#### **Supplemental Figures**

Fig. S1. Sequence and topology of *N.gonorrhoeae* MtrF. Related to Figure 1. Alignment of the amino acid sequences of the AbgT family of transporters was done using CLUSTAL W. \*, identical residues; :, >60% homologous residues. Secondary structural elements are indicated: TM, transmembrane helix;  $\alpha$ , helix. The sequence and topology of *N. gonorrhoeae* MtrF are shown at the top. Conserved residues involved in lining the channel of the inner core of the protein are highlight with green bars.

Fig. S2. Stereo view of the electron density maps of MtrF at a resolution of 3.95 Å. Related to Figure 1. (a) The electron density maps are contoured at 1.2  $\sigma$ . The C $\alpha$  traces of the MtrF dimer in the asymmetric unit are included. Anomalous signals of the four Ta<sub>6</sub>Br<sub>12</sub><sup>2+</sup> and six W<sub>6</sub>( $\mu$ -O)<sub>6</sub>( $\mu$ -Cl)<sub>6</sub>Cl<sub>6</sub><sup>2-</sup> cluster sites (both contoured at 4  $\sigma$ ) found in the asymmetric unit are colored red and white, respectively. (b) Anomalous maps of the 30 selenium sites (contoured at 4  $\sigma$ ). Two protomers forming a dimer of MtrF are found in the asymmetric unit. Each protomer contributes 15 selenium sites corresponding to the 15 methionines (red). The C $\alpha$  traces of the two MtrF monomers are colored green and cyan. (c) Representative section of the electron density at the interface of TM2 and TM6 of MtrF. The electron density (colored slate) is contoured at the 1.2  $\sigma$  level and superimposed with the final refined model (green, carbon; red, oxygen; blue, nitrogen).

Fig. S3. Representative gel filtration experiment. Related to Figure 1. The experiment demonstrated that MtrF exists as a dimer in solution. The *y* axis values were defined as:  $K_{av} = (V_e - V_0)/(V_T - V_0)$ , where  $V_T$ ,  $V_e$ , and  $V_0$  are the total column volume, elution

1

volume, and void volume of the column, respectively. Standards used were the trimeric *E. coli* CusC channel ( $M_r$  12,400) and monomeric *N. gonorrhoeae* NorM efflux pump ( $M_r$  29,000). The void volume was measured using blue dextran ( $M_r$  2,000,000).

Fig. S4. Surface representation of a cross section of the MtrF protomer. Related to Figure 2. The channel formed within the outer core of the MtrF protomer is colored purple.

Fig. S5. Expression level of the MtrF pumps. Related to Figure 3. An immunoblot against MtrF of crude extracts from 50  $\mu$ g dry cells of strain BL21(DE3) $\Delta abgT\Delta pabA$  expressing the MtrF wild-type and mutant (D193A, S417A, W420A, P438A, R446A, D449A, and P457A) pumps are shown.

Fig. S6. Copy numbers of MtrF in the cell. Related to Figure 3. An immunoblot against MtrF of crude extracts from  $1.1 \times 10^9$  cells of BL21(DE3) $\Delta abgT\Delta pabA/pET15b\Omega mtrF$  (lane 1). 6 ng (lane 2), 12 ng (lane 3), 30 ng (lane 4), 60 ng (lane 5), 120 ng (lane 6) and 300 ng (lane 7) of the purified MtrF protein were used as standards. The program ImageJ (Schneider et al., 2012) suggests that the crude cell extracts contain 21 ng MtrF protein, which should correspond to ~200 copies per cell.

Fig. S7. Representative isothermal titration calorimetry for the binding of sulfanilamide to MtrF. Related to Figure 5. (a) Each peak corresponds to the injection of 10  $\mu$ l of 40  $\mu$ M monomeric MtrF in buffer containing 20 mM Tris-HCl pH 7.5 and 0.03% DDM into the reaction containing 1.0 mM sulfanilamide in the same buffer. (b) Cumulative heat of reaction is displayed as a function of the injection number. The solid line is the least-square fit to the experimental data, giving a  $K_D$  of 1.14 ± 0.01  $\mu$ M.

#### **Supplemental References**

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods *9*, 671-675.

|                   |                                                                | — ( TM1a) — (                        | TM1b                                            |                                                          | TM2a                                                           |
|-------------------|----------------------------------------------------------------|--------------------------------------|-------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|
| N - M             | VCOTDADDCC                                                     |                                      |                                                 |                                                          |                                                                |
| NgMtrF            | MSQTDARRSG                                                     | RFLRTVEWLGNMLPHPVT                   | LFIIFIVLLLIASAVGA                               | YFGLSVPDPRPVGAKGRADDGL-                                  | -IHVVSLLDADGLIKILTHTVKNFTGFA 94                                |
| ECADGT<br>AbabaT  | MSMSS1PSSSQS                                                   | -GKLYGWVERIGNKVPHPFL                 | LFIYLIIVLMVTTAILS                               | AFGVSAKNPTDGTP                                           | -VVVKNLLSVEGLHWFLPNVIKNFSGFA 89                                |
| NmM+rF            | MSOTDTORDG                                                     | -BELETVEWLGNMLPHPVTI                 | LETTETVILLITASAVGA                              | VEGLSVPDPRPVGAKGRADDGL_                                  | -IVIVSLINADGEIKILTHTVKNETGEA 94                                |
| CcAbgT            | MSDAAPPVSSPPPRQK                                               | GLLGVVERLGNLLPEPVM                   | FVWLILGLMVLSAIGQ                                | ALGWSASITYAGDEAPQFGELENGVL                               | TYAASSLFSEANLARLFTEMPKTLTSFA 105                               |
| SpAbgT            |                                                                | -MRFLNIVERLGNLLPHPIT                 | L <mark>F</mark> ALFCVAVILISGIAG                | YFELTVADPRPVGSHGRSADGL-                                  | -IHVVSLMNAEGLRMIVSNLVTNFTGFT 85                                |
| <b>Pm</b> MtrF    | MTTTQQQKKGS                                                    | KFLHTVEWLGNMLPHPVT                   | L <mark>F</mark> MIFIVLLLITSALGE                | YFGLAVADPRPEGVKGRAADGM-                                  | -IYVVSLLNAEGLSRILTNLVKNFTNFA 95                                |
| VcAbgT            | MTRREQMSSSASINQNAPKKPL                                         | [TRFLDGVEYLGNLLPHPIT]                | LFAIFCVVLLVASGIAG                               | YFELSVVDPRPEGAKGRAADGM-                                  | -IHVVSLLNADGLELIVTNLVKNFVGFA 108                               |
| BhAbgT            | -MKPAPHVELKPNQRGVI                                             | FVRFLDIIEKYGNKLPDPIM                 | LFVIMAVLILICSAIFS                               | ALGTSAVHPGTGEE                                           | -IEVVNLLNGEGFILILTELVNNFTSFP 94                                |
| PdAbgT<br>SalbaT  | MECKHOOKCC II                                                  | -MRALNVVERAGNKLPDPVT                 | IFLLLCIIVVILSAVIS                               | NLGVEEIHPSTKEV                                           | -VKVVNLLEKEQIQSYLGSIVTNFQSFA 77                                |
| TdlbaT            | MISKRQQKGS                                                     | - GEL KOVERIGNKLPDPSVI               | TEL TI STIVITUSALAR                             | TLUASAULASIU                                             | -TCAVSLINI DGI BYLINTATKNETCEA 90                              |
| CdAbqT            | MSTTTPPHKTAP                                                   | -SGFLGKIEQLGNRLPDPFW                 | IFAFLAIIVAISSWIGS                               | AIGMTAVNPQDGST                                           | -VEVTNLLTKEGATKMVSEAVNNFVAFP 89                                |
| 2                 |                                                                | :* ** :*.*                           | :* : : : : : :                                  | _                                                        |                                                                |
|                   |                                                                |                                      |                                                 |                                                          |                                                                |
|                   |                                                                | HP1a                                 | НР1Ь                                            |                                                          | тмзь                                                           |
|                   |                                                                |                                      |                                                 |                                                          | 11100                                                          |
| NgMtrF            | PLGTVLVSLLGVGIAEKSGLISALMRLLL                                  | TKSPRKLTTFMVVFTGILSN                 | TASELGYVVLIPLSAVI                               | FHSLGRHPLAGLAAAFAGVSGGYSAN                               | LFLGTI <mark>D</mark> PLLAGITQQAAQIIHPDYVVG 214                |
| EcAbgT            | PLGAILALVLGAGLAERVGLLPALMVKMAS                                 | SHVNARYASYMVLFIAFFSH:                | ISSDAALVIMPPMGALI                               | FLAVGRHPVAGLLAAIAGVGCGFTAN                               | LLIVTT <mark>D</mark> VLLSGISTEAAAAFNPQMHVS 209                |
| AbAbgT            | PLGVVLVAMLGLGVAEQSGLLSVSLASLV                                  | RRSSGGALVFTVAFA <mark>GVLS</mark> SI | LTVDAGYVVLIPLAGLV                               | FQLAGRPPIAGIATAFAAVSGGFSAN                               | LLVGPV <mark>D</mark> ATLAGLSTEAAHIIDPDRTVA 201                |
| NmMtrF            | PLGTVLVSLLGVGIAEKSGLISALMRLLL                                  | TKSPRKLTTFMVVFTGILSN                 | TASELGYVVLIPLSAII                               | FHSLGRHPLAGLAAAFAGVSGGYSAN                               | LFLGTIDPLLAGITQQAAQIIHPDYVVG 214                               |
| CcAbgT            | PLGLVLVVILGAAVAERSGLFSALIRASL                                  | REAPKRILTPLVVIIGMVSH                 | HASDAAYVVFIPLAGLL                               | YAAVGRHPLAGIAAGFAAVSGGFAGN                               | LTPGQFDVVLFGFTQEAARIIDPTWTMN 225                               |
| SpAbgT<br>DrmM+rF | PLGTVLVALLGVGIAERSGLLSAAMRALV                                  | IGASKRLVTVTIVFAGIMSN                 | PAAELGYVVLIPMAAMI                               | FHSLGRHPLAGLAAAFAGVSGGYSAN                               | LLLGTVDPLLSGITEAAARMIDPDYSVG 205                               |
| Vabam             | DI CUVI VANI CVA I AFUSCI I SA MOCI VI                         | ACA SYDMUTETUTE ACTION               | TASELGI VVLIPLAATI                              | FUEL CRUPT ACT AN A FACUSCOVE AN                         |                                                                |
| BhAbaT            | PLGLVLVVMLGVGVAFABIISGHISAAII(GEVI                             | NAPRKIIIPTIVIVANIGN                  | AAADAAMVVLPPTVAMT                               | FTALGRHPLAGLAAAYASVAGGFSAN                               | LILSMLDPLVAGFTOTGAOMIDPDYVAN 214                               |
| PdAbgT            | PLGLVLVTMLGAGVAEKSGFMEVLMKKGIS                                 | KVPOKLVTVAIVFAGMLSH                  | TAADVGFIILPPLAALV                               | FLGIGRHPLVGMFAAFAGVAGGFAAN                               | VMLSTTOVLLAGFTIPAAOMMDPSYOGN 197                               |
| SaAbgT            | ALGLVLAVMIGIGVAEKTGYFDKLMISVV                                  | NRAPRFLILPTIILIGILGS                 | TAGDAATIILPPLAAML                               | FIKIGYHPIAGLTMAYASAVGGFAAN                               | IVVGMQDALVYSFTEPATRIVSDSIKTN 209                               |
| <i>Td</i> AbgT    | PLGTVLVAMLGVGVAEWTGLINTSLKKLLS                                 | GVHPRLLTVVVVFAGIMSNV                 | VASDAGYVVV <mark>IP</mark> LG <mark>A</mark> IV | FANAGRHPMAGLAAAFAGVSGGFSAN                               | LMLGTI <mark>D</mark> PLLTGITVEALHNAGMDIAID 210                |
| <i>Cd</i> AbgT    | PLGVIITVMLGVSVAEHSGFISALVRAMVA                                 | AKVGPKTLTYVVALA <mark>GVTG</mark> S  | IASDAVYVI <mark>LIS</mark> LGAMS                | FRALGRSPIVGAMVAFAASSAGFNAS                               | LILNIT <mark>D</mark> VLLSGISTSAAQLVDPEYHVS 209                |
|                   | .** ::. ::* .:** * : :                                         | · · · · ·                            |                                                 | : * *:.* . *. *:                                         | : * : .:: .                                                    |
|                   |                                                                | α1                                   |                                                 |                                                          |                                                                |
|                   |                                                                |                                      |                                                 |                                                          |                                                                |
|                   | — <u>TM4</u>                                                   | //////                               |                                                 | TM5                                                      |                                                                |
| NoMtrE            |                                                                | CDVOCDI COFFEETDUCNI                 |                                                 | THDI PYPOT THACUNPTAT CALLA                              |                                                                |
| ECAbaT            | VIDNWYFMASSYVVI.TIVGGI.TDKITEP                                 | LGOWOGNSDEKLOT                       |                                                 | ITESORFGLETAGVVFIALSALLA                                 | IMVIPADGILRHPEIGLVAGS 509                                      |
| AbAbaT            | ATGNYWFT TASTFLYTGLYTLTTRTLTEP                                 | LAHANTVADASVDAPOTHS-                 |                                                 | RAMKWTGLT-LATLLAGL                                       | ALLV LPNDAPLR HPDTGSVLGS 289                                   |
| NmMtrF            | PEANWFFMVASTFVIALIGYFVTEKIVEP                                  | LGPYQSDLSQEEKDIRHSNI                 | Е                                               | ITPLEYKGLIWAGVVFVALSALLA                                 | WSIVPADGILRHPETGLVSGS 309                                      |
| <i>Cc</i> AbgT    | PLGNWWYILAIVVVFTPIAWFLTDKVVEP                                  | LGPWGGQADDALKAELAKS                  | A                                               | VTADEKRGLKFAGLAALAIVALFA                                 | ALSLIPGFTPLID-ETKTGPAQLT 322                                   |
| <i>Sp</i> AbgT    | PEVNWYFMFVSTFV1TFLGAFVTEKIVEP                                  | LGKYQDGDADETVLQS-ME:                 | S                                               | VSAIEKRGLKWAGLSVLILAIMLA                                 | LLVVPEGAPLRHPDTGLVSGS 299                                      |
| <b>Pm</b> MtrF    | PEANWFFMAASTFVIAFIGYFITEKIVEP(                                 | LGPYNSHLSQEELDLQHSNI                 | E                                               | VSPLERKGLRYAGLVFLILCALLA                                 | WTVVPENGILRDPKTGLVTGS 310                                      |
| VcAbgT            | PEVNWYFMAASTFVIAILGAFVTEKIVEP                                  | LGKYDVSEASDDLSQDKMG                  | 5                                               | LTALEKKALAYAGLAVVVVSALLA                                 | WTIVPADGVLRGEDGLVSGS 322                                       |
| BhAbg'I'          | PAMNYYFLVASCLVLVPVAVWVTTKIVEP                                  | EGTYTGEVEETTG-                       |                                                 | VIKEEKKGLRWAGISVVILAVVFL                                 | FLTVPEQALLRDPETGS-LTVS 302                                     |
| FUADGI            | VAMNEVETA A SUULT DETT I VERTIARI                              | CKADDEL WADDAREWEER                  |                                                 | LSELENKGIKIALLSLLVVVVVIV                                 | TTAL DEUSEDNARMOPEIGSILSSNA 209                                |
| TdabaT            | PTCNWFFMIVSTFILTVVGTFVTFKIVEK                                  | LGTYNGSYKPDNMPIS                     |                                                 |                                                          | IGLEGI.PKI.PGI.AVI.REIDPKTGESSIS 306                           |
| CdAbgT            | TLANYFFVVASFLVLALIITAVTELFVKN                                  | ARQLVDHDHIDHSELSFRDI                 | DDHPDLGAKTDEELAEE                               | IALHSGEIRALTIAGVAFIGMLAVYF                               | ALLFVPASPFYSE-ESAMSS 320                                       |
| -                 | * :: .:. :*                                                    |                                      |                                                 |                                                          |                                                                |
|                   |                                                                |                                      |                                                 |                                                          |                                                                |
|                   | TM6                                                            |                                      | TM7b                                            | TM7c                                                     | HP2a HP2b                                                      |
|                   |                                                                |                                      |                                                 |                                                          |                                                                |
| NgMtrF            | PFLK <mark>S-IVVFIFLLFALPGIV<mark>YG</mark>RITRSL</mark>       | RGEREVVNAMAESMSTLGLY                 | LVIIFFAAQFVAFFNWT                               | NI <mark>G</mark> QYIAVKGAVF <mark>L</mark> KEVGLAGSVLFI | GFILICAFINLMIG <mark>SAS</mark> AQ <mark>W</mark> AVTAPIFV 428 |
| <i>Ec</i> AbgT    | PFIKG-IVPLIILFFFVVSLA <mark>YG</mark> IATRTI                   | RQADLPHLMIEPMKEMAGF                  | IVMVFPLAQFVAMFNWS                               | NMGKFIAVGLTDILESSGLSGIPAFV                               | GLALLSSFLCMFIASG <mark>S</mark> AI <mark>W</mark> SILAPIFV 417 |
| AbAbgT            | PFIHG-LVVIVALIAGICGAVYGRVSGQF                                  | RNSGAVITAMEVTMASMAGY                 | LVLMFFAAQFVAWFNYS                               | <b>QLGLLLAVKGAAWLGALTVPKVVLLL</b>                        | LFVVLTALINLMIG <mark>SAS</mark> AKWSILAPVFI 408                |
| NmMtrF            | PFLKS-IVVFIFLLFALPGIVYGRVTRSL                                  | RGEQEVVNAMAESMSTLGLY                 | LVIIFFAAQFVAFFNWI                               | NIGQYIAVKGATFLKEVGLGGSVLFI                               | GFILICAFINLMIGSASAQWAVTAPIFV 428                               |
| CCADGT<br>Spaba   | PFYGA-LIAGFMMLFLAGGVAYGVGVGTVI                                 | (TEGDVVNMMADGVRSVAPY.                | LVFAFFAAHFVAMFNWS                               | RLGPIAAIHGAE'I'LKAMNLPAPLLLV                             | SVLGFSSVLDLFIGSASARWSALAPVVV 441                               |
| DmM+rF            | DELKS_IVAFIFILEAIDCTVVCIVTKSI                                  | GERDININAMAEAMSTI CI VI              | UTTEEASOEVAFENWT                                | NICOVIAVEGANEI NEVCI HCCII EM                            | GETLICATINIMIGSAGAGMANTAFITY 410                               |
| VcAbaT            | PFLKS-IVAFIFIFFAIPGYVYGRVVGTM                                  | TDRDVINAMAKSMSSMGMY                  | IVLVFFAAOFVAFFSWI                               | KFGOVLAVLGADFLKDIGLTGPMLFF                               | AFILMCGYINLMIGSASAOWAVTAPIFV 429                               |
| BhAbaT            | PFMTG-TVPTMMVFFLVPALVYGFVAKVF                                  | SSKDVADHLAKSMSNMGTY                  | TVTAFVAAOMTAFFNWS                               | OLGPTVATKGANFT.OTTGFTGLPLLL                              | GETVTAALTNI MVASASAKWATLAPVEV 421                              |
| PdAbgT            | PLMKG-IVPIITIIFLTPGLVYGKVSKKI                                  | SDKDLVSMMGSSMSDMGGY                  | IVLAFIASQFINLFNLS                               | NLGTILSITGAKLLÄESGIPSYGLII                               | GFILLSGFINLFVG <mark>SAS</mark> AK <mark>W</mark> AILAPIFV 408 |
| SaAbgT            | PLING-VGLIILVVFLVPGLVYGILSKEI                                  | NTKDLGKMFGDAVGSMGTF                  | IVIVFFAAQLLAYLKWS                               | NLGIIAAVKGAKLLEHQNGIVLIL                                 | GIIVLSAMVNMLIG <mark>SAS</mark> AK <mark>W</mark> GILGPIFV 421 |
| <i>Td</i> AbgT    | NFMHGGLLPVILLFLIPGLIYGKKTGKI                                   | ISSHDLVKGMSQAMSSMGGY                 | LVLSFFAAQFVNYFGKT                               | NLGTIISVNGANFLKSIGFTGLPLII                               | SFVIISAFLNLFMG <mark>SAS</mark> AK <mark>W</mark> AIMAPIFV 426 |
| <i>Cd</i> AbgT    | PLVKA-VTVPISLMFLGLGVVYGITIKSI                                  | TSLGDIPAFMAKGLTTLIPM                 | VVLFFMVAQFLAWFQWS                               | NLGIWTAIKGAELLQRWDLPVYVLFA                               | AVVLAVALLNLTITSG <mark>S</mark> AQ <mark>W</mark> ALMAPVIV 439 |
|                   | • • • • • • • • •                                              |                                      | • • • • • • •                                   |                                                          | • • • • • • • • • • • • • • • • • • • •                        |
|                   |                                                                |                                      |                                                 |                                                          |                                                                |
|                   |                                                                | —                                    | - TM                                            | <mark>)                                    </mark>       |                                                                |
|                   |                                                                |                                      |                                                 |                                                          |                                                                |
| <i>Ng</i> MtrF    | PMLMLAGYAPEVIOAAYRIGDSVTNIITP                                  | MSYFGLIMATVMKYKKDAG                  | VGTLISMMLPYSAFFLI                               | AWIALFCIWVFVLGLPVGPGAPTLYP                               | AP 522                                                         |
| <i>Ec</i> AbgT    | PMFMLLGFHPAFAQILFRIADSSVLPLAP                                  | /SPFVPLFLGFLQRYKPDAK                 | L <mark>G</mark> TYYSLVL <mark>PYP</mark> LIFLV | VWLLMLLAW-YLVGLPIGPGIYPRLS                               | 508                                                            |
| AbAbgT            | PMLMLLGIS <mark>P</mark> EASQAAY <mark>R</mark> VGDSSTNIITP    | MPYFVLVLGFARRYQPETG                  | I <mark>G</mark> TLIALML <mark>PYSL</mark> TLLL | GWSVLLGVW-IGFGWPLGP                                      | 492                                                            |
| NmMtrF            | PMLMLAGYAPEVIQAAYRIGDSVTNIITP                                  | MSYFGLIMATVIKYKKDAG                  | VGTLISMMLPYSAFFLI                               | AWIALFCIWVFVLGLPVGPGAPTFYP                               | AP 522                                                         |
| CcAbgT            | PMFMLLGISPEMTTAAYRMGDSFTNLMTP                                  | MSYFPLVLAMTRRWDPSMG                  | VGSLLALMLPYALAFMV                               | AGVAMTLAW-VAFDWPLGPAAQVHYT                               | PPGGLLK 539                                                    |
| SPADGT<br>DmM+    | PRIME VGIARETIQAAIRIGUSVTNLVTP                                 | MENECT TRADUCTION                    | IGTLIATMLPYTLVFFV                               | GWIAFFFLWVFGFGLFVGPGAATYYT                               | r 311<br>NO 522                                                |
| VCAbaT            | PMLMLTGISPELIQAAIRIGUSVTNIITP<br>PMLMLVGYAPEVTOAAVPICOSVTNIITP | MSYFGLIMATVLKYKKDAG                  | VGTLVSMMLPYSVAFLV<br>IGTLTATMI.PYSVVFMU         | AWSAMFTIWVFVLGLPVGPNSPMFYP<br>GWSLLFYVWVFVLGLPVCPCAATVVT | AQ 523<br>P 534                                                |
| BhAbam            | PMFMIJEYSPAFTOAAVPVCDSTTNDTTD                                  | ILPYFATAL TFAKKVNDETC                | IGTEMSSI.I. PVSTAFAU                            | TWITLETVW-YLLCLDLCDCEVTUTU                               | T 513                                                          |
| PdAbgT            | PMFMLLDFNPALTQIAYRIGDASTNPISP                                  | FPYFPVILAFARRYDKDIG                  | IGTVISNMIPYSVVFTL                               | IEIIILLF-MGIGIPLGPGGGISYV                                | L 500                                                          |
| SaAbgT            | PMLILIGFHPAFTQVIYRVGDSITNPITP                                  | MPYLPLLLTYAQKYDKRMK                  | LGALLSSLMPYSIALSI                               | VWTVFVIIW-FLLGIPVGPGGPIFVK                               | 512                                                            |
| <i>Td</i> AbgT    | PMMVNLGLSPALTQVAYRIGDSSTNLITP                                  | MSYFAMIVVFMKKYDEDSG                  | LGTLISTMLPYSIAFLL                               | SWIGLMIIW-YIFGLPLGPGAFIHI-                               | 516                                                            |
| <i>Cd</i> AbgT    | PMMMYVGIS <b>P</b> EVTQMLFRIGDSPTNIITP                         | SPYFALALTFLQRYYKPAG                  | VGTLVSLALPYSIAMLV                               | GWFVFFIVW-YALGVPLGPGTPMHFQ                               | QG 532                                                         |
|                   | **:: * :*:.*:. ::*:                                            |                                      | :*: : :**. : :                                  | : : *:**                                                 |                                                                |





С













|                        |               | •                  | $W_{6}(\mu - O)_{6}(\mu -$ |               |
|------------------------|---------------|--------------------|----------------------------|---------------|
| Data set               | Native MtrF   | $Ta_6Br_{12}^{2+}$ | $Cl)_6Cl_6^{2-}$           | Se (peak)     |
| <b>Data Collection</b> |               |                    |                            |               |
| Wavelength (Å)         | 0.98          | 1.25               | 1.02                       | 0.98          |
| Space group            | P65           | P65                | P65                        | P65           |
| Resolution (Å)         | 50 - 3.95     | 50 - 6.53          | 50 - 5.70                  | 50 - 4.60     |
|                        | (4.11 – 3.95) | (6.74 - 6.53)      | (5.93 – 5.70)              | (4.76 - 4.60) |
| Cell constants (Å)     |               |                    |                            |               |
| a                      | 120.77        | 120.57             | 120.51                     | 116.37        |
| b                      | 120.77        | 120.57             | 120.51                     | 116.37        |
| с                      | 233.90        | 231.33             | 231.75                     | 224.88        |
| α, β, γ (°)            | 90, 90, 120   | 90, 90, 120        | 90, 90, 120                | 90, 90, 120   |
| Molecules in ASU       | 2             | 2                  | 2                          | 2             |
| Redundancy             | 4.7 (4.0)     | 5.7 (5.8)          | 5.6 (6.5)                  | 4.4 (3.8)     |
| Total reflections      | 868,348       | 28,1275            | 189,1056                   | 1796,647      |
| Unique reflections     | 16,832        | 3814               | 5533                       | 9712          |
| Completeness (%)       | 98.2 (92.8)   | 99.9 (99.9)        | 99.7 (99.0)                | 99.9 (100)    |
| $R_{merge}$ (%)        | 5.8 (46.8)    | 5.3 (49.5)         | 8.6 (48.7)                 | 9.4 (59.0)    |
| Ι/σ                    | 29.65 (0.88)  | 45.42 (2.60)       | 34.14 (1.7)                | 19.35 (1.95)  |
| Phasing                |               |                    |                            |               |
| Number of sites        |               | 4                  | 6                          | 30            |
| Phasing power (acentr  | ric/centric)  | 1.71               | /0.99                      |               |
| Figure of merit        |               | 0.                 | 59                         |               |
| Refinement             | MtrF          |                    |                            |               |
| Resolution (Å)         | 50 - 3.95     |                    |                            |               |
| R <sub>work</sub> (%)  | 29.9          |                    |                            |               |
| $R_{\text{free}}(\%)$  | 33.6          |                    |                            |               |
| RMSD bond lengths      | 2210          |                    |                            |               |
| (Å)                    | 0.009         |                    |                            |               |
| RMSD bond angles       |               |                    |                            |               |
| (°)                    | 1.52          |                    |                            |               |
| Ramachandran plot      |               |                    |                            |               |
| most favoured (%)      | 89.0          |                    |                            |               |
| additional allowed     |               |                    |                            |               |
| (%)                    | 10.0          |                    |                            |               |
| generously allowed     | 1.0           |                    |                            |               |
| (70)                   | 1.0           |                    |                            |               |
| aisallowed (%)         | 0.0           |                    |                            |               |

Table S1. Data collection, phasing and structural refinement statistics. Related to Figure 1.

| Primer        | Sequence                                       |
|---------------|------------------------------------------------|
| D193A-forward | 5'-CTGTTCCTGGGCACCATTGCTCCGCTGCTGGCCGGTATC-3'  |
| D193A-reverse | 5'-GATACCGGCCAGCAGCGGAGCAATGGTGCCCAGGAACAG-3'  |
| S417A-forward | 5'-GGTAGTGCTGCCGCACAATGGGCAGTGACCGCACCGATCT-3' |
| S417A-reverse | 5'-CCATTGTGCGGCAGCACTACCGATCATCAGGTTAATAAA-3'  |
| W420A-forward | 5'-CGCACAAGCGGCAGTGACCGCACCGATCTTCGTTCCG-3'    |
| W420A-reverse | 5'-GGTCACTGCCGCTTGTGCGGAAGCACTACCGATCATCAG-3'  |
| P438A-forward | 5'-GGCTATGCTGCGGAAGTCATTCAGGCCGCATACCGC-3'     |
| P438A-reverse | 5'-GACTTCCGCAGCATAGCCTGCCAGCATCAGCATCGG-3'     |
| R446A-forward | 5'-GTCATTCAGGCCGCATACGCCATCGGTGATTCAGTTACC-3'  |
| R446A-reverse | 5'-GGTAACTGAATCACCGATGGCGTATGCGGCCTGAATGAC-3'  |
| D449A-forward | 5'-GCCGCATACCGCATCGGTGCTTCAGTTACCAATATTATC-3'  |
| D449A-reverse | 5'-GATAATATTGGTAACTGAAGCACCGATGCGGTATGCGGC-3'  |
| P457A-forward | 5'-ATCACGGCGATGATGTCGTATTTTGGTCTGATTATG-3'     |
| P457A-reverse | 5'-CGACATCATCGCCGTGATAATATTGGTAACTGAATC-3'     |

Table S2. Primers for site-directed mutagenesis. Related to Figure 3.

Table S3. MICs of sulfamethazine, sulfadiazine, sulfathiazole and sulfanilamide for different MtrF variants expressed in *E. coli* BL21(DE3) $\Delta abgT\Delta pabA$ . Related to Figure 5.

| Gene in BL21(DE3) $\Delta abgT\Delta pabA$ | Sulfamethazine<br>(µg/mL) | Sulfadiazine<br>(µg/mL) | Sulfathiazole<br>(µg/mL) | Sulfanilamide<br>(µg/mL) |
|--------------------------------------------|---------------------------|-------------------------|--------------------------|--------------------------|
| Empty vector                               | 62.5                      | 31.25                   | 62.5                     | 500                      |
| <i>mtrF</i> (wild-type)                    | 2000                      | >250                    | >500                     | 4000                     |
| <i>mtrF</i> (D193A)                        | 1000                      | 31.25                   | 62.5                     | 2000                     |
| mtrF (S417A)                               | 125                       | 31.25                   | 125                      | 2000                     |
| mtrF (W420A)                               | 125                       | 31.25                   | 62.5                     | 2000                     |
| <i>mtrF</i> (P438A)                        | 62.5                      | 31.25                   | 62.5                     | 1000                     |
| <i>mtrF</i> (R446A)                        | 1000                      | >250                    | >500                     | 2000                     |
| <i>mtrF</i> (D449A)                        | 62.5                      | 31.25                   | 62.5                     | 1000                     |
| <i>mtrF</i> (P457A)                        | 62.5                      | 62.5                    | 125                      | 1000                     |
|                                            |                           |                         |                          |                          |

|                | $K_D(\mu M)$     | $\Delta H (\text{kcal} \cdot \text{mol}^{-1})$ | $\Delta S$ (cal•mol•deg <sup>-1</sup> ) |
|----------------|------------------|------------------------------------------------|-----------------------------------------|
| Sulfamethazine | $0.33 \pm 0.02$  | $-580.2 \pm 5.9$                               | 27.7                                    |
| Sulfadiazine   | $12.74 \pm 0.62$ | $-1900.0 \pm 131.8$                            | 16.0                                    |
| Sulfathiazole  | $1.52 \pm 0.07$  | $-267.3 \pm 8.0$                               | 25.7                                    |
| Sulfanilamide  | $1.14 \pm 0.01$  | $-135.2 \pm 1.1$                               | 26.7                                    |
| PABA           | $0.54 \pm 0.02$  | $-319.2 \pm 8.6$                               | 27.6                                    |
|                |                  |                                                |                                         |

Table S4. Binding of sulfamethazine, sulfadiazine, sulfathiazole, sulfanilamide and p-aminobenzoic acid by MtrF. Related to Figure 5.

|                | $K_D(\mu M)$      | $\Delta H (\text{kcal} \cdot \text{mol}^{-1})$ | $\Delta S$ (cal•mol•deg <sup>-1</sup> ) |
|----------------|-------------------|------------------------------------------------|-----------------------------------------|
| Sulfamethazine | $10.78 \pm 1.17$  | $-233.4 \pm 10.7$                              | 21.9                                    |
| Sulfadiazine   | $105.82 \pm 25.6$ | $-41103 \pm 2065.0$                            | 4.4                                     |
| Sulfathiazole  | 50.76 ± 8.9       | $-713.5 \pm 28.4$                              | 17.3                                    |
| Sulfanilamide  | 6.80 ± 1.5        | $-63.1 \pm 3.0$                                | 23.4                                    |
| PABA           | 41.15 ± 8.5       | $-425.3 \pm 18.7$                              | 18.6                                    |
|                |                   |                                                |                                         |

Table S5. Binding of sulfamethazine, sulfadiazine, sulfathiazole, sulfanilamide and p-aminobenzoic acid by the W420A mutant. Related to Figure 5.