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Supplementary Figure 1: Experimental measurement of polarization-dependent absorption properties in
all-fibre graphene devices. a. Schematic of experimental set-up including an amplified spontaneous emission
(ASE) source around 1550 nm, an in-line collimator, a linear polarizer, and a photo-detector. b.- d. Angular plot
of optical transmission of the devices. b. The device with a mono-layer graphene shows the maximum
transmission (~ 88%) at 7.6° with minimum transmission (~ 46%) at almost normal (97.1°) to that of maximum
where TE-polarization direction corresponds to 90° degree ¢. Same measurement with bi-layer graphene shows
the maximum transmission (~ 86%) at 167° with minimum transmission (~ 27%) at 77.5°. d. The angles at
maximum (~ 78%) and minimum transmission (~ 24%) were measured to be 163.7° and 74.5°, respectively, for
quad-layer sample. In all samples, the angle at minimum transmission is randomly distributed around 90 + 15°
and the angle at maximum is nearly normal at the accuracy within + 1°. A shift of the angle from the
polarization direction of TE- and TM-modes is expected to be originated from the induced birefringence by the
SPF buried into the quartz block with a curvature and the magnetic block to hold the optical fibres. The devices

without graphene show nearly angle-independent transmission (black square).



Cladding B 2.0

Ion-liquid

Cladding

Supplementary Figure 2: Numerical calculation of field enhancement on the SPF surface by ion-liquid.
The electric field distribution and polarization direction of the fundamental guided mode in the SPF were
numerically calculated using a commercial software (COMSOL Multiphysics®) where the optical fibre, core-
cladding index difference and minimum distance between core-boundary and polished surface were set as 8.3
um, 0.36%, and 0.5 um, respectively. The electric field distribution and polarization direction of a. TE- and b.
TM-mode without ion-liquid. The relative intensity ratio at polished surface with respect to maximum intensity
(Lsurface/Imax) Was 0.36% and 0.17% for TE- and TM-mode, respectively. c. TE- and d. TM-mode with ion-liquid.
The calculated lgytace/Imax Was 4.05% and 4.00% for TE- and TM-mode respectively.
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Supplementary Figure 3: Raman measurement and images in randomly stacked graphene layers. Spatial
distribution of relative Raman intensity between 2D-peak and G-peak (l,p,c) recorded by a commercial Raman
microscopy (inVia Raman microscope, Renishaw plc). A light with central wavelength of 514 nm was focused
on the graphene samples using an objective lens (Numerical Aperture = 0.5, 20X). Raman spectra at 729 (=
27x27) different points have been taken over the area of 50x50 um? of the individual graphene samples with a
focused spot size of ~ 1 um? a.-f. Raman intensity image around G peak and 2D peak of the sample (a. and b.
mono-layer graphene, c. and d. bi-layer graphene, e. and f. quad-layer graphene) g.-i. Calculated I,p/c
distribution of g. mono-layer graphene, h. bi-layer graphene and i. quad-layer graphene samples extracted from
each measurement. While the monolayer graphene exhibits almost uniform distribution of l,pc 2.9 ~ 3.6 over
the most area, the l,pc in multilayer graphene samples show broad distribution ranging from 0.4 to 6. In
particular, they hold smaller I, than that of mono-layer graphene over substantial area (73.4% and 64.3% for

bi- and quad-layer graphenes, respectively) of the sample.
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Supplementary Figure 4: Gate-variable nonlinear transmission properties of TE mode in the all-fibre
graphene device using a bi-layer graphene. a. Schematic of nonlinear measurement setup using a lab-built
mode-locked fibre laser, a polarization controller, a variable optical attenuator, and an optical power meter. b.-e.

Normalised nonlinear transmission curves at the applied gate voltages of b. - 1.2V, ¢. - 0.8, d. — 0.3 and e. +
0.2 V. The nonlinear fitting (red solid line) of experimental results (black solid square) shows the modulation

depth of 1.06 % with a saturation fluence of 256.6 MW/cm? at the Vg of — 1.2 V. There is more significant

nonlinear optical transmission change for Vg of — 0.8 V (7.47 %) and — 0.3 V (9.12%) though the absorption

could not be fully saturated due to the limit of currently available input power of the source. In case of Vg at +
0.2 V, only 1.21% of the nonlinear optical transmission change was observed for a given maximum input power

because of the limited input power and increased saturation fluence of the graphene SA.



Supplementary Note. 1: Dielectric constant of graphene depending on Femi-energy
We calculated the dielectric constant of graphene &,() from*

ic(w)
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where ¢, (= 2.5) is the background dielectric constant of graphene, & vacuum permittivity, d (= 0.335 nm) the

graphene thickness. The frequency @ and Femi-energy Er dependent optical conductivity o(w) is obtained with
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where & denotes the elementary charge, ks the Boltzmann constant, T temperature, 7 Plank constant, and 7~
the decay rate of electron plasma. By using this model we obtained the refractive index (n) and the attenuation
coefficient (x) as a function of Fermi energy at the wavelength of 1.55 um. For example, as the Fermi energy
increases from 0 to 0.4 eV, the complex refractive index of graphene varies from 3.2165 + 2.622i to 3.3689 +
2.2777i.
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