the number with none, one, two and three organisms
respectively. They yield i = 2.51 with an estimated standard error of 3.35
per cent, which compares favorably with the result obtained by a complete
enumeration of 400 squares, viz., 2.50 with an estimated standard error of 3.16
per cent. For ¢ = 1 the optimum density happens to be m = 2.5 (from graph)
and with N = 400 the standard error of the appropriate 7 is 4.3 per cent (from
graph) so that when m is approximately 2.5 and a ‘none—one—more-than-one’
analysis of 400 squares is carried out, the probability is 0.95 that # is accurate
to within 10 per cent, which is quite adequate for most purposes. Otherwise
stated, a ‘none—one—more-than-one’ analysis of 400 squares is as accurate
when m = 2.5 as a complete enumeration of 216 squares, and, without doubt, a
great deal more rapid if Tippett’s charts are at hand to facilitate the calculation
of 1.

Statistical control of bacterial counts by plate method. Although many bacteriol-
ogists may never use the chamber method for counting organisms, the same can
hardly be said about the plate method. Obviously then, of much more general
application would be a procedure for statistical control of this technique. Since
plate counts constitute samples from Poisson series, theoretically, the same type
of test could be used as was described for the counting chamber, but considera-
tions of time, labor, apparatus, and expense would render such a course highly

9 An explicit account of the properties of maximum likelihood estimates is given in the
Appendix. In this paperlogrefers tologarithms to base 10, In, to basee.



STATISTICAL METHODS AND CONTROL IN BACTERIOLOGY 69

impractical. If, however, as is often the case, series of counts are to be made on
some material at certain intervals (daily, weekly, efc.) a statistical control on
the precision of the plating technique is possible even though only 4 or 5 plates
are used for each determination. Fisher (30, 34) has shown that if an index of
dispersion,"’

— 7)? 2 _ )2
[3] D2 = z(xs _ x) — NE:C. (le)

z pt A
(where T denotes summation over ¢ from 1 to N) is calculated from the counts
Z1, T2, -+, Zy provided by a set of N parallel plates, then in a sequence of such

sets D’ will be distributed according to the X* distribution for N — 1 degrees of
freedom when the plating technique is in statistical control. The expression at the
extreme right of equation 3 is generally the more convenient for purposes of
calculation.

Many investigators have used this valuable contribution of Fisher’s for check-
ing the accuracy and reliability of plate counts made on various materials—
often with surprising and revealing results. In the case of pure cultures grown
on specially developed media by means of carefully standardized techniques,
the observed distributions of D* have on the whole agreed quite satisfactorily
with the theoretical. These studies include data of : 3-plate counts of Escherichia
coli in milk (data of Breed and Stocking discussed by Fisher, Thornton and
Mackenzie (34)); 3- and 4-plate counts of Rhizobium trifolit on yeast-extract
agar (114); 4-plate counts of Bacterium globiforme and Pseudomonas fluorescens
on nutrient agar (92). Using special selective media, a number of workers have
shown that more heterogeneous populations likewise give a reasonable distribu-
tion of D if the technique is carefully controlled; these populations include
protein- and starch-splitting organisms and actinomyeces in soil (52), and actino-
myces and fungi in soil (54).

Whenever a very complex population such as that found in the soil is studied,
however, departure of the observed distributions of D’ from the theoretical
distribution is almost always noted. The departure usually consists of a great
excess of large values of D?, but occasionally an excess of subnormal variation is
also found. In either case the use of the data for drawing any profound conclu-
sions is highly questionable. Instead, steps should be taken to locate the origin
of the abnormal variation and, if possible, to eliminate it. In the studies to
date this has not always been successful, but it has been of assistance on several
occasions and has definitely led to the uncovering of unsuspected information in
the data or of defects in the technique.

Using Cutler’s data on the number of organisms found in daily counts of the

1¢ Fisher denotes this index of dispersion by X2, and most writers have followed him in
this usage, which has an excellent mathematical basis. We have made the change to D?
in order to distinguish this index of dispersion from the X? goodness of fit criterion also
discussed in the text (see p. 122 ff.). These two criteria are intimately related. It is our
hope that, by using D? for the above and similar indexes of dispersion, and reserving X?

forinstancesin which a frequency table (such as table 2) or a contingency table is concerned
explicitly, the confusion which has arisen in some quarters may be lessened.
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soil at the Rothamsted Experimental Station, Fisher, Thornton and Mackenzie
(34) showed that in 156 sets of 4-plate counts and in 156 sets of 5-plate counts,
an excess of both extremely low and extremely high values of D* occurred. If
these were eliminated from the comparison, the remaining values agreed quite
well with the theoretical. Searching for an explanation of the abnormal vari-
ances, they found that the excessively high values oceurred in ‘epidemics’ during
certain periods of the year. Although the origin of these epidemics could not
be traced with certainty, evidences from other experiments suggested that they
might be associated with the presence in the soil of certain species, usually of the
spreading type, whose development inhibited the growth of other microorgan-
isms. This not only led to an abnormally high variance (reflected in high
values for D?), but also seriously disturbed the reliability of the indicated mean.

The cause of the subnormal variance was even more obscure, but there was a
suggestion that an apparently minor alteration in the preparation of the medium
may have been a factor. These authors emphasize that an excess of low values
for D? is just as much of a danger sign as excessively high values. Although no
oneis inclined to take too seriously results which show high variability, replicates
in which the variation is abnormally low, far from exciting suspicion, are fre-
quently exhibited as evidence of unusually reliable data. Fisher, et al. (34), cite,
as an example, bacterial counts on cane sugar products in which the conditions
which lead to the realization of the theoretical Poisson series were apparently
operative in only about 45 per cent of the cases. An equal proportion was defi-
nitely subnormal with respect to variance, while 10 per cent were abnormally
high. That some factor was concerned which disturbed random sampling was
evident from the several sets in which the counts were practically identical on
all six plates—a highly improbable result.

Harmsen and Verweel (52) likewise encountered an excess of high D? values
from series of 10 plates used for counting bacteria in the soil of the Zuider Zee
reclamation area in Holland. When soil or yeast-extract was added to the semi-
synthetic medium used, the excessive variability diminished but did not com-
pletely disappear.

Probably the most extensive and thorough exploration of methods for estima-
tion of microdrganisms in the soil by standard plating methods in which the D’
criterion was used for statistical control is provided by the studies of James and
Sutherland (54-57) at the University of Manitoba, Canada. As has been
already mentioned, control experiments (4 plates) with P. fluorescens, B. globi-
forme as well as mixtures of these pure cultures plus sterile soil led to distribu-
tions of D* which agreed most satisfactorily with the theoretical values. An
example from their studies is shown in figure 2; they concluded that their
laboratory technique introduced no significant source of variation, and that
difficulties with the counting must be ascribed to other factors. When the
technique was used for counts on soil (493 sets of 4-plate data in 1937, 468 sets
in 1938), an excess of high values of D* was obtained. Investigation revealed
that time of plating after taking the sample definitely affected the variability
encountered as is illustrated in figure 3. Seeking an explanation of this rather
unusual source of variance, James and Sutherland investigated a large number
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of possible factors and eliminated source and moisture content of the soil,
technique, and medium. They did find, however, that associated with the
abnormally large values of D* was the appearance on one or more plates of large
numbers of pin-point colonies with or without large spreading colonies of the
Mucorales. The presence of species of Fusarium or Alternaria as well as other
fungi, which appeared only rarely, had no demonstrable effect on the value of D.

Control chart applied to plate counts. The foregoing method of appraising
statistical control of plate counts from a sequence of sets of N parallel plates has
three principal weaknesses. First, it cannot be applied until a large number of
D’ values has been obtained, by which time much of the data have become his-
toric, and supplementary information which might throw light on the dis-
crepancies is lost forever. Second, in forming a histogram (figures 2, 3) of the
observed values of D? for comparison with the histogram expected on the sup-
position of statistical control, the order in which these values were obtained is
disregarded, thereby discarding all characteristics of the sequence which are

TABLE 3
Probability levels of D*

K 2 3 4 5 6 7 8 9 10
0.995 0.000 0.010 | 0.072 | 0.207 | 0.412| 0.676 | 0.989 | 1.344 | 1.735
0.975 0.001 0.051 | 0.216 | 0.484 | 0.831 | 1.237| 1.690| 2.180 | 2.700
0.500 0.455 1.386 | 2.366 | 3.357 | 4.351 | 5.348 | 6.346 | 7.344 | 8.343
0.025 5.024 7.378 | 9.348 | 11.143 | 12.833 | 14.449 | 16.013 | 17.535 | 19.023
0.005 7.879 | 10.597 | 12.838 | 14.860 | 16.750 | 18.548 | 20.278 | 21.955 | 23.589

N stands for the number of plates in the set.

P denotes the probability of a value of D? exceeding the value given in the body of the
table when a state of statistical control prevails.

* Taken from table calculated by Thompson (98).

intimately associated with order. Third, in a laboratory where replicate plate
counts are made at regular (or irregular) intervals, it does not provide a basis for
action (acceptance or rejection) with respect to current determinations. A-
statistical control technique which does not suffer from these weaknesses is the
conitrol chart method developed at the Bell Telephone Laboratories by Dr. Walter
A. Shewhart and now employed in various industries and by the United States
Army Ordnance Department."

The application of the control chart procedure to a sequence of values of D*
is simple because the distribution of D? when a state of statistical control pre-
vails, depends only on the number of plates involved. Table 3 gives probability

11 The best general introduction to the control chart method is provided by the American
War Standards published and sold by the American Standards Association (29 West 39th
Street, New York City):

Z1.1 (1941) Guide for Quality Control
Z1.2 (1941) Control Chart Method of Analyzing Data
71.3 (1942) Control Chart Method of Controlling Quality During Production.
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levels useful in constructing control charts for D’ values. Figure 4 shows a
control chart for some of A. R. Colmer’s plate counts of total bacteria in 1:50,000
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F16. 4. CoNTROL CHART FOR PLATE CoUNTS OF BACTERIA IN LAKE MENDOTA MUD

Upper and lower heavy lines represent control limits outside of which experimental
points should fall no oftener than 1 in 40 on average. These limits change because the
number of plates counted vary, since one or more of the samples plated at each date had to
be discarded because of spreading colonies. The dotted line represents the value of D?
for P = 0.5; hence one-half of points should be above, one-half below.

dilutions of Lake Mendota bottom mud. When a state of statistical control
prevails, the upper heavy line is the control limit which should be exceeded by
only 1 point in 40 on the average, and the lower heavy line is the control limit
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below which only 1 point in 40 should fall on the average. The control limits
wag up and down in a manner dependent only on the number of plates of colonies
counted. This varies since, although 8 plates were always prepared, film and
other factors caused the rejection in every instance of one or more plates before
the actual counts were made. Three of the first four sets of plates represented
here gave D’ values above the upper control limit, indicating excessive variation
between the counts on the parallel plates. Reference to notes made at the time
of counting, revealed that Bacillus mycoides was recorded as a disturbing factor
in the plates rejected before counting, and the plates retained may have been
affected to some extent by this factor. It is concluded that the mean counts
corresponding to these points are not trustworthy. The sixth point is just
below the lower control limit. No remarks were on record in the laboratory
notes which might explain this extremely close agreement among the plates, and
it was decided to regard the result as fortuitous. Beginning with the fifth, the
points indicate a state of statistical control. As a further check on control, a
central line corresponding to P = 0.50 has been added to the chart, and it may
be noted that, beginning with the fifth point, six points are above and four
points below this line—an excellent agreement with expectation.

The above choice of control limits may be expected to lead us to look for
trouble once in 20 times when statistical control prevails. Therefore, if in a
long plating program, experience shows that roughly 1 point in 20 lies outside
these control limits, and that the great majority of these are ‘false alarms’,
1.e., no assignable cause for the discrepancy is discovered, then it will be desirable
to use the upper and lower 0.005 limits so that ‘false alarms’ will arise only 1
time in 100 so long as statistical control prevails. Whatever limits are used,
the median (P = 0.50) line should be drawn, and the occurrence of a statistically
significant excess of points above (or below) this line, or long runs of points
above (or below) this line, provides as much evidence of lack of statistical control
as does the falling of points outside of the limits."*

The use of D* as a check on statistical control is not limited, of course, to plate
counts. When direct counts by the microscopic or the chamber method are
made in duplicate (or more), D? can be used to check the statistical control of
the technique. When only two counts are involved,

[3a] D' = (& — )"/ (21 + ),
and the control technique is readily applied.
Dilution count

Estimation of organisms by noting growth in successive dilutions was intro-
duced early in bacteriology, but except for the important test for Escherichia
col? in water, milk, and other products, its potential usefulness has been appre-

12 The expected number of runs of length r above the theoretical median line (or below
the median line) in a succession of m pointsis (m — r + 3)/2r*2for1 < r < m — 1 and
1/2r for r = m. If the runs of length r on both sides of the theoretical median line are
counted, the expected number is twice that given above. See W. G. Cochran (20).
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ciated only recently. The dilutions are usually made in units of 10, and for
many years the interpretation was simple and erroneous. If growth was ob-
tained in a dilution of 10 but not in 107%, the count was said to be somewhere
between 100 and 1000, which was probably true. If, however, a skip occurred
(e.g., growth in 1072, but not in 10~°, growth in 10~*, and no growth in the higher
dilutions), it required an official ukase to obtain agreement. Officially the count
was 1000 in this instance, since in case of skips the decree was that the result to
be taken was the reciprocal of the dilution next higher than the smallest one
giving a positive test. Although this solution may have worked satisfactorily
in practice, it gave no greater assurance of accuracy than did the proposal to a
state legislature to make the ‘legal’ value of 7 exactly 3.

The correct solution of the problem has occupied the statistician for many
years, and judging by the recent output his interest remains undiminished. It
is debatable whether bacteriologists have shared this concern, undoubtedly
because few use the dilution method. Many may even question the appro-
priateness of including in this review an analysis of the rather extensive literature
on this subject, arguing that the problem has intrigued the mathematician out
of proportion to its practical value to the bacteriologist. Ample justification for
doing so, however, exists. First, although no other aspect of bacteriology has
been so thoroughly examined from the point of view of statistics, many im-
portant contributions have been published in journals seldom consulted by
workers in this field. Second, important decisions affecting the health of all
citizens are made in sanitary water analysis based on results of the test; correct
interpretation of these is essential. Moreover, extension of the method to
enumeration of organisms other than E. colt may provide a useful tool hitherto
neglected. It appears to be superior to the plate count in certain cases of
mixed populations for which selective media are used and may also prove useful
in estimating organisms in unusual types of industrial products, eg., pickle
brine in packing houses (124). Finally, it is emphasized that, although the
principles involved have been developed from the point of view of estimating
numbers of viable bacteria, extension of the reasoning and mathematics to other
problems in bacteriology is possible, for example, number of bacteriophage par-
ticles in a suspension (17), direct count on bacterial smears (103), infestation of
an animal by insects (48), and securing a pure culture of an organism by dilution
(30). Because of these and other possible applications of the general theory on
which the dilution count is based, the statistical literature on the method will
be examined critically and in some detail.

Underlying probability theory. Before a satisfactory evaluation of the statisticians’
contribution to this problem is possible, we should consider briefly what might be termed
the philosophy of the various attempts to answer the following type question. Given a
certain result, what can we say about its ‘cause’? For example, if growth is obtained in a
number of tubes of a medium when inoculated with a known dilution of bacteria and no
growth in others, what is the ‘best’ estimate of the number of organisms in the original
suspension?

First, let us consider the inverse probability approach. In calculating the ‘most prob-
able density’ which gave rise to an observed result and its probability limits, it is assumed
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that the sample is from a long (strictly infinite) sequence of samples in which all densities
within certain limits occur with definite relative frequency. Suppose we obtain the result.’
‘6/10 in 1 c¢’. From the appropriate equation to be developed in the next section, the
relative frequency with which each density per 100 cc, z, will ‘produce’ the result ‘5/10 in
1 c¢’ may be calculated, and using these values as the ordinates corresponding to the proper
z, a graph such as is shown in figure 5 is constructed. The curves shown in this figure corre-
spond to the case where all admissible bacterial densities are a priori equally probable.
Then, if in a given type of research, all densities within some range do occur with equal
relative frequency in the long runm, it follows from Bayes’ Theorem! that when ‘5/10 in
1 cc’ is observed it will have resulted from z = 69 in more cases in the long run than for
any other single value of z. Therefore, if under these circumstances it is stated that
z = 69 whenever‘5/10in 1 cc’ is observed, this statement will be correct more frequently in
the long run than if it were stated that z was some other number, such as 50, and it is in this
sense that 69 is the ‘most probable value’ of z. Likewise under these circumstances it can
be shown that 99 per cent of the results‘5/10in 1 cc’ will be ‘produced’ in the long run by
values of z less than 189, and it is in this sense that in a single such instance it is permissible
to say that the probability is 0.99 that z is less than 189.

Unfortunately this correspondence with long-run experience in a sequence of actual
assays depends upon the validity of assuming that in the long run all admissible values of
z will occur with equal relative frequency. If certain values of z occur more frequently
than others, so that the a prior: distribution of z is not a constant within some range of z
and zero elsewhere, then the ‘most probable value’ and the ‘probability limits’ for z will
differ in general from those found by the above procedure, but can be found with the aid of
Bayes’ Theorem when the a prior: distribution of z i8 known. When the a priori distribution
is unknown, then information essential for the application of Bayes’ Theorem is lacking.

Lack of factual information regarding the range of z, and of the relative frequencies
with which values of z occur in a particular kind of research certainly do not constitute
sufficient reason for assuming that all values of z within some range occur with equal fre-
quencies. It is the merit of Bayes’ Theorem, not its weakness, that the inherent proba-
bilities of the admissible values of an unknown quantity are taken into account, and, when
from experience the a prior: probabilities are known to a fair degree of approximation, better
estimates can be obtained by utilizing this information than by ignoring it. ‘“Bayes’
Theorem is just as sound logically as any other part of the Theory of Probability, and may
be trusted to give reliable results when we can get a grip on it. The trouble is that we so
seldom can’’ (36, p. 128).

Until quite recently, in cases where the a prior: information needed for the application
of Bayes’ Theorem was lacking, there appeared to be no alternative other than assuming
such a priori distributions as seemed reasonable or convenient, and then proceeding with
Bayes’ Theorem undaunted. Two papers by R. A. Fisher (28, 30a) give impetus to a new
way of looking at the problem of estimation. In these papers Fisher showed that, in
repeated sampling from the same population, mazimum likelthood estimates (see Appendix)
based on a large number of observations would hover at least as closely about the true
value of a parameter as estimates obtained by any other procedure from the same number
of observations, and that in many instances this property extended to maximum likelihood
estimates based on only a few observations. The search for ‘most probable values’ of a
parameter was abandoned, therefore, and maximum likelihood estimates accepted as
‘good’ estimates, since maximum likelihood estimates would generally be ‘close’ to the true

13¢5/10 in 1 cc’ means that from 100 cc of the suspension under investigation 10 sub-
samples of 1 cec were used to inoculate 10 tubes of which 5 showed growth. Since cc was
used in the original publications, we use this symbol in these sections instead of the pre-
ferred ml used in the remainder of the paper.

14 This important theorem of probabilty is concerned with the probability of causes.
An excellent discussion of it is given by Fry (36, chap. V, sec. 95).
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value of the parameter, i.e., they will be ‘close’ to the true value except when the observa-
tions comprise an unusual sample from the population in question. Table 4 shows how this
principle works and throws some light on the meaning of ‘close’ in the above context. The
first column shows the possible outcomes with 10 tubes, the second gives the maximum
likelihood estimates of x corresponding to these outcomes, and the third and fourth give the
percentage of cases in which these outcomes (and hence these estimates) will be obtained
when z = 43 and when z = 138, respectively. Thus, when z = 43, in about 50 per cent of
the cases the result 3/10 or the result 4/10 will occur, leading z to be estimated as 36 or 51
respectively; only infrequently would an estimate of 0 or 10 be chosen; rarely would an
estimate of 160 or more arise. Similarly, when z = 138, either 120 or 160 would be chosen
about 53 per cent of the time, and an estimate of 36 or less would practically never be
chosen. It should be noted, furthermore, that while the maximum likelihood estimate will
generally be ‘close’, it cannot hit the nail on the head except in those cases where x happens
to be one of the numbers which is a maximum likelihood estimate corresponding to a possible
outcome of the experiment.

TABLE 4

Mazimum likelihood estimates of, and upper 0.99 confidence limits for, bacterial density per
100 cc corresponding to all possible results ‘in 1 cc,’ and relative frequencies of
occurrence when density is 43 and 138

msoLr Iv ‘Lo’ | A o | et | Twmss il | | pmceroar
0/10 0 1.35 0.00 47
1/10 10 7.25 0.00 70
2/10 22 17.56 0.04 94
3/10 36 25.22 0.31 121
4/10 51 23.77 1.62 152
5/10 69 15.36 5.84 189
6/10 91 6.89 14.60 237
7/10 120 2.12 25.03 305
8/10 160 0.43 28.16 412
9/10 229 0.04 18.77 687
10/10 ® 0.01 5.63 ®

The final breaking away from the shackles of Bayes’ Theorem took place about 1930
with the development of the concepts of fiducial limits by R. A. Fisher and of confidence
intervals by J. Neyman (see Appendix). The construction for the result ‘5/10in 1 c¢’ of a
confidence interval of the form z < M corresponding to a confidence coefficient of 0.99 will
illustrate the procedure: Using the terminology customary in connection with tests of
significance, an observed proportion, r’/n, will be ‘significantly less’ than a theoretical
proportion, p, at the 0.01 level of significance if {r/n < '/n | p} < 0.01, where p{r/n <
r’/n | p} denotes the probability of observing a proportion as small as or smaller than
r’/n when the true proportion is p. Now

R S | EA
(4] p{r/n < r/n|p} 'Eo by r)lp'(l P
and from tables of this summation (12, 24) it is found that p{r/10 < 5/10| p} < 0.01 for
p > 0.849, so that 5/10 is significantly less than any proportion > 0.849 at the 0.01 level of
signiﬁcance It can be further shown that p > 0.849 implies z > 189 (63) hence z < 189
is the desired ‘0.99 confidence limit’.1¢

5 The value of z corresponding to a probability of 0.99 determined from the ‘5/10in 1 cc’
curve of figure 5 (see section on Accuracy of Estimate) also is 189. In this particular case
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In the last column of table 4, ‘0.99 upper confidence limits’ are given for z corresponding
to each possible outcome ‘in 1 c¢’. The 0.99 confidence property of these intervals can be
seen as follows. Suppose repeated sampling is being done from a supply for which z = 138,
then a false statement about z will be made whenever 0/10, 1/10, 2/10, or 3/10 occurs, since
in these instances the inferences made will be z < 47, 2 < 70, z < 94, and z < 121, respec-
tively. In these cases only will a false statement about z be made. But the probability
of some one of these events occuring when z = 138 is only 0.0004 (by adding the probabilities
of these events), so that the probability of some one of the other events (i.e., 4/10 through
10/10), each of which lead to a correct statement, is 0.9996. Therefore, if whatever ratio
arises, the corresponding interval is used, then the probability of a correct statement is
> 0.99 when z = 138. By virtue of the way in which these intervals were constructed they
will have this same property for any value of z.1®

The ‘Best’ Estimate. So far as the authors have been able to determine,
MecCrady (63) first approached the problem of estimating bacterial concentra-
tions from dilution data with the aid of the theory of probability. He con-
sidered the selection of a single value to use as the estimate and the equally im-
portant question of the accuracy of the estimation. Acknowledgment was made
of mathematical assistance received from Wm. D. Cairns, at that time Associate
Professor of Mathematics at Oberlin College. Four cases were considered: (a)
one dilution, one tube; (b) one dilution, several tubes; (c) several dilutions, one
tube at each; and (d) several dilutions, several tubes at each dilution. No
attempt was made in case (a) to obtain a single estimate of the number of
bacteria. In cases (b) to (d), McCrady selected as the ‘most probable number’
the number which assigns the greatest probability to the event actually observed.
Thus, the events ‘6/10 in 1 cc’, ‘4/5 in 1 cc’ and ‘9/10 in 1 cc’ lead to the esti-
mates 69, 160, and 229 bacteria per 100 cc, respectively, and not to 50, 80, and

the values of z corresponding to a given probability level are identical, independent of
whether inverse probability or maximum likelihood statistics are used. This is largely a
coincidence and in general does not obtain. It should be noted that no claim is made in
confidence interval theory that a single 0.99 confidence interval such as z < 189 will include
the true value in 99 per cent of the cases in which it is employed, <.e., in which¢5/10in 1 c¢’
occurs. The confidence coefficient 0.99 applies to the entire set of confidence intervals
which as an aggregate constitute an estimation procedure. If, as the different possible
events occur, the corresponding intervals are employed, then in the long run 99 percent
of the inferences regarding z made with this set of intervals can be expected to be correct
irrespective of whether z varies from case to case or remains the same. This distinction
between the two forms of inference does not appear to be adequately appreciated among
research workers in spite of the fact that Fisher, Neyman and others have stressed it for
over a decade. By a coincidence, 0.99 confidence limits for z, determined from the outcome
of several tubes at a single dilution, are identical with 0.99 probability limits for = based
on the assumption that all admissible values of z are a priori equally probable. Similarly,
for other levels of confidence. Therefore, it is true that, if all values of z do occur with equal
relative frequency, a single 0.99 confidence interval such as z < 189 may be expected to
include the true value in 99 per cent of the cases in which it is employed; if the relative
frequency of the values of z is otherwise, this expectation does not obtain.

18 Owing to the discontinuous nature of the variable r/z it is not possible to construct
intervals such that the probability is exactly 0.99 that a correct statement will be made.
This can be done when the variable observed varies continuously. Note that a correct
inference will always result in the present situation when z < 47.
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90 per 100 cc as might be inferred. As developed by McCrady from the inverse
probability point of view, his ‘most probable number’ depends on the validity
of regarding all admissible concentrations of bacteria as being equally probable
before the event. The ‘most probable numbers’ turn out to be ‘maximum
likelihood estimates’ as well, but as pointed out in the preceding section, from
the point of view of maximum likelihood the justification of the choice does not
depend in any way upon the relative frequencies with which admissible values of
the unknown quantity occur. Such estimates are not regarded as ‘most prob-
able values’ but are chosen on the basis of the manner in which they are dis-
tributed about the true value in repeated trials.

It will be instructive to consider in detail an example of McCrady’s estimation process.
Case (c)—one dilution, several tubes—lends itself especially well to such consideration.
He assumes that the z bacteria in the V units of volume comprising the sample under
investigation are distributed randomly and independently throughout this sample. It
follows that the probability of a single unit of volume containing no bacteriais [(V — 1) /V]=.
Thus, when V is 100 cc and 1 cc is taken, the probability of no bacteria in the 1 cc is (0.99)%,
and the probability of some (i.e., at least one) bacteria is 1 — (.99)z. If n samples of V
volume units each were drawn at random from the solution under investigation and a sub-
sample of 1 volume unit taken from each, then the probability of exactly r of the subsamples
containing bacteria is

0 . | - (T[T

McCrady regarded equation 5, written in slightly different notation, as a sufficiently close
approximation to the probability that exactly r out of n subsamples will contain bacteria
when all n subsamples are taken from the same sample of V volume units. This is not
strictly true since the reduction in number of bacteria is not necessarily proportional to
the reduction in volume of fluid arising from withdrawal of the successive subsamples.
As McCrady (63) notes, however, so long as n is small compared with V, the discrep-
ancy will not be great. In figure 5, graphs of equation 5 for V = 100 are given when n = 2
and r = 1, <.e., for ‘1/2in 1 ¢c’, and when n = 10 and » = 5, 7.e., for‘5/10in 1 cc’, with z as
abscissa and the probability of the event concerned as ordinate. Both curves attain their
maximum values for x = 69, which is McCrady’s estimate of the number of bacteria per 100
cc in either case. The maximum of equation 5 in general occurs at the value of z which is
the solution of the equation

V-1\* r
[6] 1_(T)=;

that is, by

[7] x=(logn:r)/(logv;l).

McCrady gives equation 6 in slightly different notation, but not 7, and notes that at a given
dilution the results r1/n; and r:/n, yield the same z whenever these fractions are equal.
The estimations will not be of equal accuracy, however.

While McCrady’s 1915 paper might be said to have ‘completely solved’ the
case of one or more tubes at a single dilution, as much cannot be said of his
treatment of the case of one or more tubes at each of several dilutions. He
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showed how to develop equations from which can be calculated the ‘most prob-
able number’ of bacteria per cc corresponding to the various possible outcomes of
inoculating several tubes at each of several dilutions when all admissible numbers
of bacteria per cc occur with equal frequency in the long run. The equation being
somewhat difficult to solve, he gave a table of the ‘most probable numbers’ for
“most of the practically possible” results which may occur from the systems:
(a) Two tubes ‘at 10 cc’, ten tubes ‘at 1 cc¢’, and (b) two tubes ‘at 10 cc’, ten
tubes ‘at 1 cc’, and ten tubes ‘at 0.1 c¢’. In a subsequent table (64) he gave the
‘most probable numbers’ corresponding to all possible combinations for several
special cases including those where 5 and 10 tubes are used at each dilution.
As already noted, these ‘most probable numbers’ are also the corresponding
maximum likelihood estimates. Wolman and Weaver (119), by making a few
minor approximations, rendered McCrady’s equations easier to solve, but their
contribution lost its importance once tables of the solutions were available.
Continuing with the type of reasoning he employed in the case of one or more
tubes at a single dilution, McCrady indicated how, with the aid of Bayes’
Theorem, probability limits for the number of bacteria per cc corresponding to
the various outcomes of several tubes at each of several dilutions might be
obtained. He did not attempt to derive any formulae, however, and thus left
unsolved the matter of accuracy of the estimates he tabulated.

Others were studying the interpretation of dilution data at about the same
time as McCrady, and shortly after the publication of his first paper these re-
searches began to appear in print. W. F. Wells, in a series of papers (106-109)
and in a joint paper with P. V. Wells (110), considered various ways of handling
and interpreting dilution data. Objections to these methods have been raised
by various writers, among them Cairns (15), who, as noted above, assisted
MecCrady with the mathematical portions of his analysis.

For the case of several tubes at a single dilution, Stein (87) proposed the use
of what amounts to the maximum likelihood estimates of the bacterial density
(e.g., number of organisms per cc) from the observed proportion of negative
tubes. A table of these estimates is given but the values shown are not accurate.
Using the formula for the standard deviation of an observed proportion under
simple sampling,'” he presented in tabular form calculations of the number of
tubes necessary to make the standard deviation of the estimated bacterial
density equal to 10 per cent or to 5 per cent of the true bacterial density. He
found that, for bacterial densities between 1.058 and 1.900 per cec, the number
of tubes needed to reduce the standard deviation of estimated density to 10
per cent of the true values is between 155 and 165, and that outside of this
density range the number of tubes needed mounts rapidly. Fisher (30) has
given the minimum number as “about 155" at a density of 1.6. In a second
paper, Stein (88) furnishes a chart from which the estimated density corre-
sponding to an observed proportion of positive tubes can be read. The mathe-

17 Stein refers to the standard deviation as the ‘‘mean error”, ‘“‘expected error’’, and

‘‘probable error’’. These latter expressions generally have a different meaning in statistical
papers.
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maticsﬂ discussion here j somewhat fuller, and two different approaches are
given.

Apparently unaware of McCrady’s work, Greenwood and Yule (45) ap-
proached the problem of interpreting dilution data essentially as MeCrady had.
They introduced one important simplification (employed independently by
Stein), which has been utilized by most subsequent writers. Instead of con-
sidering the preparation of the tubes at one or more dilutions as subsampling
from a sample of volume V, which McCrady takes to be 100 ce, and attempting
to estimate the number of bacteria x, in this sample, Greenwood and Yule
regard the preparation of the tubes as constituting sampling from the supply
itself, which is considered as having a practically infinite volume and in which
the density of bacteria per cc is A. In this way, the difficulties arising from
changes in the volume as successive tubes are prepared is avoided, and the
formulae are also somewhat simpler.” A table is given of the maximum likeli-
hood estimates—interpreted as ‘most probable values’ as in McCrady—for all
results involving at least one positive and at least one negative tube, corre-
sponding to the use of 10 or less tubes at a single dilution. Where comparisons
are possible, these estimates of Greenwood and Yule agree with Fisher’s values
(30) except for occasional difference of unity in the last digit.

On the general question of what series of dilutions to use and with what num-
bers of tubes at each dilution, Greenwood and Yule remark: “One obvious
condition, strangely overlooked, is that the size of any one sample should be
greater than the sum of the sizes of the smaller samples. Otherwise the observer
is simply asking for ‘inconsistencies’ in his results.”® A geometrical series fulfills
the required condition ... [and] ... seems also a natural one to use as the chance
of an inconsistence is the same at every point of the series [when an equal num-
ber of tubes is used at each dilution]. ...[With a single tube at each dilution]
r being the (ascending) ratio of the series, the chance of an inconsistence between
any adjacent pair of samples ... is1/(r 4+ 1).”

Basing his analysis on the results of Greenwood and Yule (45), which were
obtained with the aid of Bayes’ Theorem and the assumption that all admissible

18 We have found two errors in connection with the second approach. First, Stein’s
relation between a, the number of bacteria per cc in the supply, and @, the expected propor-
tion of negatives in N tubes when 7 cc are introduced into each tube, is incorrect. The
correct formula is @ = —(1/n) In Q. Formula XI (87, p. 254), expressing the relation in
terms of Q for the simple sampling deviation of the number of bacteria per c¢ in a random
sample of Nn ce, is also incorrect because the incorrect relation between a and @ was used.

19 Since the limit of [(V — v)/V]* is e as V and z both increase indefinitely with z/V
tending to A as a limit, the latter (with N for ») appears in the formulae of Greenwood and
Yule where the former occurs in McCrady’s formulae. Accordingly, by means of this
relation, one can pass from McCrady’s results in terms of V, z, and » to Greenwood and
Yule’s results in terms of A and N, and vice versa.

20 When a larger proportion of tubes give positive results at a certain dilution than at a
lesser dilution, the result is said to be ‘inconsistent’ or ‘anomalous’. Thus, with one tube at
each of three increasing dilutions, the results ++— and +— — are ‘consistent’, whereas
the results +—+ and ——+ are ‘inconsistent’. (In this quotation the expressions in
square brackets have been inserted by the present writers.)
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densities were equally probable a priori, Reed (78a) made a detailed study of the
case where the estimation is based on a set of five tubes containing 100 ce, 10
ce, 1 ce, 0.1 ce, and 0.01 cc, respectively, of the solution under investigation.
He notices that the most probable densities (which are maximum likelihood
estimates also) corresponding to the various possible outcomes form a “yard-
stick” with ‘“very coarse divisions,” and for this reason this set-up ‘‘is suitable
for grading waters that vary widely in the extent of pollution.” He notes, and
illustrates graphically, that for the so-called consistent outcomes, the estimated
density and its accuracy (from the inverse probability viewpoint, at least)
are almost entirely determined by the two tubes where the results change from
+ to —. In the so-called inconsistent cases, however, both changes of sign
play a part in determining the estimated density and its estimated accuracy,
and “it would be better to regard them as further subdivisions of the yardstick,
having their own probabilities, than to treat them as inconsistencies.” He
states that the use of five tubes at a single dilution will be more accurate than
five tubes in geometric dilution series, at least when accuracy is evaluated by the
Bayes’ Theorem approach, provided the five identical tubes are run at the most
suitable dilution. Except for cases where the customary neighborhood of the
bacterial density is known, the difficulty lies in picking the most suitable dilution
beforehand.

Fisher (28) considered the case of several tubes at each of several dilutions
from the viewpoint of the method of maximum likelihood, and gave in con-
densed notation the general equation determining the maximum likelihood
estimate of the bacterial density. Except for notation, this equation is identical
with that obtained by Greenwood and Yule for the ‘most probable density’ on
the assumption that all admissible densities are equally probable a priori, and
with the equation obtained by Halvorson and Ziegler (49) for the ‘most probable
value’ under the same assumption. The last mentioned writers claim that their
equation is more general than the equation of Greenwood and Yule. There
appears little justification for this claim, as noted by Swaroop (93), who also
shows how, by a slight rearrangement of the equation, its solution may be
obtained more readily. Swaroop prepared a table of estimates for the case where
the dilutions are in the ratio 1/2, 1/10, 1/100 with a single tube at the first
dilution and 5 tubes at the other two dilutions, and for the case where the dilu-
tions are in the ratio 1/10, 1/100, 1/1000 with 5 tubes used at each dilution.
He remarks that two mistakes in McCrady’s tables have been uncovered, and
that McCrady’s approximate values (when the estimates exceed 20) have been
replaced by values correct in the units place. Halvorson and Ziegler (48, 49)
have tabulated the estimates corresponding to code numbers™ likely to be
encountered in practice for the case where the (ascending) dilution factor is
10, and 10 tubes are used at each dilution.

21 If 10 tubes are used at each of five consecutive dilutions, an overall code of 10-10-10-8-3
might be observed, meaning that all 10 tubes show growth at the first three dilutions, only
8 of the 10 in the next, and 3 of the 10 in the final. The critical code for entering the table

is 10-8-3, and multiplication of the tabulated estimate by the appropriate power of 10 would
give the density per ce, per 100 ce, eic. as desired.
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As already stated, the ‘most probable density’ derived on the assumption
that all admissible densities are equally probable a prior: advocated by McCrady,
Greenwood and Yule, Stein, Reed, Halvorson and Ziegler, and others is identical
with the estimate indicated by the method of maximum likelihood advocated
by Fisher and Swaroop. Therefore, so far as choice of a single estimate of A
is concerned, these writers are unanimous, although the reasons for their choice
differ. Gordon (40—42) takes issue with all of the foregoing writers—although
he singles out the work of Halvorson and Ziegler for specific criticism—and pro-
poses an estimate, which, though based on Bayes’ Theorem and the assumption
that all admissible densities are equally probable a priors, differs from the ‘most
probable density’ corresponding to this assumption. If this assumption is
valid and simple sampling prevails, then, in our opinion, a table of the ‘most
probable densities’ being available, it is curious to advocate any other estimate,
since the ‘most probable density’ can be expected under these conditions to hit
the nail on the head more often than any other. While Gordon does not question
the use of Bayes’ Theorem with uniform a priort distribution for A, he does ques-
tion the validity of the simple sampling assumption, which underlies the work of
the aforementioned writers, that the individual bacteria are distributed in the
fluid independently at random. 1t is his thesis that bacteria ‘“exert a certain
mutual uniformizing influence on one another’’ so that ‘“the numbers of bacteria
caught up in [a series of samples] are somewhat more closely clustered about the
true average density, than we should compute them to be on the basis of the
above assumption of complete randomness.” Gordon apparently claims (41,
p. 169) that his method is less affected by bias from this source, but it is difficult
to see how he reaches this conclusion since his analysis utilizes a formula (equa-
tion 3, p. 170) which is based on simple sampling and which differs only in
notation from the fundamental formulae employed by the other writers.

Pearson (74) has given a very careful evaluation of Gordon’s paper, including
a discussion of the relative merits of the inverse (Bayes’ Theorem) and direct
(maximum likelihood, confidence interval) methods of approach. Noting that
the 0.95 confidence intervals are quite broad, (see section on Remarks and Sug-
gestions, especially table 6), Pearson remarks that ‘“having regard to this, the
differences between the single value estimates are of little importance.” In
reply to Gordon’s implications that the maximum likelihood estimates are
biased, Pearson states “if a method of obtaining accurate fiducial limits were
available, the bias in the single-valued estimate would be of no importance.”
An accurate chart of confidence intervals would provide such a method, and
would also make possible a check on agreement of actual samples with ex-
pectancy under simple sampling, i.e., a check on statistical control of laboratory
technique. ’

Accuracy of the ‘Best’ Estimate. In the preceding section we have focused
our attention primarily on the efforts of different contributors to determine the
‘best’ single value from a given set of laboratory results. Although knowledge
of the ‘most probable’ number of organisms is of undeniable importance, it has
little significance unless something about its accuracy is also known. We shall
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now consider how various workers have sought to determine this property of
their estimates. MecCrady’s (63) approach to the problem of accuracy is best
summarized in his comments regarding the curve for ‘5/10 in 1 cc¢’ (figure 5):
“Inspection of the corresponding curve . ..shows that the practically possible
numbers of bacteria have a range from about 15 to about 200 per 100 cc.” He
gives no range for the ‘1/2 in 1 ec¢’ case but, presumably, he would consider the
“practically possible”’ range from 1 to 600 per 100 cc. To explain his reasoning,
he points out that by using Bayes’ Theorem with equal a prior: probabilities,
“the ordinates of the curve give the relative probabilities that the corresponding
abscissae were responsible for the result,” so that ‘“the general shape of the curve
indicates roughly the degree of confidence which may be assigned the inclusion
of z within certain limits.”” As an elaboration of this procedure, he notes that,
by summing the ordinates of the curve from z = 0 to x = k — 1 and dividing
by the sum of the ordinates from 0 to «, the probability that the samples con-
tained less than k bacteria per 100 cc can be obtained. Formulae are given
(63, p. 197) to facilitate these summations. As an example he shows that, all
admissible values of z being assumed equally probable a priori, the occurrence
of the result ‘1/2in 1 cc¢’ implies that the probability is 89.937,/99.503 = 0.90386
that « is less than 300. With the same assumption, it may be shown that the
results ‘1/2in 1 c¢’ and ‘6/10 in 1 c¢’ imply that the probability is .99 that z is
less than 527 and less than 189, respectively. Since both of these results yield
69 as the ‘most probable value’, the greater accuracy of the result corresponding
to 10 tubes is evident.

In his 1919 paper, Stein (87) furnishes a curve showing the estimated density
=+ its standard deviation for 30, 100 and 360 tubes. He appears to have used
the standard deviation of ax , the number of bacteria per cc in a random sample
of Nn cc from a supply in which the actual density is @ per cc. Since ay cannot
be observed, its standard deviation is not of great practical value. What can
be observed is the proportion, say ¢, of negative tubes of N inoculated with » cc
of the supply; from ¢ an estimate, say 4, of a can be calculated:d = —(1/n) In g.
To a first approximation, the standard deviation of dis v/ (e" — 1)/N, of which
the estimate from the data is 4/ p/gN, where p = 1 — ¢ is the observed propor-
tion of positive tubes. This latter formula was given by Greenwoodand Yule
in different notation. The standard deviation of & will always be larger than
that of ax since 4 depends merely on the presence or absence of bacteria in the
Nn cc withdrawn and takes no account of the number of bacteria in the positive
tubes. Thus for 4 = 0.7, corresponding to ¢ = 0.50, the correct limits are
about 20 per cent wider than indicated in Stein’s curves. However this does
alter the fact, noted by Stein, that above densities of about 1.9 per cc (expected
proportion of positive tubes, above 0.85), these curves become so flat that small
changes in the observed proportion cause large changes in the estimated density.

To obtain limits which are today interpreted as confidence limits, Stein pro-
posed the use of Tschebycheff’s inequality—in the first paper he appears to sug-
gest that this be applied with the standard error of the observed proportion of
positive (or negative) tubes to obtain limits for the expected proportion, from
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which limits those for the bacterial density could then be calculated from the
equation relating these two quantities. In the second paper he inadvertently
drops the inequality sign (and the inequality is generally great) and apparently
proposes its use with the standard error of the estimated density to get limits for
the actual density. These two procedures are not equivalent; thus, with 100
tubes and an observed proportion close to 0.5, the former would assign a con-
fidence coefficient of at least 0.96 to the density range of 0.29 to 1.40 bacteria per
cc, and the latter to a range of 0.35 to 1.05 bacteria per ce. Actually the limits
obtained by either of these processes are too wide, since Tschebycheff’s inequality
is extremely loose—a correct range for the above confidence coefficient would be
approximately 0.51 to 0.92 bacteria per cc.

Fisher (28), employing a method available only for maximum likelihood esti-
mates, obtained the variance of In A, where A (which he denotes by n) is the
maximum likelihood estimate of the density, for the case where s, the number of
tubes used at each dilution is large. When s is small, Fisher’s expression will
give the variance of In X to a first approximation. Only minor alterations are
necessary to extend Fisher’s expression to cover the case where unequal numbers
of tubes are used at the respective dilutions, and, although Fisher’s derivation
is for the case where the dilutions are in geometric progression, the validity of
his result can be extended without difficulty to cover other arrangements.

Using Fisher’s method and notation, Swaroop (93) derived an expression for
the first approximation to the standard error of A, the maximum likelihood
estimate of the bacterial density, N\. Substituting A for A in this formula, he
tabulated (together with the values of A) for certain combinations of tubes of
dilutions the corresponding estimates of the standard deviation of A. In two
subsequent papers (94, 96), he studied the effect on the standard error of A
and on the coefficient of variation of X of varying: (a) the number of tubes used
at each dilution, (b) the true bacterial density, and (¢) the number and type of
dilutions used. He found that all three factors must be taken into account in
determining the accuracy of A. For low densities, e.g., 20 organisms per 100 cc,
he points out that an equal number of tubes at the dilutions 1/2,1/10,1/100
provides more accurate results than the same number of tubes at each of the
dilutions 1/10,1/100, 1/1000. To facilitate the use of the former dilution system
he tabulated (95) the estimates A and their estimated standard errors when 2, 3,
5, or 10 tubes are employed at each dilution.

In connection with Swaroop’s results two points need to be kept in mind.
First, the formula employed for the standard error of A is strictly valid only when
a large number of tubes are employed, giving merely a first approximation of
unknown accuracy when only a few tubes are involved. Second, the standard
error of a quantity is a good measure of its sampling variability only when the
distribution of the quantity is approximately normal (Gaussian). To what
extent these may impose limitations in actual practice can be inferred from
direct calculations carried out by Halvorson and Ziegler (50, 51). For the case
of ten tubes at each of three dilutions in geometric progression with (ascending)
factor of 10, Halvorson and Ziegler (51) calculated, from the terms of an appro-
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priate multinomial expansion, the exact probabilities of observing the various
possible codes when the true density was 0.15, 0.25, 0.50, and 1.50 per cc, and
then, with the aid of their tables showing the correspondence between codes and
estimates, they obtained the probability distribution of the maximum likelihood
estimator, A, when the true density was each of the four preceding values. They
found: (a) that the distributions of \ in these cases were moderately skewed with

TABLE 5
Comparison of arithmetic and logarithmic estimation

ACTUAL BACTERIAL DENSITY PER CC (A)
NOTE FORMULATION
0.15 0.25 0.50 1.50
1) M }}) 0.164 0.284 0.558 1.648
(i) s (V) 0.0659 0.1171 0.2263 0.6894
(iii) s (\)/A 0.440 0.468 0.453 0.460
(iv) Lim o (A\)/A 0.354 0.353 0.407 0.357
(v) M @A) = Al/e ) 0.212 0.290 0.256 0.215
(vi) log A —0.824 —0.602 | —0.301 +0.176
(vii) M (log A) —0.816 —0.578 —0.285 | +0.184
(viii) o (log X) 0.163 0.164 0.163 0.168
(ix) Lim o (log }) 0.1535 0.1532 0.1768 0.1550
M (log X) — log A ’
(x) o (log %) 0.049 0.146 0.098 0.048
Notes:

(i) The arithmetic mean of the distribution of the maximum likelihood estimator, &,
taken directly from table 1 of Halvorson and Ziegler (51).

(ii) The standard deviation of X, i.e., the root mean square deviation from M (X), taken
from table 1 of Halvorson and Ziegler (51).

(iii) Entries obtained by dividing those in (ii) by A\, and not equal to Halvorson and
Ziegler’s coefficient of variation from mean, since their divisor is the corresponding entry
in (i).

(iv) The limiting value of ¢ (X)/A as the number of tubes at each dilution increases
indefinitely, taken from table 2 of Swaroop (94).

(v) Obtained from the preceding rows of the present table.

(vi) The logarithm (to base 10) of the actual bacterial density per cc.

(vii) The arithmetic mean of log X, taken from table 1 of Pearson (74) who calculated
them from table 1 of Halvorson and Ziegler.

(viii) The standard deviations of log X taken from Pearson’s table 1, who calculated
them from table 1 of Halvorson and Ziegler.

(ix) The limiting value of o (log X) as the number of tubes at each dilution increases
indefinitely, taken from Pearson’s table 1 who calculated them from the formula of Fisher
(28).

(x) Calculated from the preceding rows of the present table.

the long tail toward the large values; (b) that the degree of skewness was practi-
cally independent of the true density, A, for the range of A considered; (c) that
the standard deviation of \, ¢(A), increased with A; and (d) that the coefficient
of variation, ¢(A\)/A, was practically constant for the range of A considered.
Some of their results are given in table 5, together with additional results derived
from their exact distributions of A and from Fisher’s formula.
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From this table it is evident for the density range considered: (a) that the
standard deviation of \ varies with A, being to a good approximation equal to
0.45 \; (b) that the standard deviation of log } is nearly constant; (c) that log A
and X both have a positive bias, and in standard deviation units the bias of the
former is somewhat less; and (d) that the relative error in using the limiting
standard deviation in place of the exact value is less with log A than with A.
Pearson (74) gives a table of values for the limiting standard deviation of log A
for A from 0.10 to 4.00, and from a graphical portrayal of these values it appears
that the limiting standard deviation of log X ranges from 0.151 to 0.180, with a
median value of approximately 0.166. Since the distributions of log A are more
nearly symmetrical than the distributions of A, it is of interest to see how well
the distributions of log A can be approximated by assuming that it is normally
distributed with a standard deviation of 0.166 about log A. Using this approxi-
mation, the probability should be 0.95 that X will lie in the intervals 0.07-0.32,
0.118-0.723, 0.236-1.058, 0.671-3.158 (end points included) when A\ = 0.15,
0.25, 0.50, and 1.5, respectively. From Halvorson and Ziegler’s table 1 the
exact probabilities appear to be 0.949, 0.986, 0.948, 0.937, respectively. The
agreement is remarkably good, especially in the first and third cases, in view of
the fact that X in each instance can take only certain discrete values, the proba-
bilities of which do not increase monotonically but exhibit many vicissitudes as
\ approaches the true value, A, from either side.

Remarks and Suggestions. To remind a bacteriologist of the many statistical
procedures which have been advocated for solving the type problem represented
by the dilution count may not strike him as entirely a favor. He may, indeed,
find himself somewhat distracted by the variety of aid offered, his position not
unlike that of Joel Chandler Harris’s Br'er Fox hesitating to decide which
barbecue to attend. The bacteriologist of this joint undertaking, therefore,
put these two questions to the statistician:

1. Which of the proposed methods should I employ in a given situation at the
present time, 7.e., with only existing tables and charts to facilitate their ap-
plication?

2. If funds were available, what further research should be undertaken to
advance statistical methodology relating to the dilution count?

It is realized that the following answer of the statistician represent ‘“one man’s
opinion” and is to be accepted or rejected as such.

In order to answer the first question, a more specific definition of the situation
is desirable. If a routine check on a controlled bacterial population is concerned,
as in a routine analysis of the water in a city reservoir, so that the customary
whereabouts of the bacterial density is known, the most effective ‘control’ will
be obtained by running all tubes at a single dilution, the dilution and number of
tubes being chosen in such a way that the probability of obtaining a proportion
of positive tubes which will result in condemnation will be very small when the
bacterial density is within the customary neighborhood, and large when the
bacterial density exceeds the permissible limit. The standard proposed in the
Report to which Reed’s (78a) analysis is an appendix is a step in this direction.
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To improve the chances of a routine analysis detecting the entrance of trouble
before it leads to condemnation, the routine should include the use of a control
chart in terms of the proportion of positive tubes, as outlined in American War
Standard Z1.3."

If on the other hand, an isolated analysis or a routine analysis of an uncon-
trolled bacterial population is concerned, as in an analysis of stream water prior
to treatment at the Water Works, the general whereabouts of the bacterial den-
sity being unknown in advance, then 10 tubes should be run at each of a series of
dilutions in geometric progression with (ascending) ratio of 10. A single esti-
mate of the bacterial density can readily be obtained from the table of Halvorson
and Ziegler (48, 49); its confidence limits can be estimated from a chart® pre-
pared by Miss Supifiska (91). In the absence of Miss Supifiska’s chart, con-
fidence intervals computed from log A + (1.96) (0.166) can be used, the asso-
ciated confidence coefficient being close to 0.95.

Table 6 gives, for three hypothetical cases discussed by Gordon (41), the
maximum likelihood estimate, A, tabulated by Halvorson and Ziegler; the
estimate recommended by Gordon, A; and the upper and lower limits to 0.95

TABLE 6
Estimation by interval and by single value

0.95 CONFIDENCE INTER VALS

>
>

CODE Supfnska Normal Approximation Matuszewski, ez al.

Amin. A\ max. A\ min. A\ max. A min. A max.

10-7-3 1.53 1.43 0.67 3.00 0.72 3.24 0.75 4.28
8-5-1 0.267 0.291 0.125 0.525 0.126 0.563 0.179 1.153
4-2-1 0.080 0.086 0.029 0.165 0.041 0.182 0.034 0.203

confidence intervals obtained (a) by Supifiska’s method, (b) by the normal
approximation discussed above, and (c) by a method described by Matuszewski,
et al. (67) which depends only upon the sum of the three components of the code.
The intervals obtained by normal approximation agree moderately well with

22 This chart has been reproduced by Matuszewski, Neyman, and Supinska (67). It
was not based on an exact mathematical solution, but was obtained by graduating a series
of experimental sampling results as described on p. 76 of their paper, viz.,

““The method followed by Miss J. Supifiska consisted in a complex sampling experiment,
using Tippett’s random sampling numbers. The experiment produced a series of values
of the variates zo , z1 , and z: [<.e., codes zo-21—7:] following the sampling distribution which
they would follow in our hypothetical conditions of the experiment. For each series of
Zo, Z1, and 73, it was possible to read up from the table of Halvorson and Ziegler an esti-
mate, say N, of the concentration \. The estimates A’ have been then tabulated and an
empirical frequency distribution of N’ corresponding to several fixed values of A has been
determined. Following the method described by J. Neyman, these empirical frequency
distributions were then used to construct confidence intervals as if they were the accurate
ones. As the random variation could not fail to affect the limits of the intervals it was
felt necessary to correct them by fitting two parabolae, one marking the lower and the other
the upper limits of the confidence intervals.”
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Miss Supinska’s intervals, and in the absence of her chart will probably be close
enough for most practical purposes. It will be noted that they are slightly
wider and displaced somewhat to the right. This displacement is due in part to
the fact, noted above, that log A tends to overestimate log A slightly—e.g.,
when A = 1.50, the mean of log A is 0.184, the antilogarithm of which is 1.53—
and a correction for this bias might be devised.

Of these three sets of intervals, those taken from the table of Matuszewski,
et al.—whose paper provides an excellent introduction to the construction and
interpretation of confidence intervals—are the only ones which are based on
an exact mathematical solution. The mathematical approach which they have
adopted, is, essentially, an extension of a short-cut proposed by Fisher (28)
whereby the estimation is based solely upon the sum of the components of the
code. Thus the codes 10-10-0, 10-9-1, ---, 10-7-3, - - - , 10-5-5, 9-9-2, - -
yield the same single estimate by Fisher’s short-cut method, and lead to the same
confidence interval by the corresponding method of Matuszewski, et al., whereas
they lead to quite different values of A in the table of Halvorson and Ziegler and
thence to quite different confidence intervals from Miss Supifiska’s chart. The
confidence intervals of Matuszewski, et al. are mathematically rigorous but they
utilize only a portion of the information in the data, and hence are not to be
recommended for accurate work. In the absence of Halvorson and Ziegler’s
table or Miss Supifiska’s chart, they will provide broad interval estimates of \
which will be correct in the long run, in at least 95 per cent of the instances in
which they are used.

In two recent papers Halvorson and his associates (47, 80) considered the use
of too frequent occurrence of rare codes for diagnosing the character of departures
of laboratory technique from statistical control. Stein (88) gave a graphical
means of checking the consistency of the results obtained at each of two dilutions
differing by a factor of 10 when an equal number of tubes were run at each
dilution, and his method can be extended to an equal number of tubes at each
of three dilutions. Perhaps these two approaches can be combined to give
a rapid graphical test of the statistical control of the experimental technique
in terms of the consistency of the results of successive dilutions.

With regard to further research, it seems highly desirable to construct mathe-
matically exact charts giving 0.95 and 0.99 confidence intervals for the bacterial
density for the case of several tubes at a single dilution, and for the case of one
or more tubes at each of the successive dilutions. For several tubes at one
dilution, such charts can easily be constructed from Clopper and Pearson’s (18)
chart of confidence intervals for the binomial distribution, or from Fisher and
Yates’ table of fiducial limits for the binomial distribution.”® When a sufficient
number of exact frequency distributions of A, such as are given in Table 1 of
Halvorson and Ziegler (51) have been computed, exact confidence charts pat-
terned after Miss Supifiska’s empirical chart can be constructed for the case of
10 tubes at each of three successive dilutions in geometric progression with

23 We understand that the second edition of Fisher and Yates (35) scheduled for 1942
publication includes such a table.



92 CHURCHILL EISENHART AND PERRY W. WILSON

(ascending) factor of 10. Charts of this kind not only provide confidence limits
for \, given A, but for any particular (e.g., maximum permissible) value of A
the charts can be used also to obtain control limits for X such that, if A’s lying
outside the limits are interpreted as danger signals, there will be a small known
probability of an unwarranted ‘“Wolf! Wolf!” While the limits corresponding
to 10 tubes at each of the (three) successive dilutions with (ascending) dilution
factor of 10 would probably be most widely used, the limits for 5 tubes at each
dilution might be included on the same chart to show the effect of reducing the
number of tubes on accuracy of estimation. Similar charts could be con-
structed for the McCrady-Swaroop system. A comparison of these charts
would bring out at once some of the relative advantages and disadvantages of
the two systems. '

THE NORMAL DISTRIBUTION

It is evident that the graph of a binomial distribution consists of a series of
bars of appropriate lengths erected at the points z = 0, 1, 2, - - - , n, that they
are always spaced at intervals of 1 unit whatever the value of n, and that the
number of these bars increases as n increases. When n becomes only moderately
large, say 25, evaluation of successive terms of the point binomial becomes
laborious, and increasingly so as » increases. Furthermore, since the sum of
the terms of (¢ + p)" is always unity for0 < p < 1 and ¢ = 1 — p, the values
of the respective terms, and hence the lengths of the corresponding bars, must
decrease toward zero as n increases. In other words, whatever the value of p,
the probability of the event occurring in any single trial, the probability of its
occurring eractly x times in n independent trials will be practically zero when n
is very large. Therefore, what is generally sought in practical work is not
the probability that an event will occur exactly 600 times in 1000 independent
trials, but the probability that it will occur between 525 and 650 times, or the
probability that it will occur at least 600 times. In short, for large values of n,
what is needed is a convenient method for summing the appropriate terms of a
point binomial.

The normal probability curve, whose equation can be written

2—-m) 2
1_ e_( 202)

o\ 2%

where m and ¢ are the parameters of the distribution, was developed by Abraham
De Moivre (23) in 1733 as a means of finding easily the sum of consecutive terms
of a binomial distribution when = is large. He showed that for large values of n
the term involving p° in the expansion of (¢ + )", i.e., the term which gives
the probability of the event occurring exactly z times in n independent trials, is
well approzimated by equation 8 with m = np and ¢* = npg; and that the sum
of the terms corresponding to values of z from X; to X, inclusive where
0 < X; £ X, < nis given approzimately by the area under the curve between
z=2X1—1/2tox = X, + 1/2 when m = np and ¢ = \/npq. For the ap-
proximation to be good, n should be large and p — ¢ should be numerically small

18] y =
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compared with v/npq. Nevertheless, the approximation is fairly good even
when 7 is as low as 10 and p = 1/3, as is shown in Table 7. The fit forp = 1/2
is much better, of course.

Until quite recently (76), this early work of De Moivre (23) had been overlooked, and the
development of the normal distribution was often attributed to Gauss, who proposed its
use as the distribution of errors of observation arising in astronomical work. Gauss dis-
cussed in detail the adjustment of measurements for errors of observation and laid the
foundations of the method of least squares so thoroughly that many of the techniques
employed today are essentially those of Gauss. Throughout his work the ‘errors’ were
regarded as normally distributed random variables; equation 8 written in slightly different

TABLE 7
Comparison of binomial expansions with corresponding normal distribution curves

NUMBER OF 1000 (3 + ) 1000 (§ + $)1°
“‘SUCCESSES”’
Binomial expansion Normal curve Binomial expansion Normal curve
0 1.0 2.2 17.3 28.7
1 9.7 11.2 86.7 80.6
2 44.0 43.5 195.1 178.8
3 117.2 114.4 260.1 256.5
4 '205.1 204.7 227.6 238.6
5 246.0 248.0 136.6 143.8
6 205.1 204.7 56.9 56.2
7 117.2 114.4 16.3 14.3
8 44.0 43.5 3.1 2.3
9 9.7 11.2 0.3 0.2
10 1.0 2.2 0.0 0.0
1,000.0 1,000.0 1,000.0 1,000.0

1000 (3 + 3)!° might represent the distribution of the number of heads obtained per
throw if 10 coins are tossed 1000 times; the ‘‘binomial expansion’ gives the theoretical
values obtained by expanding the binomial; the ‘‘normal curve’’ represents those obtained
from the normal curve corresponding to this binomial, i.c., where m = np = 5 and ¢ =
Vnpg = V10/4.

Similarly 1000 (3 + 1)° could represent the distribution of ‘successes’ when 10 dice are
thrown 1000 times and a ‘success’ consists of either ace or siz appearing on a die.

form, was referred to as the law of errors or the error function, names which it still retains
in the physigl sciences. Because of its widespread use in the theory of errors, the normal
distribution is often called the Gaussian Distribution. Laplace developed the normal distri-
bution as an approximation to the binomial distribution when n is large, ‘apparently un-
aware of De Moivre’s earlier development, and applied it to a variety of phenomena,
especially to games of chance and vital statistics. In hisanalytical treatise on probability,
Laplace (59) laid the foundations of modern mathematical statistics.

Adolphe Quetelet (1796-1874) led the way in applying the normal curve to
biological and social phenomena, and Francis Galton (1822-1911) applied it
to biological variables of every sort. Both were impressed by the way their
data seemed to conform to this curve. There appears to have been a belief
among many biologists of this period that this curve was an ideal to which
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most biological distributions ought to conform, and that some explanation was
needed when they did not. In consequence, the expressions “normal law”
and “normal distribution” took root as substitutes for “law of error’’, “Gaus-
sian distribution”, etc. However, as more and more data were studied, and
better methods of comparison were developed, it became evident, principally
through the work of Karl Pearson (1857-1936), that the normal distribution
is not a universal law of nature.

The practical importance of the distribution has not declined, however, on
this account, but has actually increased in importance in recent years. The
principal reasons for this are:

(a) Even though a population departs radically from normality, a secondary
population formed of the arithmetic means of sufficiently large random samples
drawn from it can be regarded without sensible error as normally distributed
about the mean of the parent population with a variance equal to that of the
parent population divided by the size of the sample. Hypothetical populations
can be devised for which the preceding statement is false, but it may be con-
sidered true for biological populations, since biological variables take on finite
values only. How large the samples need to be depends largely on the asym-
metry of the population; for symmetrical and only moderately asymmetrical
continuous distributions, samples of 4 are often large enough and samples of 10
are quite adequate, but with very skewed distributions somewhat larger samples
may be needed.

(b) The normal distribution has many mathematical properties which make
it particularly attractive in the development of statistical theory and techniques;
hence most new techniques are developed on the supposition that the underlying
variables are normally distributed.

(¢) The assumption of an underlying normal distribution does not lead to
serious error, since many such techniques are based on statistics and test criteria
whose sampling distributions are relatively stable for moderate departure of
the true underlying distribution from normality, especially if the sample is large.

Since different normal distributions are obtained by assigning different values
of m and ¢ in equation 8, it is advantageous for purposes of tabulating properties
(e.g., the values of y corresponding to a given value of z, the area under the
curve between two points, etc.) to standardize this family of curves by reducing
all to a single form. This is accomplished by substituting for x a gew variable
defined by

(9] p=rT—m
o
which reduces equation 8 to
1 -
[10] =_——e ?2
y 27

The area under the curve of equation 8 between z = X’ and z = X"’ is equal
to the area under the curve of equation 10 between ©« = «’ and u = u”’, where
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w = (X' — m)/e and w”’ = (X" — m)/s. When z is normally distributed, u
is also normally distributed and has a mean of zero and a variance of one; a
random wariable having these properties is said to be a normal deviate with unit
variance. Tests of significance based on the normal distribution are discussed
and illustrated in Part II.

PART II. TESTS OF SIGNIFICANCE

As an introduction to the general topic of tests of significance let us consider
a simple example: In cases of disputed parentage where each of the alleged
parents has clear blue eyes, the eye-color of the child can form the basis of a test
of the hypothesis that the claimants really are the child’s natural parents.
Since blue eye-color is a recessive trait, the mating of two individuals each with
clear blue eyes cannot result in a brown-eyed child except through a mutation
of the relevant gene, the probability of which is less than 1/10,000. If, there-
fore, whenever each of the ‘parents’ has clear blue eyes, their claim is rejected
for a brown-eyed child, and accepted tentatively for a blue-eyed one, then this
procedure constitutes a test of the hypothesis that these claimants actually are
the child’s natural parents. Several features of this test of significance should
be noted: (a) the probability of falsely rejecting the hypothesis tested, which
Neyman and Pearson (71, 72) term committing ‘““an error of the first kind”, is
low, here less than 1/10,000; (b) in a region where brown eyes are not uncommon,
the probability of a brown-eyed child from a random mating—we may assume
that eye-color is not generally influential in mating—will be considerably larger
than 1/10,000, so that the probability of rejecting the hypothesis by the above
procedure will be considerably larger when it is false than when it is true, ob-
viously a desirable property; (c) tentative acceptance of the hypothesis when it
is false, which Neyman and Pearson term committing ‘“an error of the second
kind”’, will occur, however, whenever the child and each of the ‘parents’ has
clear blue eyes although the child was not from the mating of these ‘parents’—
the probability of such an occurrence would not be negligible in a community
in which blue eyes were not uncommon, and would be large in an immoral com-
munity in which blue eyes were quite common. On account of the sizable risk
of an error of the second kind, one would not rely solely on this test.

These features are common to tests of significance in general. The prob-
ability of false rejection of the hypothesis, which is termed the level of significance
of the test, is usually chosen in advance by the research worker in testing sta-
tistical hypotheses, thereby determining which outcomes will lead to rejection
of the hypothesis tested and which will lead to tentative acceptance. The
probability of the test rejecting the hypothesis tested when some particular
alternative is true is termed the power of the test relative to this alternative (73).
For the test to be critical with respect to an alternative to the hypothesis tested,
the power with respect to this alternative must exceed the level of significance,
the greater the excess the better the test relative to this alternative. A discus-
sion of the power of the customary tests of significance is outside the scope of
this paper, but it may be stated categorically for the tests to be discussed herein-
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after that the power of these tests relative to a fixed alternative increases rapidly
with the number of observations employed.

L]

DATA FROM NORMAL DISTRIBUTION

To illustrate the use of the normal distribution in tests of significance let us
consider the following data which represent milligrams of yeast produced in two
media.

Medium A Medium B

100 85

110 96

85 74

90 80

93 83

Total 478 418
Average 95.6 83.6

Example 1: Suppose past experience has shown that an individual estimate
of yeast growth by the method used has a standard deviation of 10 milligrams
and that on the average a yield of 90 milligrams is obtained in a certain standard
medium. We ask then: Are the observed values consistent with the hypothesis
that medium A is equivalent to the standard medium? That is, are the observed
values in medium A independently and normally distributed about an expected
value (m) of 90 with a standard deviation (¢) of 10. The admissible alternative
is that the observed values are independently and normally distributed with a o
of 10 about a mean different from 90.

To test this hypothesis the normal deviate

[11] z = (X —m)/(c/\/N) = (95.6 — 90.0)/(10/~/5) = 1.25

is calculated from the data, N and X denoting the number of and average value
of the observations, respectively. The deviate found in the present instance
being numerically less than the 5 per cent significance level,* 1.96, the hypothesis
may be accepted tentatively, that is, we tentatively conclude that medium A
is equivalent to the standard medium for propagation of yeast.

Since in this example the number of observations involved is very small, the
test has little discriminating power with respect to nearby values of m. It
may be shown, for instance, that for N = 5 the above test conducted at the 5
per cent level of significance has slightly better than a 0.50 chance of rejecting
m = 90 when in fact m = 80 or m = 100.** On the other hand, for N = 16 and

24 See, for instance, Fisher (30) table 1.

% It may be noted here that, if the test were conducted at the 1 per cent level of sig-
nificance, the probability of rejecting m = 90 when m = 80 or m = 100 would be only 0.27,
80 that the probability of an error of the second kind would be 0.73 in these instances. This
illustrates a general principle: reduction of the probability of an error of the first kind
by choosing a more stringent level of significance increases the probability of an error of
the second kind.
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o = 10 the probability that the test will reject m = 90 when in fact m = 80 or
m = 100 is approximately 0.98 when the test is conducted at the 5 per cent level
of significance. It follows from this that with very small numbers of observa-
tions the chances of committing an error of the second kind are generally great.
Otherwise stated, if 50 or more observations had yielded the above deviate,
1.25, we should have greater confidence that m was actually close to 90.

Example 2: Next, consider the question whether media A and B are equiva-
lent. To do this, we test the hypothesis that the data for the two media repre-
sent independent random samples from normal populations with standard
deviation ¢, = o = 10, and equal means m, = mp , the admissible alternatives
being that the data represent independent random samples from normal popula-
tions with 0, = o = 10 but unequal means m, > mg .

To test this hypothesis the normal deviate

2] z = (X, — X:)/c(1/N1 + 1/N:)} = (95.6 — 83.6)/10(2/5) = 1.90

is calculated from the data. N; and N, are the number of observations from
A and B, respectively, X; and X; , the corresponding averages, and ¢, the postu-
lated common standard deviation. The deviate obtained in the present instance
is close to, but does not exceed the 5 per cent level, 1.96, so that at this signif-
icance level the hypothesis tested should be tentatively accepted, and we might
conclude that the two media are essentially equivalent. In practice, however,
one would be reluctant to place great confidence in the conclusion that the data
represent independent random samples from identical normal distributions.
First, as already noted, the chances of an error of the second kind are great with
so few observations. Second, the value obtained for the deviate is highly de-
pendent on the value taken for ¢, = os. With the new media, for example,
it might be that ¢, = o = 8, and this would lead to a deviate of 2.37. Since
this value exceeds the 5 per cent significance level by a good margin, we should
reject that portion of the hypothesis which states that m, = mg , had we postu-
lated a standard deviation of 8.

Ezample 3: Although we might not place much confidence in the assumption
that both ¢, and op are equal to the o observed with the standard medium,
theoretical considerations might suggest the less restrictive assumption that
oa and op are equal. If so, “Student’s” ¢ test can be used. Suppose we ask
the same question as in Example 2 but make no assumptions about the true value
of 6o = os. Formally, we state this: Test the hypothesis that the data for
media A and B constitute independent random samples from identical normal
populations, the admissible alternatives being that the two parent populations
are normal with identical standard deviations but different means.

We calculate the statistic,

[13] t = (Xl _ Xz)/S(l/Nl + l/Nz)*
where
[14] S=[2(X - X))+ (X — X))/ (N1 + N: — 2).
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X, and X, represent individual observations from A and B, respectively; the
other symbols have the same meanings as in equation 12. This test, developed
by Fisher (31), is an extension of a result obtained earlier by “Student” (90).
The probability distribution of ¢ depends on its degrees of freedom, which here
are N; + N; — 2; tables of the significance levels of the distribution are available
(30, 35, 79, 84).

For purposes of calculation it is often convenient to evaluate the summations
from :

(X — X)* = 2x* — GX)YN
[15] =(X; — X))* = 100* + 110° + 85° 4 90° + 93° — 478%/5 = 377.2
(X, — X)) = 261.2

therefore,

o

s = (377.2 + 261.2)/8 = 79.80, and
t = (95.6 — 83.6)/4/79.8(2/5) = 2.12

This value does not exceed the 5 per cent point, which for 8 degrees of freedom
is 2.306, so that at this level of significance the hypothesis tested may be accepted
tentatively, <.e., the two media are equivalent. The risk of an error of the second
kind discussed in connection with Example 2 has equal relevance here.

Example 4: 1If the method of obtaining the data is such that there exists a
pairing of the values, the foregoing tests should not be employed. Instead,
one should base the test on the successive differences between the pairs, testing
whether the true mean difference is zero. For example, if in the yeast experi-
ment the values 100 and 85 were determined in one run, 110 and 96 at another
and so on, we test the hypothesis that the differences may be regarded as inde-
pendent random observations from a normal population with zero mean, the
admissible alternatives being that the differences are independent random ob-
servations from a normal population with non-zero mean.

The appropriate ¢ to use to test this hypothesis is

[16] t = d/(s/V/N)

where )

7] d=X,—X., d=Cd/N=X-X
(18] & =3d-dY(N —1),

and the degrees of freedom are N — 1.

In the present instance ¢ = 12/(2.3452/4/5) = 11.44 which greatly exceeds
the 1 per cent level (4.604) for 4 degrees of freedom. Accordingly, if in the long
run, one is willing to risk committing an error of the first kind less than 1 time
in 100, the discrepancy between observation and hypothesis in the present
instance may be regarded as sufficient to warrant rejection of the hypothesis
tested.

The hypothesis is rejected as a whole and further consideration is necessary
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before one particular aspect is blamed. In the present instance, we have focussed
our attention primarily on the equivalence of the media for yeast propagation
and would, accordingly, be inclined to accept the alternative that the true mean
difference was not zero, t.e., medium A is superior to medium B. By construc-
tion, the ¢ test is most powerful with respect to this class of alternatives, so that
this explanation is generally the one to be adopted. But other alternatives
should not be disregarded, such as: (a) non-randomness of sampling; (b) lack
of independence of the successive differences; (¢) non-normality of the common
population. Fortunately, as a test of the hypothesis that the true mean dif-
ference is zero, the ¢ test is relatively insensitive to moderate departures from
normality. The issues of randomness and independence can be taken care of
in the design and conduct of the research. It is for this reason that it is always
desirable to introduce an element of randomization in experimental design.
Similar remarks apply to the rejection of the hypotheses discussed in Examples
1 to 3.

When more than two samples of the data are at hand, pair-wise comparisons
among all possible pairs with ¢ tests do not provide a satisfactory method of
testing the hypothesis that they are all from the same normal population, with
the alternatives that their true means may differ. Analysts of variance provides
the tests which are the extensions of ¢ tests appropriate to such cases.

ANALYSIS OF VARIANCE AND DESIGN OF EXPERIMENTS

In applied phases of agricultural research the experimenter must frequently
overcome handicaps which quantitatively at least appear more formidable than
the corresponding ones of the laboratory scientist. These include:

1. Heterogeneity of the experimental material—this arises for example, from
wide differences in soil fertility or pronounced variation in stock animals.

2. Restriction of replication—because of the expense and other considerations,
the size and number of experimental plots or replicate animals is definitely
limited.

3. Length of experiment—an experiment usually lasts through a growing
season or reproductive period so that one or two experiments a year is the
most one can hope to make. Moreover, because of unfavorable weather,
depredation of animals, or of other accidents, the entire experiment may be lost.

It is understandable then that the complex type of experiment early found favor with
the agronomist and animal husbandryman—if experimentation is limited, as many variables
as practical should be included in order to gain maximum information when the experiment
succeeds. The meaning of data from such experiments, however, was very obscure, and
it was not until Fisher and his group at the Rothamsted Experimental Station developed
the methods for analysis of variance that any real basis for comprehensive interpretation
became available.

Although the particular handicaps referred to may not bother the laboratory scientist,
their counterpart is constantly with him in various guises, and it would be unfortunate if
he overlooked the powerful tools now at his disposal for analysis of data merely because the
tools were originally developed for field trials. The principles used are perfectly general
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and are equally applicable to data from investigations on pig feeding, fertilizer treatment,
or bacterial nutrition.

Unfortunately, the exposition of the subject has been confined almost entirely to examples
taken from field plots, animal production, or plant and animal breeding studies. Con-
sequently, scientists unacquainted with the particular terminology or type of problem of
such investigations may obtain only a hazy idea of the real nature of the analysis and may
be inclined to regard the entire matter as a somewhat mysterious hocus-pocus useful only
in applied agriculture where uncontrollable factors and lack of replication prevent use of
the precise techniques of the laboratory. Actually, the development of the analysis of
variance has allowed the introduction of the complex experiment, or ‘“‘factorial design’’
as it is nowadays called, into other branches of science rather than restricting it to applied
studies where it was formerly tolerated only because nothing better was at hand. The
advantage of the complex experiment is not only its efficiency, :.e., its economy of time and
expense for a given amount of information, but also its insistence on close attention to
experimental design and its ability to bring out information through the ‘interaction’
terms which either cannot be obtained or only with great effort in the single factor type of
study. More often than not, the interactions are precisely the information wanted if the results
are to have significance for conditions other than the carefully standardized ones of the experi-
ment. (See Chapter VII in Fisher’s Design of Experiments (33) for further discussion of the
technical advantage of factorial design.)

Fisher suggests, ‘. . . perhaps it is worth while stating an impression I have formed—
that the analysis of variance, which may perhaps be called a statistical method, because the
term is a very ambiguous one—is not a mathematical theorem, but rather a convenient
method of arranging the arithmetic.” (Discussion of Wishart’s (118) paper.) Although
this is probably a modest understatement, it is a point of view that should be kept in mind
for an understanding of the steps taken in an analysis. These may be enumerated:

1. A total sum of squares is calculated by squaring the deviations of the respective
observations from their common mean without any attention being paid to treatments,
strains, or other factors.

2. This sum of squares is divided into its components, thus assigning to each factor
in the experiment its proper share of the observed variation among the observations.

3. A variance estimate from each factor is determined by dividing its share of the sum
of squares by the appropriate degree of freedom.

4. The observed inequalities between certain of the variance estimates are tested for
significance.

The general nature of the analysis of variance can be appreciated by noting
certain properties of an arbitrary set of numbers arranged in k£ groups with n
numbers in each group:

Observation number Total Mean
1 2 3 j n

Tu Tiz T vt Ty vt T T &

2 Xy Tn Xy v Xy v T T X
T Ta Ta Ta vt Ty o T Ti &
Uc Tkl Tre Tas °°° Tij *°° Tikn _T_k 52:
T =
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If the mean of the entire group is %, and Z; is the mean for the ith group, it can
be shown that the following equation holds:

74 ne

(UREED 3D YICHEE S 0 2N T R DLy

=] je=] tm=] je=l

That is, the sum of the squares of the deviations of the individual numbers (z;;)
from their general mean can be divided into two parts: (1) the sum of the
squares of the deviations of the numbers in each row from the mean of that row
summed for all the rows; (2) the sum of the squares of the deviations of each
row mean from the general mean multiplied by the number of items in the row.
In our example the rows have an equal number, but this is not a necessary
restriction.

So far nothing has been said about the nature of the numbers since equation
19 holds independent of what they represent. Now let us consider them to be
results of an experiment in which k treatments have been used and each treat-
ment has been represented n times. The first term on the right hand side when
divided by k(n — 1) provides an estimate of o’ from variation within the treat-
ments; the second term divided by (k — 1) provides an estimate of ¢” from varia-
tion between treatment means. If the k samples (k sets of n determinations each)
are from normal populations with equal variances, 7.e., oy =o0s =03 = -+ =
ot = o, then a test of whether the means of these populations are equal can be
devised. For if the variance estimate from between treatment means is denoted
by A and the variance estimate from within treatments by B, it can be demon-
strated that A and B are both unbiased estimates of ¢* when the true treatment
means are identical. It remains only to find a method for testing whether any
two estimates of a variance, both subject to sampling errors, are estimates of
the same true variance, ¢*. This is done by defining a new variable, F = A/B,
and determining its distribution when A and B are both estimates of the same
variance. As would be expected, this distribution depends on the values of
(k — 1) and k(n — 1), the respective degrees of freedom of A and B. From the
distributions of F, one can determine the probability that a given value of F
will be exceeded through chance fluctuations when A and B are estimates of the
same variance. Such information is condensed in tables, so that an observed
value of F can be readily tested for significance by consulting the table under
the proper degrees of freedom (84).

A few examples of varying degrees of complexity will illustrate how the
method is used. The following data were obtained in a nitrogen fixation
experiment:

CULTURE N IN MILLIGRAMS T
A 61 36 71 168
B 39 46 42 127
C 17 28 4 79
D 22 15 43 80
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The triplicate determinations are not paired in any way through design of
experiment. Is there reason for concluding that the mean nitrogen contents
of these cultures differ? Our ‘null’ hypothesis (see Appendix) is that the
samples are from the same population. The question asked may be rephrased
in statistical terminology: Do the independent estimates of the variances from
between and within treatments differ significantly? To answer this, the following
estimates of variance are calculated: The fotal sum of squares is determined from
equation 15 with the summation extending over all N observations and with
T=32X

2
(X — X = 3X* — —TAT = 61 + 36 + 71° --- 22° + 15° + 43° — 454%/12

= 3069.7

Then, the sum of squares between treatments (different cultures)
™ T
. — 2 — _.' s
; (s — X) E ng N

= (168° + 127* + 79’ + 80%)/3 — 454°/12 = 1821.7

Having calculated these sums of squares in this simple case, we can set up the
analysis immediately since the sum of squares within treatment is the difference
between the iotal and that between treatments.

[20]

VARIATION D.F. s%uv:::s sgﬁz F 5% POINT
Between treatments.................... 3 1,821.7 | 607.2 3.89 4.07
Within treatment (error).............. 8 1,248 156.0
Total ... 11 3,069.7

From the table we find that with 3 and 8 degrees of freedom, F may be expected
to be at least 4.07, 5 times in 100 through chance alone, when the samples are
from populations having a common mean and variance. Therefore, the ob-
served differences in the estimates of variance are not large enough to be signifi-
cant at the 5 per cent level, and we may conclude that these data do not conflict
with our null hypothesis: that the samples are from the same population. It
should be observed that in this simple case, the analysis of variance is merely
an extension of “Student’s” ¢ test for the difference between two means. Ac-
tually, each of the means could be tested against the others by this method, but
by combining the data in an analysis of variance we obtain greater precision
since our estimate of error is now based on 8 degrees of freedom instead of 4 as
would be the case if the ¢ test were used. This is one of the main advantages
of the design suggested by the analysis of variance, viz., that in a given experi-
ment, more treatments with fewer replications can be used, because the estimate
of error will be based on all the samples, not merely on those of the two particular
means which are to be compared.
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Consider now a slightly more complex type of experiment in which two factors
are varied. The following data from Thorne, Neal, and Walker (100) summa-
rize the respiratory quotients of different species of the root nodule bacteria
growing in a basic medium in which the source of nitrogen was varied:

SOURCE OF NITROGEN 2. R. nﬁrf;g‘-’- APONT- 2 MEAN T,

MELILOTI | TRIFOLII | o, oo J cum  |PHASEOLI ¢
Sodium nitrate.................... 1.21 1.15 { 1.03 |1.03 |1.12 | 1.108| 5.54
Ammonium chloride............... 1.18 1.15 | 1.07 |[1.08 | 1.13 | 1.12 5.61
Asparagin......................... 1.05 1.08 1 1.06 | 0.92 | 1.19 | 1.06 5.30
Yeast extract..................... 0.94 0.90 | 0.94 | 0.78 | 1.02 | 0.916 | 4.58
Mean........coovviiiennnnnnnnn. 1.095| 1.07 | 1.025 { 0.952 | 1.115 21.03

/A T 4.38 | 4.28 | 4.10 | 3.81 | 4.46

Total sum of squares
1.21° 4+ 1.18° + - -+ + 1.19* 4 1.02° — 21.03*/20 = 0.234
Sum of squares between means of species

4.38% 4+ 4.28° + 4.10° + 4.46° + 3.81°
4

Sum of squares between means of nitrogen source

5.54° + 5.61° + 5.30° + 5.48°
5

The remainder, 0.234 — 0.067 — 0.133 = 0.34, is due to residual variation and
will be used for estimate of experimental error. This use assumes that any
contribution to the residual variation due to interaction of species and source of
nitrogen is negligible in comparison with the portion due to error of experiment,
so that practically all of the observed variance in this term may be ascribed to
random experimental error. This assumption may of course not be true and
could easily be tested by replicating the estimations of the respiratory quotients.®
The analysis of variance is now easily set up:

— 21.03%/20 = 0.067

— 21.03%/20 = 0.133

VARIATION | D.F. SSQU:A:;S sggﬁ‘z F 1% POINT
Species. ... e 4 0.067 | 0.0168 5.94 5.41
Nitrogen source........................ 3 0.133 | 0.0443 15.65 5.95
Residual............... ... ..ol 12 0.034 | 0.00283

It is evident that the value of F for both species of organism and source of
nitrogen are much larger than would be expected to occur by random sampling

26 Thorne, Neal, and Walker (private communication) did use replicates, but the com-
plete data are not included in their paper. For purposes of illustration we have used the
data actually given there.
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even once in 100 times. We conclude then that our original null hypothesis,
that the data may be regarded as independent samples from the same normal
population (in particular, that the differences in species and nitrogen source had
no effect), is incorrect. Accordingly, we accept the alternative with regard
to which the test is most powerful, namely, that the differences in species and
in nitrogen source did affect the outcome. We may want to know now which
of the treatment means differ from the others. As shown in the table, the
estimated variance of a single determination is 0.00283, so that a difference
between an arbitrary pair of means of sources of nitrogen would be tested by

TABLE 8

Logarithms of milligrams nitrogen fized by varieties of Medicago sativa tnoculated with strains
of Rhizobium meliloti

VARIETIES OF MEDICAGO SATIVA
mumg: Hairy Peruvian Ladak Grimm
Expt. I Expt. IT Expt. I Expt. 11 Expt. I Expt. II
101 0.92 1.53 0.36 0.83 1.38 1.43
0.97 1.55 0.32 0.86 1.28 1.53
105 1.09 1.40 1.01 1.37 1.40 1.58
0.94 1.51 0.74 1.27 1.34 1.42
107 1.34 1.48 1.27 1.48 1.32 1.49
1.44 1.52 1.10 1.22 1.45 1.46
111 0.94 1.42 1.06 1.60 1.37 1.34
1.22 1.12 1.04 1.56 1.43 1.34
115 1.02 1.39 1.25 1.18 1.19 1.29
1.06 1.12 1.18 1.21 1.35 1.29
129 1.35 1.43 1.30 1.39 0.83 1.44
1.41 1.61 1.11 1.30 0.73 1.54

dividing by an estimated standard error of 1/0.00283(2/5) = 0.0336 to get a ¢
with 12 degrees of freedom. The 59, point for ¢ with 12 degrees of freedom is
2.18, hence a difference of (2.18)(0.0336) = 0.073 between an arbitrary pair of
source means may be regarded as significant at the 5 per cent level. Similarly,
(2.18)(0.0377) = 0.082 constitutes the 5 per cent level of significance for dif-
ferences between an arbitr‘ary pair of species means.

Certain reservations about the use of such comparisons should be noted.
When the difference between a particular pair of means is compared with the
corresponding ‘minimal significant difference’, as the foregoing calculated dif-
ferences are often called, the interpretation of the outcome depends upon
whether the decision to compare these particular means was reached before or
after an examination of the data. If before, then, when the observed difference
exceeds the minimal significant difference, it may be regarded as indicating a
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real, underlying difference. If after, then a difference exceeding the minimal
significant difference should be regarded as merely pointing to a comparison
which may warrant special attention in further research. Also, observe that
among m means only (m — 1) independent comparisons can be made.

The final example to be considered deals with a more complex type of analysis
and illustrates the importance of the interaction terms. Burton and Wilson
(14) investigated in greenhouse trials the nitrogen-fixing ability of three varieties
of Medicago sativa L. when inoculated with six strains of R. meliloti. The
experiments were repeated during different seasons of the year to determine
whether this factor affected the results. The logarithms of the quantity of
nitrogen fixed per pot of 10 plants for two experiments are summarized in table 8.
Only representative calculations which show how the variances are estimated
will be given. From table 8 the total sum of squares, Z(X — X)* = 5.0429,
is determined as has been already illustrated. Next, a new table is made similar
to table 8 but in which the duplicate samples have been combined. The items
in this second table will be referred to as X ; we calculate the total sum of squares
for this table by the following:

X; _ T

2 N

where Z denotes the summation over all values of X, , and T = ZX, = sum of
all original observations. Note that the correction term, the square of the
total of a table divided by N, will be the same for all steps in a given analysis.
The sum of squares obtained by formula 21 is 4.7039, and the difference between
this and the original total sum of squares, 5.0429 — 4.7039 = 0.3390 is that due
to ‘error’, since by combining the duplicates we have eliminated the variation
due to this source. This error sum of squares will have 36 degrees of freedom
because each of the 36 pairs of duplicates will contribute 1 degree of freedom.
We now make another table in which the effect of experiment is disregarded by
adding together corresponding items from the two experiments:

[21]

VARIETY OF HOST PLANT
STRAIN OF BACTERIA
Hairy Peruvian Ladak Grimm T

101 4.97 2.37 5.62 12.96
105 4.94 4.39 5.74 15.07
107 5.78 5.07 5.72 16.57
111 4.70 5.26 5.48 15.44
115 4.59 4.82 5.12 14.53
129 5.80 5.10 4.54 15.44
T; 30.78 27.01 32.22 90.01

Total sum of squares in this table is

IX:_T'_ 497 4494 ... 512" 4+ 454 90.01° _
T Tms I 75 - 2705
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in which X, indicates that each term is composed of 4 corresponding items of
the original data and = here denotes the summation over all values of X;. The
t«o)tal sum of squares in this table is made of three factors: Strain of organism =

Zl Ti/12 — T*/72 = 0.6033 with 5 degrees of freedom; Variety of plant =

3
Zl Ti/24 — T*/72 = 0.6032 with 2 degrees of freedom; and Interaction of these
’-

two factors, V X S = 2.7054 — 0.6033 — 0.6032 = 1.4989. The interaction
term will have 10 degrees of freedom (5 X 2), as can be verified by the fact
that this table has a total of 17 degrees of freedom and 7 of these are used by
the simple factors. To obtain the effect of Experiment and its interaction with
variety of plant, another table is constructed in which the items are classified
according to these two categories as:

HAIRY

PERUVIAN LADAK GRIMM TOTAL
Experiment I............................. 13.70 11.74 15.07 40.51 (T.)
Experiment II............................ 17.08 15.27 17.15 49.50 (T,)
Difference. .....................ccoi.... | 3.38 ’ 3.53 l 2.08 ‘ 8.99

The total sum of squares of this table is composed of : that due to Variety (which
has been already determined), that due to Exzperiment, and that due to Inter-
action of variety and experiment. These could be calculated in the usual way,
but for tables of this type (2 X =), a more rapid method is:

Sum of squares due to experiment
[22] (Ty — Ty)?/2N’ = 8.99°/72 = 1.1225

with one degree of freedom, where T, and T. denote the totals for Experiments
I and II respectively, and where N’ is the number of items representéd by each
total, in this case N’ = N/2, where N is the total number of observations in
table 8. ’

Sum of squares due to interaction

=& _ (T, — Ty _ 3.38° + 3.53" 4 2.08

= - = — 1.1225 = 0.0530

(23]

where d is the difference between the total for a given variety in Experiment II
and in Experiment I, each such total being the sum of %’ original observations,
and Z denotes summation over varieties. The entire table has 5 degrees of
freedom, of which 2 belong to Variety, 1 to Experiment, and 2 to their Interaction.

A similar table is constructed in which the categories are Strain of organism
and Ezperiment. The interaction term, Strain X Ezxperiment is determined
in exactly the same manner, giving 0.2735 with 5 degrees of freedom. The
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sums of squares for the several factors and their first order interactions are now
added and this sum, 4.3053, taken from the total sum of squares for the X table,
4.7039. The difference, 0.3986, is the sum of squares belonging to the triple
(second order) interaction, Variety X Strain X Ezxpertment. This has 10
degrees of freedom (5 X 2 X 1), since the total for all treatments is 35, and 25
of these have been used by the simple factors and first order interactions. The
analysis of variance can now be set out as follows:

VARIATION D.F. SSQ?A:;S s:‘f::}: F 5% POINT | 1% POINT
Variety....................... 2 0.6032 | 0.3016 32.02 3.27 5.26
Strain........................ 5 0.6033 | 0.1207 12.81 2.48 3.59
Experiment................... 1 1.1225 | 1.1225 119.16 4.12 7.41
VXE.. ..o 2 0.0530 | 0.0265 2.81 3.27 5.26
SXE. o 5 0.2735 | 0.0547 5.81 2.48 3.59
VXS, . o 10 1.4989 | 0.1499 15.91 2.13 2.90
VXSXE.................. 10 0.5495 | 0.0550 5.84 2.13 2.90
Error........................ 36 0.3390 | 0.00942

Total .. .................... 71 5.0429

The interpretation should give no difficulty. The values of F' corresponding
to the variance due to the single factors, Variety and Strain, exceed the 19
point indicating that at least one variety of the host plant was superior to the
others independent of the strain of bacteria used as the inoculum, and that at
least one strain of the bacteria was better than the others independent of the host
plant. Obviously the experiment factor was significant since the design was
such that more nitrogen would be fixed in one experiment than the other. Con-
sidering the first order interaction terms, it appears that the varieties responded
identically in the two experiments, but the strains did not. The important
interaction term is the Variety X Strain; the high value of F corresponding to
it shows that the efficiency of a strain in fixing nitrogen varies with the host
plant used—thus establishing ‘host plant specificity’”’ for this plant-bacterial
group (14). Of interest is that this interaction of variety and strain varied with
the experiment as shown by the significant F value for the second order interac-
tion term, V X S X E. The possible significance of this point (verified in
further experiments) for symbiotic nitrogen fixation is discussed in the original
paper. Once significance for a factor is established, some indication of the
particular bacterial strains and varieties of host plant responsible can be obtained
by calculating the appropriate error from the error of the single sample, 0.00942,
and testing means or totals by the usual ¢ formula.

This example illustrates several important aspects of the analysis of variance
which should be considered in somewhat more detail before finishing our discus-
sion.

1. The equality of variances within treatments. The requirement that all the
observations should be of equal precision, 7.e., have the same standard devia-
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tion, needs emphasis as it is sometimes ignored. Cochran (21) stresses the
importance of this requirement and illustrates by examples how a mechanical
application of analysis of variance to data of varying precision can lead to
absurd conclusions. In the present experiment, the treatments, including time
of experiment, caused a wide variation in the nitrogen content of the plants.
The difference in nitrogen content, of course, is merely another way of stating
that the plants differed in size. A priort, one would not suppose that variation
among a population of plants of one size would equal that of another population
in which the plants were 2 to 3 times as large; experience with plants under the
conditions used in this experiment has verified this conclusion. Since under
these conditions the growth of the plants is approximately logarithmic, it seems
reasonable to assume that if the original data, total nitrogen in 10 plants, are
transformed by taking the logarithm, the variances of the transformed data
would not greatly differ among the different treatments. The logical trans-
formation is not always so evident as in this case (53). Thus, percentage
should be transformed to an angle, § = arcsin 4/p, where p denotes an observed
proportion. Employed originally by Fisher (29), the application of this trans-
formation to experimental data has been promoted by Zubin (125), Bliss (5, 6),
and Clark and Leonard (16). Of special importance to bacteriologists is the
square root transformation advanced by Bartlett (1, 2) for use in connection
with variables having Poisson distributions. If suspicion exists that the variances
are unequal, some function of the observations in which equal variances might
be expected should be taken before proceeding with the analysis. Bartlett (2)
has shown how to test a set of variance estimates for homogeneity.

2. Design of experiment. It is essential that the various treatments have an
equal chance of being exposed to those factors in the experiment which are not
under control. This is a matter of design of experiment. Little more can be
noted here than some of the methods available for insuring proper design for
statistical treatment of the data; details are given in the monograph of Fisher
(33) as well as in any modern statistical text which deals with agricultural ex-
perimentation. In the nitrogen fixation studies, only 36 pots were used in each
experiment, as this number could be readily placed in a rather small space on
the greenhouse bench. The position of a given pot in the area used was deter-
mined by chance (drawing of a card or use of a table of random numbers). Had
the experiment required more pots, e.g., 4 replicates instead of 2, so that the
space occupied in the greenhouse would be rather extensive, the introduction
of blocks would be advisable. The greenhouse bench would be divided into 4
blocks in such a way that the conditions (light, temperature, drafts) in a given
block would be reasonably constant, then one pot of each particular treatment
placed within each block, its exact position being determined by chance as before.
In this case the replicates of a particular treatment are not interchangeable, but
are grouped with the corresponding replicate of the other treatments in the
same block. Thus the block becomes one of the ‘treatments’. The sum of

.squares due to this factor is removed from the total in the statistical analysis,
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which prevents the error variance from increasing because of differences in the
environment of the different blocks.

This technique is extremely important in field trials in which soil hetero-
geneity is one of the chief sources of variance. By proper experimental design,
the variance due to differences in soil fertility in different parts of the experi-
mental plot can be estimated and allowed for in the analysis. This increases
the permissible number of replicates, but imposes a limit on the number of
treatments, namely that which can be placed within the relatively homogeneous
block. An interesting extension of thus correcting for soil heterogeneity is the
Latin square which can be used if the experiment is designed so that the number
of replicates equals the number of treatments. As can be seen in the following
example of a four-fold Latin square in which A, B, C, and D represent treat-

B|A|D|C
A{D|C|B
C|B|A|D
D|C|B|A

ments, a particular treatment appears exactly once in each row and column.
In the analysis, sums of squares due to differences between rows and to dif-
ferences between columns are segregated thus making allowance for gradients
of soil fertility, efc., in two directions within the field. Although the Latin
square has been used primarily in field plot trials, obvious applications suggest
themselves in other research areas, e.g., in bacteriology, arrangement of cultures
in an incubator so as to be able to make allowances for temperature gradient.

Another point concerned with experimental design illustrated by the final
example deals with the estimate of the error. If single samples had been taken
as was done in the preceding example, instead of duplicates, the row labelled
Error in the analysis of variance table would be absent, and the V X S X E
interaction would have to serve as the best available estimate of the experimental
error. If this had been done, the mean squares due to strain differences and to
interaction of strain with experiment would have been judged ‘non-significant’.
Although perhaps of secondary interest in this particular experiment, the re-
sulting difference in interpretation emphasizes the desirability of replication
and the danger of presuming that a certain interaction is non-existent in order
to use the corresponding mean square as an estimate of experimental error.

3. The error variance. An analysis of variance will not generally be needed
to evaluate the relative merits of treatments differing widely in effectiveness,
and, indeed, will be unavailable in such cases if the observations corresponding
to the respective treatments differ in precision. The refinements of analysis of
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variance are needed principally when the differences between the treatments
are slight, and, fortunately, in such cases the observations are generally of ap-
proximately equal precision so that the analysis of variance technique 73 avail-
able. When treatment differences are not great, efficient analysis will aid
mateirally in this detection. Furthermore, this analysis of variance provides
additional advantages. First, we obtain an estimate of experimental error,
for comparing any two treatment means, which is based on all the observations
in the experiment rather than one based just on the observations corresponding
to the treatments whose means are being compared. Hence, the test of signif-
icance has greater power, 7.e., has a larger chance of detecting any real dif-
ference between the treatments. Second, factors which are known to affect
the result, and which in classical experimentation are kept constant in order
to make possible a determination of experimental error, may be varied within
the limits imposed by the design employed and allowed for in the analysis,
thereby giving reality to an experiment which otherwise might suffer from
idealization possible only in the laboratory.

To illustrate these points, let us consider an experiment in which four media
are to be compared for their ability to bring about some desired growth response
in the commercial production of yeast. Suppose that laboratory facilities
would allow 16 determinations to be made with each medium. If all media
were kept in some carefully controlled laboratory environment, then the analysis
of variance would be:

Test of 4 media in one environment

Degrees of

Variation Freedom
Between media. ... ...t 3
Within media (€FTOT) . ... ... 60

The difference between any two media will here be compared with an estimate
of experimental error based on 60 degrees of freedom, whereas a pair-wise com-
parison using only the data for the media compared would employ an estimate
of error based on 30 degrees of freedom. Since such a large number of replica-
tions are involved, the increase in precision by use of analysis of variance is
slight, as can be seen from the fact that the 5 per cent level of ¢ for 30 degrees of
freedom is 2.04, and for 60 degrees of freedom is 2.00. Using the pair-wise
comparison as a standard, it is seen that by planning to use analysis of variance,
the number of determinations to be made on each medium could be reduced to
8 to get comparable accuracy, since the 5 per cent significance level of ¢ for
4 X 7 = 28 degrees of freedom is 2.05.

It would be impractical, however, to make such an experiment in which the
media were kept in a carefully controlled laboratory environment, since it is
well established that the relative suitability of a medium for an organism varies
with factors in the environment such as temperature, aeration, size of inoculum.
Suppose each of these factors was introduced into the experiment at two levels,
then duplicates of each treatment would be possible in the 64 cultures since
2(4 X 2 X 2 X 2) = 64. The analysis of variance would then be:
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Test of 4 media in different environments
D;gfm of Degrees of
E(

Variations eedom Variations Freedom

Main Effects: 2nd Order Interactions:

Betweenmedia................. 3 MXTXA. ...........ooona.. 3

Between temperatures.......... 1 MXTXI....ooooooooiia.. 3

Between aerations.............. 1 MXAXI . .................. 3

Between inocula................ 1 TXAXIL.................... 1
1st Order Interactions: 8rd Order Interaction:

M X T i 3 MXTXAXI .............. 1

MXA . i 3

MxI...... e 3 Between Duplicates (Error)........ 32

T X A i 1

N N 1

AX T i 1

The actual experimental error will be no larger in the complex experiment,
but its estimate, being based on 32 degrees of freedom instead of 60, will have
lost some precision, but it is as precisely determined as would have been the
case in a pair-wise analysis with 16 determinations for each medium in a single
environment. This loss, however, is more than compensated for by the greatly
increased information obtained concerning the influence of temperature, aera-
tion, and size of inoculum on the response of yeast in different media together
with the various interactions. The paper of Brandt (9) may be consulted for
the working of an actual problem such as the one outlined.

An interesting example of the employment of analysis of variance in the
statistical control of a laboratory technique is given by James and Sutherland
(55, 56, 57) in their studies on the accuracy of the plate count in enumerating
soil microérganisms. They investigated a number of factors which might be
expected to affect the counts, such as aliquot of soil taken, method of dilution, of
pouring plates, and of incubating. Their analysis indicated that both aliquot
taken and dilution®” were important in affecting the count, but the other details
of technique investigated had less influence. Though they did not feel justified
in making definite recommendations on the basis of their findings, they sug-
gested that if one is limited to a certain number of plates, a more accurate esti-
mate will be obtained if the number of aliquots and dilutions is increased at the
expense of replication of a single dilution. The fact that different dilutions
frequently gave rise to different estimates was considered, and a method for
correcting the estimates so as to be interchangeable was suggested (56).

REGRESSION AND CORRELATION

A primary function of all research is to determine relationships between two or
more quantities. To know how phenomena are related is essential to all scien-

27 To avoid confusion in our discussion of the statistical control of plate counts, we have
disregarded errors arising from technique as contrasted with the sampling error. In
actual practice, however, it is recognized that errors in dilution, etc., may become just as
important in affecting the reliability of a count as the other. Jennison and Wadsworth
(58) discuss this aspect of variation and have furnished a table for correction of dilution
errors for various deviations in pipette and dilution blanks.
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tists from the theorist who integrates the relationships into hypotheses regarding
the why of nature to the technician who wants to know the value of one quantity
from observations on another. Probably the most obvious way to judge the
relationship between two variables® is by plotting the values on graph paper
and noting the trend. TUsually an effort is made to obtain a linear relationship
as this simplifies interpretation and use. If the original data do not yield a
straight line, its trend often suggests the proper function, and by suitable
transformations a linear relationship can be secured. Having plotted the data
so that they appear to be linear, the investigator may merely draw in the line
which to his eye appears to fit them. Although this is probably not objection-
able if the fit of the observations to the line is very close, it introduces an un-
desirable subjective element and an opportunity for bias. Sometimes the fit
is fictitiously good, because of the scale used for plotting (37), and disagreement
regarding interpretation ensues.

Statistical theory points out that the criterion of goodness of fit which should
be adopted in a given instance depends upon the nature of the random variation
affecting the variables, and provides objective methods of fitting which lead
to the best fitting line as judged by the appropriate criterion. In biological
research, methods for obtaining a relation between two variables which it is
hoped will be sufficiently close to the true relationship for the purposes in mind
involve the following steps™:

(a) It is assumed that the pairs of observational points, (ziy1) < - - (Zala),
differ from the ‘true’ points as a result of biological variation and errors of
measurement in either z or y or both. ‘True’ is used in the sense that for a
fixed value of x observed values of y will be randomly distributed about a central
value, called the ‘true’ value, the exact nature of which depends upon the
character of the distribution. When the distribution is normal, the mean is
termed the ‘true’ value.

(b) From theoretical considerations or from the appearance of the graph some
mathematical relationship between z and y is assumed. We shall restrict
ourselves to consideration of the linear type:

Y = a + Brand X = y + dy, in which the manner of conducting the experi-
ment usually determines which is to be the independent variable (26).

(c) Estimates of the constants, e.g., @ and b for a and 8, are chosen which
will make the resulting line ‘best’ fit the observations. When the random varia-
tion is normal with the same standard deviation throughout the range of z and y
considered, the fit is ‘best’ when the sum of the squares of the deviations of the
observations from the line chosen is a minimum. We shall restrict the present
discussion to the case where normal random variation is manifest in the observed

28 In this paper attention will be confined to simple regression coefficients since the
extension of the methods to problems involving 3 or more variables can be found in any of
the standard references given in the bibliography.

29 A fuller discussion of the concepts and principles involved has been given by Eisen-
hart (26).
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values of y, but the values of x are exactly determined, so that an observed point
can deviate from the ‘true’ point in the y direction only.

(d) Tests of significance are then carried out to determine how good the fit
actually is; the outcome of these will be the basis for deciding whether the
chosen function can adequately describe the actual relation between the 2’s
and y’s. '

The methods for carrying out these steps can best be followed by working
through a specific example. Table 9 provides data on the fixation of nitrogen
by inoculated red clover plants kept in an atmosphere containing H;. When

\

TABLE 9
Fization of nitrogen by inoculated clover plants in presence of H,*
ARRAY TIME g)DAYS IDGIG(S FIXED SUM 0!& %i?lRAYS
1 0 0.520
0.546 1.678
0.612
2 17 0.843
0.844 2.522
0.835
3 31 1.090
1.189 3.478
1.199
4 50 1.484
1.559 4.539
1.496
Y 294
. 12.217

* pN: = 0.15; pO: = 0.2; pH, = 0.15; pHe = 0.5 atm.; n; = 3 in all arrays.

the original data were plotted, a logarithmic function was suggested which was
verified by plotting log mg N against t¢me in days. It should be noted that in
fitting these data it is clear that time in days constitutes the independent variable,
since its values are determined by the will of the experimenter, and, provided
the latter can count accurately, its values are not subject to experimental error.
The postulated relationship is:

[24] Y =a+8X

where Y = mg N fixed, X = time in days.
The constants in this equation are estimated by:

[25] a =3 — bz, and
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_ 2z —Dy —§) _ Zzly — 9)
[26] b= Z(x — %)? - Z(x — 7)?

where Z and § denote the mean values of the ‘observed’ values of z and y, re-
spectively, and = denotes summation of all pairs of observations. In actual
calculation, use is made of the following identity where N = number of pairs
of observations:

(27] Z(@x — z)(y — §) = 22y — (22)(ZY)/N,

= 0(0.520 + 0.546 + 0.612) + 17(0.843 + 0.844 + 0.835) --- etc.
— (294)(12.217)/12 = 377.642 — 299.316 = 78.326
From equation [15], ‘

Sz — £)° = 3(0° + 17° + 31° + 50°) — 294°/12 = 11250 — 7203 = 4047
hence, b = 78.326/4047 = 0.01935
a =4 — b = 12.217/12 — 0.01935(294/12) = 0.544, and the ‘best’ line is:
Y = 0.544 4+ 0.01935X.

For testing the significance of these constants, the total sum of squares
=(y — §)°, must be divided into its several components appropriate to the test,
and an analysis of variance made. By equation 15, =(y — %)’ = 0.520° +
0.546° + --- 1.559° + 1.496° — 12.217°/12 = 1.53552. For testing the signif-
icance of regression, which means testing whether b is significantly different
from zero, Z(y — §)’ is divided into two parts: first, that due to regression, i.e.
deviations of points on the regression line from the mean of the y’s, which equals

[28] (Y — 9 = b2z — 5 = (0.01935)°(4047) = 1.5153,

and the remainder which accounts for the deviations of the observed points
from the regression function, Z(y — Y)* = 1.5355 — 1.5153 = 0.0202.

The objection may well be raised that testing for regression in this example is
unnecessary and somewhat artificial, since it is obvious from mere inspection of
the raw data that the quantity of nitrogen fixed increases with time. Although
it is true that in this particular instance it is superfluous to test whether b differs
from zero, this is not always so, and indeed many times, it is the most significant
test made. Hence, in order to illustrate the method and also, because some
of the values will be needed in the test for linearity, we include this step. The
analysis is:

VARIATION s?‘;::s D.F. s:)‘ggn F 5% POINT
Regression.....................ooiun 1.5153 1 1.5153 750.1 4.96
Deviations from regression............. 0.0202 10 0.00202

As would be expected F is well beyond the 5%, point.

Although the foregoing analysis confirms the existence of regression as meas-
ured by a linear function, it does not indicate the adequacy of a straight line to
represent the actual relationship. To test this, we divide the total sum of
squares into two parts, one of which represents that portion due to the means
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of the arrays differing from §, (and therefore to differences between the arrays)
and the other, that portion due to the scatter of values within the several arrays.

[29] 2y — §)° = Zn(@: — 9 + 22y — %)’
Total Between Within
arrays arrays

The total degrees of freedom is (n — 1) of which (¢ — 1) belongs to the Between
Arrays and (n — q) to the Within Arrays. In the foregoing equation n; denotes
the number of samples in the ¢th array with mean #;, with Zn; = n, and with ¢
number of arrays. The double summation signs indicate that the sum of
squares for the deviations within arrays is to be summed for all g arrays. The
sum of squares due to differences Between Arrays is further broken up into a part
due to deviations of means of arrays from the regression line with (¢ — 2) d.f.
and a part due to the regression itself (1 d.f.):

[30] 2 — §)° = Zn@s — Y) + V2@ — 2)°
The linearity of regression is tested by comparing the mean square corresponding
to deviations of means of arrays from the regression line with the mean square

corresponding to Within Arrays. Since

nGs — §)° = ZTi/m — Ty/N

[31] 2 2 2 2 2
_ 1.678" + 2.522" 4 3.478" + 4.539" _ 12.217° _ 1.5205
: 3 12
then Zni@; — Y)* = 1.5205 — 1.5153 = 0.0052
and 22(y — 7:)* = 1.5355 — 1.5205 = 0.0150.
The analysis of variance accordingly is:
VARIATION :‘;’:A:;s D.F. s:g:;‘z F 5% POINT

Deviations of means of arrays from line.| 0.0052 2 0.0026 1.37 4.46
Within arrays. ......................... 0.0150 8 0.0019

As the value of F is definitely less than that of the 5 per cent point, it is con-
cluded there is no evidence of departure from linearity.

When a value of b has been determined in each of two independent experi-
ments, an extension of the ¢ test can be used to determine whether the two
values of b differ significantly:

6= b ‘
D% (1/5 (@ — £) + 1/ — @)’}]

[32] ¢= [(Nl Z 2 + (Vs —
N,+ N, — 4
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in which

[33] N - 2§ =2y — 9" — V2@ — 2

and ¢t has (N, + N; — 4) df. This formula should be used only when s and s
do not differ significantly, otherwise the u or v tests of Welch (105) are available.
The necessary data for testing estimates of @ and b obtained in some experiments

with clover plants grown in atmospheres with different partial pressures of H,
follow:

oH2 | s b N N —2)s (- F
0.15 0.544 0.01935 12 0.0202 4047 24.50
0.35 0.565 0.01606 9 0.0171 3231 21.77

The first step is to compare the variances by calculating F = (0.0171/7)/
(0.0202/10) = 1.21, which is well below the 5 per cent point of 3.15 for 7 and
10 d.f. As the variances appear to be homogeneous, the ¢ test may be applied:
0.01935 — 0.01606 .
t= [0.0202 + 00171 { 1 1 }]* = 3.21 with 17 d.f.

B+o—4 \0& T 3@
Since this value of ¢ exceeds the 1 per cent point, it appears that the observed
difference in the b’s is significant.
The difference between the a’s may be tested by means of the following formula
when s; and s; do not differ significantly.

a; —

L= [(Nl —2)s + (N — 2)st { 1 z
Ni+ N, — 4 ‘N1—2 Z(Il—fl)’
: 1 z
(34] T2 im= @)2}T
_ 0.565 — 0.544 _ o7
[0.0171 +00202 /1 21.77° 1 24.50’}]* '
9+12—4 |7 ' 3281 ' 10 ' 4047

The difference between the a’s is clearly not significant, which means, of course,
that log mg. nitrogen at ¢ = 0 was the same in each series, ¢.e., the two tests
started together.

Regression statistics have numerous applications in bacteriology and allied
fields several of which will be considered briefly.

Calculation of k values.. In bacteriological research it is often advantageous to
use the rate of growth (rate of respiration, rate of nitrogen fixation, efc.,) rather
than total growth (total respiration, total nitrogen fixed, efc.). Since these
functions in many instances increase logarithmically with time, the traditional
measure of growth rate is the k value defined: £ = (1/t) In [(e¢ + y)/a] in which
a represents the growth at ¢ = 0, and y the increase after time {. If log (@ + ¥)
is plotted against ¢, the slope of the resulting line multiplied by 2.303 will esti-
mate k. Thus, in the example just discussed, the specific rate constant of nitro-
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gen fixation for a pH, of 0.15 atm. is: 0.01935 X 2.303 = 0.0445. Not only
can the best estimate of k be made but also the significance of observed differ-
ences in k values can be determined by testing the b’s from which they were
derived. The papers of Wilson and his associates furnish several examples of
this use of regression coefficients (60, 113, 116, 120, 121).

Estimation of k values by this method is greatly facilitated if experiments are planned
80 that the calculations are reduced. For example, nitrogen fixation by Azotobacter can
be estimated indirectly in a Warburg microrespirometer by measuring the increase in rate
of respiration with time. For routine determinations in our laboratory, a standard method
has been adopted in which five readings are taken hourly. Under these conditions, both
Tz and Z(z — £)?equal 10; N is 5 and Z is 2. Reference to formulae 25 and 26 shows that
both a and b can be rapidly calculated since only Zy and Zzy must be evaluated, the other
terms being determined mentally. Calculation of the error in b requires somewhat more
effort, but if a calculating machine is available, all the statistics can be determined without
bias as rapidly as b is estimated by the usual graphical procedure.

After a period of time, it may not be necessary to determine the error variance, s, except
for a check. We have calculated variances from over 100 trials and shown them to be
‘homogeneous’, i.e., all belong to the same population, so that their mean, 3%, provides a
reliable estimate of the expected variance under the prescribed conditions.*® From 3?
and Z(z — Z)? = 10, it was determined that two k’s must differ by 13 to 17 per cent in order
to be significant. Thus in routine work under the ‘standard’ conditions, only the b’s are
determined; from these the %’s are calculated and compared. Occasionally, the variance,
§?, is estimated to make certain that the method is under statistical control. If significantly
excessive (or deficient) variances are obtained, the technique is examined for possible
interfering factors. Not only does this serve as a red light for trouble, but it provides an
objective test for the learning process in new students. Before he starts his research, a
beginner makes several practice runs; he continues these until the error in his b’s is com-
mensurate with that established by competent workers.

Test of a hypothesis. Frequently a hypothesis under test dictates the method
of plotting the data and usually by mathematical manipulation the suggested
function can be put in linear form. This is illustrated by data from Wilson,
Burris and Lind (115) in figure 6. The hypothesis is that the initial steps in
nitrogen fixation by Azotobacter can be represented by the enzyme mechanism
first formulated by Michaelis and Menten (27). Lineweaver and Burk (61)
showed that if the hypothesis is correct a straight line should result when the
reciprocal of the rate of fixation (1/k) is plotted against the reciprocal of the
partial pressure of nitrogen (1/pN:). Likewise, if at a given pN, the velocity
relative to the maximum velocity is k*, then pN,/k* should be a linear function
of pNa2. The figure shows that straight lines were obtained by both methods
of plotting. The fit of the points to the line at the left does not appear to be so
good, but this results primarily from the scale used. Statistical tests demon-
strated that a straight line was satisfactory in both instances.

Another test of this hypothesis based on regression statistics was also de-
scribed in the same paper (115). If the hypothesis holds, the rate of fixation
should be less at a pN; of 0.2 atm. than at 0.8 atm. Calculation showed that the

30 The test for homogeneity among several estimated variances constitutes another
application of the X2 distribution (see p. 122 ff.). The details of this test can be obtained
in a textbook on statistics, e.g., Rider’s (79, p. 102), or from the original (2).
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error in k would mask the expected difference in an individual experiment. But,
by combining the results from a number of experiments the expected difference
was demonstrated. Moreover, by increasing the number of observations in a
single trial, the error was decreased so that significant differences were detected
in the individual experiments. Wilson and his collaborators (116) have also
used regression statistics for determining whether an inhibitor of an enzyme
system acts competitively or non-competitively.

Estimation of u values. In enzyme studies, definition of the physical-chemical
characteristics of the system investigated is frequently useful—for example, to
determine if the enzyme system in one organism is reasonably similar to a corre-

1
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Slope o0o0ais ¢ 0.601208

Intercept ~ 0.0100 £ 0.0007 005+
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F16. 6. EsTIMATION OF Ky; BY REGRESSION STATISTICS

On the hyflothesis that the enzyme mechanism is the Michaelis-Menten type (27), a
straight line should result when the reciprocal of the rate of reaction, 1/k, is plotted a(.fainst
the reciprocal of the substrate concentration, 1/pN, (left). Likewise, if pN; is divided by
the rate of reaction relative to the maximum rate, under the conditions of the experiment,
and this value, pN./k*, is plotted against pN, a linear relationship obtains (right). Data
are from Wilson, Burris and Lind (115).

sponding system in another (27, chap. X). One important characteristic is the
response of the system to changes in temperature. The theory of chemical
kinetics suggests that if the log of the rate of reaction is plotted against the
reciprocal of the absolute temperature, a straight line should result whose slope
measures the ‘energy of activation’ of the compound undergoing reaction. In
chemistry this is called E, but in biology it is usually denoted by u to signify
that it may not be necessarily identified with an energy of activation but may
represent a complex of factors. With some systems, e.g., dehydrogenases, this
method of plotting gives quite satisfactory linear relationships, but with more
complex reactions, such as respiration, the empirical function suggested by
Beleradek (13) is often better. For many purposes it is immaterial whether a
theoretical interpretation is placed on these slopes; the important fact is that they
can be determined with known precision and can be compared by a method free
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of subjective bias. Examples of this use are described by Tam and Wilson (97),
and by Burris and Wilson (13).

Biological assay.”' Figure 7 represents a most important type of application
of statistics to biological phenomena: the assay of a compound based on the

.%G ! \81 T | T
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F16. 7. UsE oF REGRESSION STATISTICS IN BIOLOGICAL AsSSAY
The graph is a standardization curve relating the growth of Rhizobium trifolii to the
biotin concentration of the medium. The growth is estimated by the increase in the
turbidity of a supension, measured in a photoelectric colorimeter. From such a graph,
biotin in an unknown could be estimatecf by observing the effects of different quantities
added to the basic medium on the growth of these bacteria.

31 Space does not permit a thorough discussion of this important field for application of
statistics to biological problems. The outstanding contributions of Bliss (3, 4, 7), Gad- -
dum (38), Wilcoxon and MecCallan (111), and others during the past decade has removed
much of the sting of Burn’s (11) 1930 observation that ‘‘ Biological assay, as carried out by
the majority of the workers in the world, still remains a subject for amusement or despair,
rather than for satisfaction and self-respect.” The cited references discuss the special
methods developed for experimental design and analysis of the data together with examples
of their use, including such fields of bacteriological interest as: toxicity tests on fungicides,
response of animals to the administration of therapeutic drugs, bio-assay of antitoxin
preparations, etc.
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response of a biological agent. In this particular case Rhizobium trifolii was
grown in colonies on a synthetic agar medium to which various levels of asample
of Kogl’s biotin had been added; after a suitable period of incubation, the tur-
bidity of six of these colonies suspended in 10 ml of water was determined in
an Evelyn photoelectric colorimeter. It was found that under the conditions
used in the assay, plotting Alog turbidity against — (log biotin concentration in
ug/ml) gave a straight line. Estimation of this line resulted in the relation:

Y = 3.917 — 0.652X

in which X = —log biotin concentration and ¥ = Alog turbidity. In actual
experiment, however, the turbidity is determined after a certain quantity of
material to be assayed is added to the medium, the biotin concentration being
calculated from this reading. For convenience, the equation is solved for X:

X = 6.01 — 1.534Y

The point to be emphasized is that even though X will be the dependent variable
in actual use, the fitting of the line must be done with it as the independent
variable, since the experimental design requires this procedure (26).

CORRELATION COEFFICIENT
The correlation coefficient between two quantities measured simultaneously is:

Ze—D)y—9 _Z(=z—3DFy -7

35 =
185} VI — D)2y — §)? No,oy

This coefficient is particularly useful for measuring the association between two
variables when these can be classed according to quantitative standards. (The
treatment is readily extended to more than two variables in multiple correlation.)
The statistic, r, is obviously related to the regression coefficient but differs from
the latter in that its value is absolute in the sense that it is independent of the
units used in the measurements. In cases where the data do not indicate which
variable is independent, two regression lines are calculated, one which measures
the regression of y on z with slope b,. , and another which measures the regression
of z on y with slope, b, . It can be shown that

(36] P = (byz) (bsy),

i.e., T is the geometric mean of the regression coefficients. The value of r
ranges from +1 (complete direct dependence) through 0 (complete independ-
ence,” to —1 (complete inverse dependence).

The distribution of r itself is very skew in small samples and changes its form

32 When r is calculated from a set of values depicting a complete independence of z and
y, r will be zero, but when r = 0, it does not follow that = and y are completely independent
only that they are not linearly dependent. Thus r = 0 for a set of points lying on, and
equally spaced around, the circle z2 4 y? = 4. For an elaboration see Rider (79).
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rapidly as p, the true correlation coefficient of which r is the estimate, changes.
For this reason it is difficult to correct for the skewness in estimating the probable
range of an observed value of r. However, r can be transformed to a statistic,

[37] 2 = 1/20m(1 + r) — In(1 — )] = (1.15) log 8%3

whose distribution is nearly normal with a standard deviation of 1/4/ (N — 3).
It follows then that the significance of an observed r will depend on the number,
N, of paired observations. Fisher (30) furnishes a table which gives the values
which r must reach for different values of N and for different levels of significance.
For significance at the 5 per cent level, » must be at least 0.63 if based on 10
pairs of samples, but only 0.28 if based on 50 pairs. To test for significance
between two observed values of r, these are transformed into the corresponding
2’s, and since the standard deviation of the latter is known, the difference can be
tested in the usual way using a table of the normal probability curve.

Although 7 is a useful statistic for a quantitative measure of association, its
use, or rather abuse, by some investigators has led to much nonsense. The
source of most of this is the false reasoning that a significant correlation between
two quantities reveals a causal relationship. Although the natural scientist has
not erred with this piece of faulty logic so frequently as the investigator in the
social sciences, the former is by no means guiltless. A measure of the improve-
ment that can be made in the error of estimation through knowledge of the value
of a correlated variable is given by 1 — #*. This quantity measures the per-
centage of variance retained; obviously unless r is rather high (order of 0.8)
there is little improvement. Since the arithmetic of correlation is very similar
to that already illustrated with the regression coefficient, it is unnecessary to
discuss this in detail; any standard text on statistics will provide examplesof the
methods for calculation. The use of the correlation coefficient is so wide-spread
that illustrations are probably familiar to all; three typical applications from
bacteriological literature will be cited.

Edwards and Rettger (25) found that the maximum growth temperature of
104 strains of bacteria representing 18 species was closely correlated with the
minimum temperature of destruction of indophenol (cytochrome) oxidase
(0.843), catalase (0.845), and succinodehydrogenase (0.774). Martin (65)
surveyed different types of Arizona soils for presence of Azotobacter and for their
nitrogen-fixing ability, pH, and content of certain salts. He found significant
negative correlation between the mg nitrogen fixed per gram of soil and the
water-soluble sodium and calcium. Rather unexpectedly, no correlation was
noted between nitrogen fixed and phosphate content or pH; sulfate and chloride
content were correlated with nitrogen fixation only through their association
with calcium and sodium. Recently, Vaughn and Levine (102) determined the
correlation between significant characteristics of ‘‘Intermediate’ cultures of the
coliform bacteria and, on the basis of the findings, recognized two species which
were allocated to the genus Escherichia.
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TESTING FOR AGREEMENT BETWEEN OBSERVED AND EXPECTED FREQUENCIES

Often in experimental work decision must be made as to whether a given series
of observed frequencies corresponds to that implied by some hypothesis, e.g.,
in animal or plant breeding, does the F, generation follow the 3:1 Mendelian
ratio? Early investigators were inclined to lean heavily on ‘experience’ to
decide whether an observed discrepancy could reasonably be regarded as for-
tuitous. Such a procedure usually has a high subjective bias. In 1900, Karl
Pearson (75) provided an objective procedure when he published his Chi Square
criterion for testing goodness of fit. Through further work by Pearson and

TABLE 10

Comparison of distribution of nitrogen fixed by clover plants in agar with theoretical values
from normal curve

OBSERVED THEORETICAL (fo —_ f‘):
RANGE, MG NITROGEN FREQUENCY FREQUENCY fo— 1t —-—
fo It fe
<0.30 3 5.8 —2.8 1.35
0.30-0.45 5 6.2 -1.2 0.23
0.45-0.60 9 10.4 —1.4 0.19
0.60-0.75 22 15.6 +6.4 2.62
0.75-0.90 29 21.2 +7.8 2.87
0.90-1.05 25 24.9 +0.1 0.00
1.05-1.20 23 26.4 —-3.4 0.44
1.20-1.35 20 25.1 -5.1 1.04
1.35-1.50 17 21.2 —4.2 0.83
1.50-1.65 16 16.0 0.0 0.00
1.65-1.80 11 10.7 +0.3 0.01
1.80-1.95 7 6.4 +0.6 0.06
1.95-2.10 4} 0 3.4} 6.1 +2.9 1.38
>2.10 5 2.7 7
Total.............. 196 196 11.02
n =10 P =0.35

others, notably R. A. Fisher, the field of application of the X* criterion has been
greatly broadened and its interpretation clarified.

The Chz Square Test for Goodness of Fit. In table 10, an observed distribution
of nitrogen fixed by clover plants in agar is compared with the distribution corre-
sponding to the normal curve with mean and variance, estimated from the data,
of £ = 1.129 and = (zr — £)’/(N — 1) = 0.1888 respectively. Do the observed
frequencies in the respective classes, f,, agree within the limits of sampling
fluctuations with the theoretical frequencies, f;, corresponding to this normal
curve? To answer this question one calculates
(38] x =z

Je

when 2 denotes summing over the cells of the table. The accuracy of the test
is improved by combining classes in the ‘tails’ to bring the theoretical frequency
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up to 5 or more, as indicated in table 10. The distribution of X* depends on 7,
the number of degrees of freedom involved; tables of the significance levels of X*
are available (30, 35, 79, 84, 98).

In this example there are, after combining, 13 classes of frequencies, so that X
possesses 13 — 3 = 10 degrees of freedom, since the normal curve chosen was
selected to have the same total frequency, the same mean, and the same variance
thereby introducing 3 constraints which absorb 3 degrees of freedom. The
value of X* observed, 11.02, corresponds to a probability, P, of 0.35; that is, if
the distribution of nitrogen fixed s normal, comparison with a normal curve
fitted as above would be expected to yield a X* as large or larger 35 times in 100.
Therefore, since X* does not exceed the 5 per cent significance level, the test does
not indicate that the normality hypothesis should be discarded. However, it
should be noted that 2 of the 13 components (underlined values in table 10)
contribute approximately half of the total X*. That marked skewness of the
observed distribution is responsible for this feature is apparent when the data
and fitted curve are plotted (117). In such a case one is reluctant to accept the
normality hypothesis even in the light of a ‘favorable’ value of X*, and should
reserve judgment until further data are at hand.

K. Pearson (78) emphasizes that, although the X* test will enable the experi-
menter to determine whether a given curve (or type of distribution) will reason-
ably describe the observations and may even allow some choice between alterna-
tive graduation curves, the ‘better’ curve as judged by the higher value of P
does not necessarily represent the distribution from which the material was
drawn. It requires a large-sized sample to discriminate between alternative
curves.

A second example of the X* test is provided by the data in table 2 in which the
distribution of bacteria on the squares of a Petroff-Hausser counting chamber is
compared with that based on the proper Poisson distribution. The number of
frequency classes is 8, therefore X* has 6 d.f. as one degree each is lost through
keeping equal the population totals and the means of the two distributions.
The probability corresponding to X* is 0.43, and we may conclude that the data
do not conflict with the hypothesis that they came from a Poisson series.

A useful application of the X? criterion depends on the fact that a series of independent
X%s may be summed to form a total X? which possesses degrees of freedom equal to the sum
of the degrees of freedom of its components. Thus, routine testing in a laboratory may
be checked occasionally by summing the X? made over a period and testing the sum so
obtained. Wilson and Kullman (114) used this method of statistical control to check the
accuracy of counts of the root nodule bacteria made with the Petroff-Hausser chamber
method under routine laboratory procedures. In each trial 144 squares were counted,
and during the period the species of organism, density of suspension, and type of medium
were varied. For each of the 50 trials, a X* was calculated by the same procedure as il-
lustrated in table 2 and the sum tested. Since the number of degrees of freedom involved
was outside the range of published significance levels, use was made of the fact that for
large values of n, the distribution of 1/2X? is approximately normal with unit standard
deviation about a mean of 4/2n — 1, so that the difference, 1/2X* — 4/2n — 1 can be
regarded as a normal deviate. In this particular case a normal deviate of +0.57 was ob-
tained, which is well below that for the 5 per cent level of significance.
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A further use of X* is for testing independence in a contingency table. In
such a table an individual is classified in two (or more) different ways and the
question is: Are the two methods of classification independent? Contingency
tables provide a rapid and simple method for detecting associations in enumera-
tion data and are of especial value when either or all of the classifications is
qualitative. A 2 X 2 contingency table is shown in table 11. The data are
from the study of McCarter, Getz and Stichm (62) on the comparative response
of different classes of students to intracutaneous injections of purified protein
derivatives (P.P.D.) from the avian and human types of the tubercle bacillus.
The Short Course students are boys, all from farms; the Freshmen are first-year
male students at the University, predominantly from urban homes.

The ‘expected’ values for each cell when calculated on the hypothesis of inde-
pendence require the four frequencies to be proportional; hence they can be
determined from the marginal values. For example, in the first cell the expected
value is (497 X 739)/1026 = 357.98; the other values are automatically deter-
mined since the marginal totals of expected and observed must be equal. This
means that the X* found will have only one degree of freedom. Since X? is 5.58
which corresponds to a P value of 0.02, the rejection of the hypothesis of inde-
pendence is indicated at the 5 per cent level of significance.”® The cause of the
high value of X* apparently is the excess of Short Course students who reacted
positively to the avian P.P.D. Further information was obtained from the
responses of the students when tested with both human and avian P.P.D. The
results (table 12) gave a X* value of 8.10; as calculation of three cells in a single

3 The value of X2 for a 2 X 2 contingency table,

a b

Ia+b

[ d jlc+d

a+tch+dla+db+ece+d=N

may be evaluated, without calculating the expected values, from the formula
_ N(ad—bec)
@+dc+db+da+o

When expected frequencies less than 500 occur in a 2 X 2 table, the ‘Yates correc-
tion for continuity’ should always be applied. This consists of decreasing by 1/2 the
frequencies which exceed their expected values, and increasing by 1/2 the frequencies
which fall short of their expected values. These steps may be shortcut by noting that

N (]| ad — be| N/2)?
(@a+b)(c+ad)(®+d)(a+c)

where | ab — bc | denotes the value of (ad — bc) taken positive, so that the correction,
— N/2, always reduces the magnitude of the quantity to be squared.
In the present case the corrected X? is 5.26 which is still significant at the .05 level.
No satisfactory correction of this sort has been found for the general r X ¢ table.
For further discussion of this correction and the additional refinements in the case of
a 2 X 2 table see Fisher and Yates (35).

X2

corrected X2 =
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row will fix all the other values if the marginal totals remain unchanged, there
are 3 d.f. In general, a table of r rows and ¢ columns has (r — 1) (¢ — 1) d.f.
As the probability is again less than 0.05, the hypothesis of independence is
doubtful. As can be seen in the table, the largest contribution to X* arises from
the excess of Short Course students who are human P.P.D.-negative and avian-
positive.

TABLE 11
Contingency table showing response of students to avian P.P.D.*

AVIAN + AVIAN — TOTALS

Freshmen (357.98) (381.02)
341 398 739

0.805 0.757

Short Course (139.02) (147.98)
156 131 287

2.074 1.948
Totals............... 497 529 1,026

X? = 5.58 n=1 P = 0.02

* In both contingency tables the expected values for each cell is given in parentheses;
the contribution of X! from each cell is underlined’

TABLE 12
Contingency table showing response of students to human (H) and avian (A) P.P.D.
H+ A+ H+ A- H- A+ H- A- TOTALS

Freshmen (173.63) (3.43) (177.05) (384.89)
176 3 165 395 739

0.032 0.054 0.820 0.265

Short Course (29.37) (0.57) (29.95) (65.11)
27 1 42 55 125

0.191 0.324 4.848 1.570
Totals................ 203 4 207 450 864

X? = 8.10 n=3 P = 0.045

D’ Test for Binomial Distributions.* A rapid method of testing for agree-
ment with binomial sampling—and which is the only method practicable when

3¢ The index of dispersion appropriate to the binomial distribution which we have de-
noted by D? was introduced by an author using the pseudonym ‘“Mathetes’’ (66) following
an analogy with previous work of Fisher, Thornton, and Mackenzie (34). Its use as a test
of sampling technique has been illustrated by Fisher (30, sec. 19) ; Snedecor (84, sec. 9.6);
Snedecor and Irwin (85); and by others. Cochran (19), Haldane (46) and Welch (104)
have studied its sampling distribution in very small samples from binomial populations.
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the samples are of different sizes—is based on the dispersion index appropriate
to the binomial distribution, namely:

71\2

(391 D=z N:p'(1 — p')
where N; denotes the number of individuals in the 7t sample, 2 = 1,2, - - - , k),
z; is the number of the individuals in the s*» sample which possess the charac-
teristic under investigation, and p’ = Zz;/Zn; is the observed proportion of
individuals with this characteristic in all the data at hand, 7.e., in all k samples
lumped together. If all k£ samples are of the same size, so that N; = N for all 1,
then [39] simplifies to

2 _ N2(@ —2)" _ \ Zai — Cz)'/k
ol PoGw-n TV -

where £ = Zz;/k is the average number of individuals with the characteristic
in question per sample.

This index of dispersion, D? is essentially a criterion for judging whether the
variance of the observed frequency distribution is in agreement with the variance
of the binomial distribution having the same mean. When sampling is in accord-
ance with the binomial distribution, the expected value of D’ is (k — 1), and its
sampling distribution about this ngean is well represented by the tabular xx-
distribution for (k¢ — 1) degrees of freedom provided % is small compared with
ZN;, i.e., provided that either the individual samples are large, or, if they are
small, that there are many of them. In consequence, the tabulated significance
levels of X* can be used for testing the statistical significance of an observed
value of D’

For data arranged in a frequency table, such as table 1, a form of equation
39 more convenient for calculation is

2fz$2 — (Eflx)z
D = Zf-
(N — 7)

where £ = (Zfxx)/(Zf.). For the data in table 1: N = 100, k = Zf, = 113,
Sfx = 673, and Zf.x’ = 4779, yielding D’ = 137.612 as compared with an
expected value of 112. Since tables of the significance levels of X’ do not go as
high as 112 degrees of freedom, whether the observed D’ is significantly greater
than its expected value has to be tested here by employing v/ 2X2 — v/ 2n — 1
as a normal deviate with unit standard deviation and taking X* = D’ and
n = k — 1. In the present instance, v/ 275.224 — +/ 223 = +1.66 which is

(41]

These writers, with the exception of Welch, denote this index of dispersion by X2; Welch
uses D. We have used D? to avoid confusion with the X2 goodness-of-fit criterion, adopting
D2 instead of D because the former carries the implication that its value is always positive
or zero.

v
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just significant at the .05 level.”® In brief, the variance of the observed frequency
distribution exceeds significantly the wariance of the binomial distribution with
the same mean.

In the preceding example, the observed D was significantly larger than the
value expected on the hypothesis of binomial sampling. Although values of D
may frequently be obtained which are less than the values expected in binomial
sampling, generally these will not differ widely from the expected value. If,
however, values considerably less than the expected values occur, the significance
of the discrepancies may be judged by noting whether D’ is less than the 0.95
level of X*. Should such ‘significantly small’ values of D’ be a common occur-
rence, it is well to seek an explanation of the unusual uniformity of the samples.
For example, had a significantly small value of D* been obtained in the study on
monocytes (table 1), one might have inquired whether some physiological factor
controlled their distribution in the blood so that this distribution was more
uniform than would occur in random mixing.

SUMMARY

On the basis of the discussion given in the main body of the text the following
points should be emphasized:

1. Statistical analyses provide no substitute for proper and precise experi-
mental technique. The quantitative relationships to be derived are not altered
through any statistical magic; their accuracy is that of the observations. As
Fisher has said, ‘“The statistician must be treated less like a conjurer whose
business is to exceed expectation, than as a chemist who undertakes to assay
how much of value the material submitted to him contains” (Rothamsted report
for 1933). As was illustrated in several instances, however, statistical analysis
can be of great assistance in providing a measure of the adequacy of a particular
method used in practice.

2. Although statistical analysis will divulge only those facts present in the
observations, such analysis furnishes a tool for extracting information inherent
in the data but not readily evident by mere inspection. As a corollary to this,
statistical methods allow quite complicated experiments to be designed in which
the influence of each of several variables on some particular phenomenon as
well as their interactions can be simultaneously determined. Such complex
experiments are extremely valuable for saving of time, labor and money, and

% We are testing here whether D? significantly ezceeds its expected value so the .05 sig-
nificance of D?is judged by Fisher’s .10 significance level (1.64485) for a normal deviate with
unit variance. The reader with some statistical experience may be curious to know why,
that we have gone to the trouble of finding the expected frequencies, we do not test the
agreement of the observed and expected frequencies with the X?-test of goodness-of-fit.
To meet the conditions of applicability of the X2-test we should have to group together
(as indicated in table 1) several of the frequencies at the tails on account of the small
numbers involved, thereby reducing the sensitivity of the X2-test. Fisher (30, sec. 19)
discusses the relative usefulness of the two tests.
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provide a truer representation of the actual situation than several experiments
in which the several factors are varied one at a time. .

3. Statistical considerations will suggest the proper design of an experiment—
proper not only in the sense that the results are most readily amenable to sta-
tistical treatment, but also from the viewpoint of economy and efficiency.
A corollary to this advantage is that the statistician should be consulted before
the experiment is performed rather than asked to do the impossible: make valid
conclusions from the data of a poorly designed experiment.

4. Statistical theory emphasizes the necessity of repeating an experiment.
Statistical analysis is of little use on the individual experiment unless something
is known about the properties of the population; usually this is most accurately
obtained through repeated trial under similar circumstances. Although most
experimenters appreciate the fact that results “have weight”’ only when they
have been obtained in several experiments, without recourse to statistical con-
siderations it is often difficult to determine how many repetitions are needed.
Often, by statistical procedures, the experimenter may decide beforehand by
using his previous experience whether the results of a contemplated investigation
will be worth the effort, time and expense required to obtain an unequivocal
answer.

5. Statistical measures in conjunction with statistical theory provide a means
for condensing information derived from large-scale experimentation.*® The
essential information in a large mass of data, whose tabulation would require
much space and whose very size may intimidate a reader wishing to make his
own interpretation, can often be summarized in the form of a few statistical
measures (e.g., number of observations taken, mean with its standard deviation,
a regression coefficient with its standard error, an analysis of variance) with
little loss of relevant knowledge.

APPENDIX AND EXPLANATORY COMMENTS

As with other branches of scienge, statistics possesses a technical vocabulary in which
common words are used in a sense which often proves confusing to those unfamiliar with the
special meaning. Many of these are concisely defined by mathematical formulas which
are supplied in the text; others need descriptive explanation which is given in the following
glossary of terms:

Argument: one of the independent variables upon which a tabled function depends, the
values of which are given at the margin of the table and make it possible to locate the
corresponding tabled values, e.g., in a table of logarithms, the function tabled is log N and
N is the argument.

Confidence Intervals and Fiducial Limits: it has long been realized that a single value
computed from a sample as an estimate of a parameter 6 has very little chance of actually
equalling 6, and that some sort of range to indicate the probable accuracy of the estimate
is needed. Thus, with an observed proportion, p, ,the estimate of the true proportion, p,
was given as p, == Ao, where oo = 1/ (p.g,)/N and A was chosen to correspond to some prob-
ability P, and a statement often made was: ‘‘The probability the true proportion, p, lies
outside the limits p, — Ao, and po + Ao, is less than or equal to P.”” So far as we have been

3¢ Further discussion and illustration of this point are given in the A.S.T.M. Manual on
Presentation of Data, American Society for Testing Materials (260 S. Broad St., Philadel- .
phia, Pa.), 3rd printing, August, 1940.
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able to determine, E. B. Wilson (112) first pointed out that such a statement is erroneous.
He stressed that it is p, which is a chance variable, not p, and that a correct statement
must take some such form as: If it is not true that p; < p < p., where p; and p. depend on
Po and P, then the probability of our observing the value p, itself, or any more improbable
value, is less than P.

Wilson showed in the above case how to calculate the limits p; and p., but did not
follow up his note with a general discussion of the procedure to be followed in other cases.
The first general treatment was that of R. A. Fisher(32), who appears to have been unaware
of Wilson’s note. Fisher terms such limits fiducial limits, and his development is in terms
of what he calls fiducial probability. About 1930, J. Neyman independently initiated his
theory of confidence intervals (see ref. 70, where a list of the principal papers on fiducial
limits and confidence intervals is given) and for some time it seemed to many statisticians
that the two approaches were equivalent, since in the cases considered they had led to
identical ranges for the parameter being estimated. A further paper by Fisher (33b)
threw doubt on the equivalence of the two approaches, which doubt increased as more
papers appeared. The two approaches have been contrasted by Neyman (70), and, while
they lead to identical results in many instances, there are cases of disagreement, so they
should no longer be regarded as equivalent. Neyman’s approach seems to be more general,
and for this reason, as well as from a greater familiarity with it, we have adopted the method
of confidence intervals in the present paper.

Degrees of Freedom: the number of variates upon which a quantity depends minus the
number of constraints upon these variates, e.g., if N independent z values are concerned,
then =(z — c¢)? has N degrees of freedom provided ¢ is in no way determined by the values
of the z’s themselves; on the other hand, =(x — z)?, where £ = ]%Ea: = average of z values,
has only (N — 1) degrees of freedom since the quantities (z — Z) are constrained by the
equation =(z — %) = 0.

e: base of natural logarithms; is a constant like . Common logarithms use 10 as a base.
In this paper In signifies that the base is e, log, that the base is 10.

Entry: a quantity appearing in the body of a table, e.g., the tabled values of log N are
entries.

Likelihood (as introduced by R. A. Fisher): the likelihood of a particular value 6’ of a
parameter 6 in the light of an observed sample, is proportional to the probability of this
sample when 6 = 6’; the largest likelihood can be assigned the value unity by convention,
if desired; in comparing two particular values, 8’ and 0’/, of a parameter 6, importance at-
taches only to the ratio of their likelihoods, not to the values of the respective likelihoods.
Thus, while we may know nothing about the relative frequency with which ¢ = 6’ and
6 = 0" in a particular type of research, it may be an inescapable fact that the probability of
the observed sample is three times as great when 0 = 6’ as when 6 = 6’’. ‘‘If we need a
word to characterize this relative property of different values of [6], I suggest that we may
speak without confusion of the likelihood of one value of [6] being thrice the likelihood of
another, bearing always in mind that likelihood is not here used loosely as a synonym of
probability, but simply to express the relative frequencies with which such values of the
hypothetical quantity [6] would in fact yield the observed sample.” (28, p. 326). Likeli-
hood also differs from probability in that it is not capable of being summed or integrated;
whereas the sum of the probabilities of all possible values of a random variable is unity,
the sum of the likelihoods, computed from a particular sample, of the admissible values of
a parameter will in general be infinite. An exact knowledge of the likelihood of different
values of 6 tells us nothing whatever about the ‘probability’ that 6 will fall in any given
range. Indeed, in well conducted research, ¢ will not have a probability ‘distribution’,
but will be confined to a single value, the identity of which is unknown, and the object of
the research will be to estimate this value as closely as possible.

Method of Mazimum Likelihood: estimating a parameter from a sample by choosing the
value of the parameter which has the largest likelihood, as defined above, when calculated
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from the sample at hand; the estimate so obtained is termed the optimum estimate of the
parameter, or its mazimum likelihood estimate.

When the parameter 6 can itself be regarded as a random variable drawn from a super-
population in which all values of 6.are equally probable a prior:, then the value of 6 which
has the highest ‘probability’ of ‘producing’ the observed sample—this a posterior: ‘ prob-
ability’ being calculated with the aid of Bayes’ Theorem—is identical with the maximum
likelihood estimate of 6 from this sample. This property was employed by Gauss in 1809
to justify his development of the method of least squares by a formulation identical with
that now used in the method of maximum likelihood. Later (1829), however, he gave less
stress to this argument through the conviction that maximizing the probability was less
important than minimizing the injurious effects of the actual errors of estimation (see
Fisher, (33b) p. 249).

The justification of the method of maximum likelihood by Fisher and his followers
comes from this later viewpoint. Fisher (28, 30a) his shown that, of the estimates cal-
culated from large samples, the one obtained by maximizing the likelihood is in general
the one for which the intrinsic accuracy is greatest, and that, when there exist estimates,
called sufficient statistics, which exhaust the information in the sample about the parameter,
then these are the maximum likelihood estimates. Thus, use of the method of maximum
likelihood is justified by the advantageous properties of the estimates to which it leads.
Further elaboration can be found in two expository papers by Fisher (33a, b), the former
being supplemented by the critical comments of many noted statisticians, of which J.
Neyman'’s are especially interesting.

Null Hypothesis: a hypothesis, relating to the parent population(s) of the research data
under consideration, and whose acceptance or rejection is to be based on the agreement
or non-agreement between some of its logical consequences and corresponding aspects of
the research data. Obviously a null hypothesis must be sufficiently specific to permit the
deduction of some criterion of agreement between observations and this hypothesis. For
example, the assertion that a drug ‘“‘reduced the mortality’’ from a certain disease ‘‘10
per cent”’ could constitute a null hypothesis. Mere assertion that it ‘‘reduced the mor-
tality”’ could not constitute a null hypothesis, however, since this hypothesis is not suffi-
ciently specific to permit an evaluation of the agreement of observations with the
hypothesis. In this case, the null hypothesis is usually taken to be that the drug produced
no reduction in mortality from the disease, the contradiction of which by experimental
results would lead to the inference that the treatment reduced the mortality.

Parameter: in the strictest sense, a constant in the mathematical formula specifying a
hypothetical population the value of which serves to distinguish a specific population from
others having the same functional form, and by varying the value of which different popula-
tions of the same general family can be specified, e.g., m, is the parameter of the Poisson
distribution, the general term of which is

e ™m*
!

More generally, any descriptive quantity such as an average, correlation coefficient, etc.,
relating to a population and which serves to distinguish this population from other con-
ceivable populations.

Parent Population: used in connection with a particular sample to designate the popula-
tion from which it was drawn.

Population or Universe: the aggregate of all individuals or objects which, by reason of
some characteristics in common, may logically be regarded as comprising the set of ob-
jects under consideration. When the objects are susceptible of complete enumeration, the
population is finite; otherwise, infinite. Thus, a set of laboratory animals constitutes a
finite population, whereas the temperatures at which a species of bacteria will grow forms
an infinite population. A finite population may consist of so large a number of items as
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to permit being treated as infinite without sensible error, e.g., yeast cells growing in a vat.
The foregoing refers to real populations. Often hypothetical populations are employed.
An example is the abstract population of offspring which a geneticist regards as producible
by repeated matings of specified character, although some individuals of such a population
can never be produced ; furthermore, the population exists in the abstract even if no matings
are carried out at all.

In bacteriology it is often desirable to regard a quantity of liquid as a population, e.g.,
a sample of water or milk. In such cases it appears somewhat artificial to regard the
molecules as the individual objects comprising the population, and it seems more natural
to regard it as an aggregate of arbitrary volumetric units of the liquid, such as milliliters.
Although the latter approach is often convenient, two aspects of it should be noted: the
arbitrary size of the constituent ‘objects’ and their momentary identity under any sort of
mixing process.

Random: an operation, such as drawing a sample from a population or arranging pots
. in a greenhouse, is performed in a random manner when its execution is such that a prior:
each and every possible outcome has an equal chance of occurrence. Thus, a sample drawn
from a population in such a manner that a prior: each and every individual of the population
has an equal chance of being included is termed a random sample. Since any sample what-
ever can be obtained either by a random or by a non-random operation, it is important
to note that ¢t is the operation of drawing the sample which is random and not the sample itself.

The presence of randomness, in sampling and in laying out experimental arrangements,
is required for the validity of statistical tests of significance. Accordingly, operations
which are to be performed at random should be faithfully randomized with the aid of a
table of random numbers, dice, drawing cards out of a hat, etc.—mere absence of conscious
system is not enough to insure freedom from bias. For illustrations of sampling bias arising
in samples selected without attention to randomization, see Cochran and Watson (22)
and Yates (122).

Replicates: the subdivisions of an experiment which are similar with respect to some
factor under investigation although they may be dissimilar with respect to other pertinent
characteristics. For example, the animals inoculated with a particular one of several or-
ganisms being tested constitute the replicates of that inoculum although they may come
from different litters or correspond to different age groups, etc.

Z: the sum of, e.g., if there are N values of z, thenfll 2z denotes the average (arithmetic
mean).

Sample: a finite portion of a population.

Statistic: any quantity calculated from an observed sample with a view to characterizing
the parent population; a value calculated from a sample as an estimate of a parameter of the
parent population, e.g., the mean of a sample is a statistic in that it provides an estimate
of the mean of the parent population. A statistic used to estimate a parameter need not
be the quantity in the sample which directly corresponds to the parameter in the popula- .
tion, e.g., the range of a sample (i.e., largest observation minus the smallest) provides an
estimate of, and hence is a statistic for, the standard deviation of the population, as is also
the standard deviation of the sample. Infinitely many statistics could be devised for
estimating a particular parameter from an observed sample, but comparatively few of these
would be of practical utility, and of these there are often strong theoretical reasons for a
particular choice.

Statistically Significant: a discrepancy between some property of a sample and that
which is expected on the basis of a particular null hypothesis is statistically significant if
the probability of a discrepancy as bad or worse arising solely from sampling fluctuations
(i.e., from errors of measurement, biological variation, etc.) admissible under the null
hypothesis is less than some preassigned quantity, «, known as the level of significance.
The value of « usually adopted is 0.05, and discrepancies statistically significant on this
basis are said to be significant at the .05 (or & percent) level of significance. Other values of
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are also used; the desiderata to be taken into consideration in choosing a level of signifi-
cance for a particular line of research are discussed in the text. Early writers used P to
denote the level of significance, and this notation is still employed by many biologists, but
the use of « for this purpose has definite advantages when tests of significance are con-
sidered from the viewpoint of Neyman and Pearson, so that today « is employed by the
majority of American writers on mathematical statistics.

It should be noted that the statistical significance of a result depends solely on the probability
of occurrence of results equally or more discrepant as a consequence of sampling fluctuations
admissible under the null hypothesis, and is not in itself an indication of the practical signif-
icance of the result. For example, an observed correlation coefficient, r, of .10 calculated
from a sample of 500 is significantly different from zero at the .05 level and suggests the
existence of a real correlation of the order of .10 between the variables under consideration.
If the complete independence of these variables is important, this contradictory evidence
is of practical significance. On the other hand, if it is desired to predict the values of one
variable from that of the other, this correlation is practically worthless, for it means that
100(1 — 72) = 99%, of the variation in each variable is independent of variation in the other.

Variable: a quantity which in a given context can assume different values in different
individual cases; the antithesis of a constant, the latter being a quantity which in a given
context can have only a single value (which may or may not be known.)

Variate: a variable; when used in the plural the word often refers to the particular values
of a single variable corresponding to individual cases, especially when these values are
unknown, e.g., the heights of ten individuals, denoted by z,, 2, -+, %10, are ten variates,
but height symbolized by z is the only variable.
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