EXTENDED EXPERIMENTAL PROCEDURES

DNA sequences: Oligonucleotides (synthesized by IDT) for PCR amplification of templates. The name of the oligonucleotide corresponds to the labeling strand and position. Biosg and ibio refer to biotin, idSp refers to abasic site, iAmMC6T refers to amino-modified C6 dT linker for labeling with Cy3 or Cy5, 5Cy5 and 5Cy3 refer to end-labeled positions generated through phosporamidite chemistry. Other abbreviations include: LH (left half), RH (right half), MF (middle fragment) RRH (right right handle), LL(left left), RTA (right TA (dinucleotide), A (for immobilization scheme A), B (for immobilization scheme B). The primer sequences are color-coded according to the sections of the 601 template (see below): extra-chromosomal handles (black); left outer quarter (magenta); left inner quarter (orange); right inner quarter (green); right outer quarter (blue).

(1) 177	5'- /5Biosg/TATA CGCGG CCGCC CTGGAGAATC CCGGTGCCGA
	GGCCGCTCAA TTGGTCGTAG ACAGCTCTAG CACCGCTTAA
	ACGCACGTAC GCGCTG/iAmMC6T/CCC
(2) J-12	5'- GG GCGGCGACCT /idSp/GGTCGCTG/iAmMC6T/T CAATACATGC
	ACAGGAT GTATATATC
(3) 168	5'-/5Biosg/TATA CGCGG CCGCC CTGGAGAATC CCGGTGCCGA
	GGCCGCTCAA TTGGTCGTAG ACAGCTCTAG CACCGCTTAA
	ACGCACG/iAmMC6T/AC G
(4) J-1	5'- GG GCGGCGACCT /idSp/GGTCGCTGTT CAATACATG/iAmMC6T/
	ACAGGAT GTATATA
(5) J7	5'- GG GCGGCGACCT /idSp/GGTCGCTGTT CAATACATGC
	ACAGGA/iAmMC6T/ GTATATA
(6) I57	5'-/5Biosg/TATA CGCGG CCGCC CTGGAGAATC CCGGTGCCGA
	GGCCGCTCAA TTGGTCGTAG ACAGCTCTAG
	CACCGC/iAmMC6T/TAA
(7) J15	5'- GG GCGGCGACCT /idSp/GGTCGCTGTT CAATACATGC ACAGGAT
	GTATATA/iAmMC6T/CT G
(8) I46	5'-/5Biosg/TATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA
	GGCCGCTCAA TTGGTCGTAG ACAGC/iAmMC6T/CTA
(9) J24	5'- GG GCGGCGACCT /idSp/GGTCGCTGTT CAATACATGC ACAGGAT
	GTATATATCT GACACG/iAmMC6T/GCC TGGA
(10) I38	5'-/5Biosg/TATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA
	GGCCGCTCAA TTGGTCG/iAmMC6T/AG A
(11) J28	5'-GG GCGGCGACCT /idSp/GGTCGCTGTT CAATACATGC ACAGGAT
	GTATATATCT GACACGTGCC /iAmMC6T/GGA
(12) I27	5' GG GCGGCGACCT /idSp/GGA CCCTATA CGCGG CCGCC
	CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
	TTGGTC G /iAmMC6T/AG A
(13) J45	5'- /5Biosg/TGTT CAATACATGC ACAGGAT GTATATATCT
	GACACGTGCC TGGAGACTAG GGAGTAA/iAmMC6T/CC C
(14) I15	5'- GG GCGGCGACCT /idSp/ GGA CCC TATA CGCGG CCGCC
	CTGGAGAATC CCGG/iAmMC6T/GCC
(15) J57	5'- /5Biosg/TGTT CAATACATGC ACAGGAT GTATATATCT
	GACACGTGCC TGGAGACTAG GGAGTAATCC
	CCTTGGCGG/iAmMC6T/ TAA
(16) I9-A	5'-/5Biosg/TATA CGCGG CCGCC CTGGAGAA/iAmMC6T/C CC
(17) J58-A	5'- GG GCGGCGACCT /idSp/TGTT CAATACATGC ACAGGAT
	GTATATATCT GACACGTGCC TGGAGACTAG GGAGTAATCC
	CCTTGGCGGT /iAmMC6T/AAA

(18) 19	5'- GG GCGGCGACCT /idSp/ TATA CGCGGCCGCC
(10) 159	C I O G A G A A / IA III MICO I / C C C A C A C A C A C A C A T A T A T A
(19) 338	S-75DI059/1011 CAATACATOC ACAOOAT OTATATATCT
(20) I I	
(20) 1-1	5 -/5B108g/TATA CGCGG CCGC/IAMMC61/ CTGGAGAA/IAMMC61/C
(21) J/9	5'- GG GCGGCGACCT /IdSp/GGTCGCTGTT CAATACATGC ACAGGAT
	GIATATATCI GACACGIGCC IGGAGACIAG GGAGIAATCC
(22) 1 12	CCTTGGCGGTTAAAACGCGG GGGACAGCGC G/IAMMC6T/AC G
(22) 1-12	5'-/5Biosg/ GGACCCTA/iAmMC61/A CGCGGCCGCC
	CTGGAGAA/1AmMC61/C CCGGT
(23) 158-MF	5'- /5Biosg/TATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA
	GGCCGCTCAA TTGGTCG <u>GGA GTAATCCCCT</u>
	TGGCGGT/iAmMC6T/AA A
(24) J58-MF	5'- /5Biosg/TGTT CAATACATGC ACAGGAT GTATATATCT
	GACACGTGCC TGGAGACTAG <u>TAGACAGCTC TAGCACCGCT</u>
	<u>/iAmMC6T/AAA</u>
(25) J58-RTA	5'- /5Biosg/TGTT CAATACATGC ACAGGAT GTATATATCT
	GACACGTGCC TGGAGACTAG <u>TA</u> AGTAATCC <u>TA</u> TTGGCGGT
	/iAmMC6T/AAA
(26) I9-RRH-1-10	5'- GG GCGGCGACCT /idSp/ TATA <u>CAATACATGC</u>
	CTGGAGAA/iAmMC6T/C CC
(27) J58-LL8-24	5'- /5Biosg/TGTT CAATACATGC ACAGGAT <u>ATCCCGGTGC</u>
	CGAGGCCGCC TGGAGACTAG GGAGTAATCC CCTTGGCGGT
	/iAmMC6T/AAA
(28) J7-LL8-24	5'- GG GCGGCGACCT /idSp/GGTCGCTGTT CAATACATGC
	ACAGGA/iAmMC6T/ ATCCCG
(29) DIG oligo	5'-AGGTCGCCGCCCT TT/digoxigenin/
(30) 601-LH top	/5Cy3/CAGAATCCGT CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCG
(31) 601-LH bottom	/5Cy5/ACGGATTCTG CGC GTACGTGCGT /iBiodT/TAAGCGGTG
	CTAGAGCTGT CTACGACCAA TTGAGCGGCC TCGGCACCGG
	GATTCTCCAG
(32) 601-RH top	/5Cy5/ACGGATTCTG TGTCCC CCGCGTT/iBiodT/TA ACCGCCAAGG
	GGATTACTCC CTAGTCTCCA GGCACGTGTC AGATATATAC
	ATCCTGT
(33) 601-RH bottom	/5Cy3/CAGAATCCGT ACAGGAT GTATATATCT GACACGTGCC
	TGGAGACTAG GGAGTAATCC CCTTGGCGGT TAAAACGCGG
	GGGACA
(34) 601MF-LH top	/5Cv3/CAGAATCCGT CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
(c)) *****F	TTGGTCGGGA GTAATCCCCT TGGCGGTTAA AACGCGGGGG ACA
(35) 601MF-LH bottom	/5Cv5/ACGGATTCTG TGT CCCCCGCGTT /iBiodT/TAACCGCCA
	AGGGGATTAC TCCCGACCAA TTGAGCGGCC TCGGCACCGG
	GATTCTCCAG
(36) 601MF-RH top	/5Cv5/ACGGATTCTG CGCGTA CGTGCGT/iBiodT/TA AGCGGTGCTA
	GAGCTGTCTA CTAGTCTCCA GGCACGTGTC AGATATATAC
	ATCCTGT
(37) 601MF-RH bottom	/5Cv3/CAGAATCCGT ACAGGAT GTATATATCT GACACGTGCC
	TGGAGACTAG TAGACAGCTC TAGCACCGCT TAAACGCACG
	TACGCG

(38) 601RTA-RH top	/5Cy5/ACGGATTCTG TGTC <u>TA</u> CCGCGTT/iBiodT/TA ACCGCCAA <u>TA</u>
	GGATTACT <u>TA</u> CTAGTCTCCA GGCACGTGTC AGATATATAC
	ATCCTGT
(39) 601RTA-RH	/5Cy3/CAGAATCCGT ACAGGAT GTATATATCT GACACGTGCC
bottom	TGGAGACTA <mark>G <u>TA</u>AGTAATCC <u>TA</u>TTGGCGGT TAAAACGCGG</mark>
	<u>TA</u> GACA
(40) LL8-24-RH top	/5Cy5/ACGGATTCTG TGTCCC CCGCGTT/iBiodT/TA ACCGCCAAGG
	GGATTACTCC CTAGTCTCCA GGCGGCCTCG GCACCGGGAT
	ATCCTGT
(41) LL8-24-RH bottom	/5Cy3/CAGAATCCGT ACAGGAT ATCCCGGTGC CGAGGCCGCC
	TGGAGACTAG GGAGTAATCC CCTTGGCGGT TAAAACGCGG
	GGGACA

DNA templates and labeling schemes:

A: The templates of the 601 sequence and derivatives used in this investigation. The 601 template is Addgene Plasmid 26656: pGEM-3z/601 plasmid. The top and bottom strands of the 601 sequence are denoted by I and J strand, respectively (pdb file: 3MVD). The 'left' and 'right' sides in our templates correspond to the 5' and 3' ends of the I strand shown in the table. The templates 601 RRH1-10 and 601 LL8-24 were synthesized by PCR, while 601MF and 601RTA were synthesized by IDT. The 601 sequence is color coded: extra-chromosomal handles (black); left outer quarter (magenta); left inner quarter (orange); right inner quarter (green); right outer quarter (blue). The parts of the derivative sequences which are varied in comparison to the original 601 sequence are underlined and changed to the corresponding color portion of the 601 sequence.

B: Labeling schemes and names for all reconstituted nucleosomes using the original 601 sequence. The top and bottom strands of the 601 sequence are denoted by I and J strand, respectively. The I strand is shown in the table. The 601 sequence is color coded as described in panel A. Labeled positions are highlighted in red, and underlined. The sequence index starts from the 5' end of the 601 on each strand. The specific primers (listed above) used to generate each template are listed next to the template name.

Α	
601	GGACCCTATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACAGCGACC
RRH1-	GGACCCTATA CAATACATGC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
10	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACAGCGACC
LL8-24	GGACCCTATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCGGCCTCG
	GCACCGGGAT ATCCTGT GCATGTATTG AACAGCGACC
601MF	GGACCCTATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
	TTGGTCG <u>GGA GTAATCCCCT TGGCGGTTAA AACGCGGGGG ACA<mark>CCGCGTA</mark></u>
	CGTGCGTTTA AGCGGTGCTA GAGCTGTCTA CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACAGCGACC
601RTA	GGACCCTATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTC <u>TA</u>

	CCGCGTTTTA ACCGCCAA <u>TA</u> GGATTACT <u>TA</u> CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACAGCGACC
В	
ED1-12	TATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
(I77,J-12)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACAGCGACC
ED1-1	TATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
(I68,J-1)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACG <u>T</u> AC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT <u>A</u> CATGTATTG AACAGCGACC
ED1	TATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
(I68,J7)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACG <u>T</u> AC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC <u>A</u> TCCTGT GCATGTATTG AACAGCGACC
ED1.5	TATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
(I57,J15)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACAGCGACC
ED1.7	TATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
(I46,J24)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACAGCGACC
INT	TATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
(I38,J28)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACAGCGACC
ED2.8	GGACCCTATA CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGC <u>T</u> CAA
(I27,J45)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GG <u>A</u> TTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACA
ED2.5	GGACCCTATA CGCGGCCGCC CTGGAGAATC CCGG <u>T</u> GCCGA GGCCGCTCAA
(I15,J57)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTTA <u>A</u> CCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACA
ED2	GGACCCTATA CGCGGCCGCC CTGGAGAA <u>T</u> C CCGGTGCCGA GGCCGCTCAA
(I9,J58)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTGTCCC
	CCGCGTTTT <u>A</u> ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACA
ED2-1 (I-	GGACCCTATA CGCGGCCGC <u>T</u> CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
1,J79)	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGT <u>A</u> C GCGCTGTCCC
	CCGCGTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG AACA
ED2-12 (I-	GGACCCTA <u>T</u> A CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
12,J79	TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGT <u>A</u> C GCGCTGTCCC
	CCGCGTTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
TT 40 /T	AGATATATAC ATCCTGT GCATGTATTG AACA
IJ-12 (I-	GGACCCTA <u>T</u> A CGCGGCCGCC CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
12, J -12)	TIGGICGIAG ACAGCICIAG CACCGCIIAA ACGCACGIAC GCGCTGTCCC
	CCGCGTTTTTA ACCGCCAAGG GGATTACTCC CTAGTCTCCA GGCACGTGTC
	AGATATATAC ATCCTGT GCATGTATTG A <u>A</u> CAGCGACC

Monte Carlo Simulation Procedures

We adopted a continuum model of symmetric nucleosomal DNA unwrapping developed by Sudhanshu *et. al.* (Sudhanshu et al., 2011) and extended it to a more general, asymmetric case. In this model, the nucleosomal DNA is modeled as a left handed helix with a radius of 4.18 nm and height per turn of 2.39 nm. The total free energy change ΔF upon binding of DNA to the nucleosome spool (the histone core) relative to the unbound state is calculated at forces ranging from 0 pN to 12 pN as was done in Figure 3 of Sudhanshu *et. al.* (Sudhanshu et al., 2011). In a more general case of asymmetric unwrapping, *m* and *n* base pairs can be unwrapped from the weak and strong side, respectively, where *m* can be different from *n*. In the model of Sudhanshu et al, *m=n*. In our two-dimensional model, in order to calculate the free energy change ΔF for (*m*, *n*) values, we assumed that the free energy change ΔF for (*m*, *n*) is equal to the inner quarter of the weak side to 1.5 pN nm / bp while all other quarters (two outer quarters and the inner quarter of the strong side) are assumed to have the binding energy of 3.5 pN nm / bp so that the average binding energy is 3 pN nm / bp as was used by Sudhanshu et al. With this energy function, we performed Monte Carlo simulations starting from 0.1 pN and increasing the force in 0.1 pN increments every 2000 time steps until 10 pN of force was reached. The initial position was *m*=1 and *n*=1.

Supplemental References

Sudhanshu, B., Mihardja, S., Koslover, E.F., Mehraeen, S., Bustamante, C., and Spakowitz, A.J. (2011). Tension-dependent structural deformation alters single-molecule transition kinetics. Proceedings of the National Academy of Sciences of the United States of America *108*, 1885-1890.