Pore Radius (A)

Y60 50 —40 30 20 Z10
Z coordinate

Supplementary Figure 1. A) GLIC transmembrane domain (protein backbone is represented as white cartoon,
Epock’s pore surface as red wireframe). The pore profile has been calculated given a 14 A-radius cylinder as
include region and a superimposed 7 A-radius cylinder as contiguous seed (see Epock’s manual for more
information). The surface has been calculated with the VMD Volmap tool from Epock’s output. B) Comparison
of the average profile of the GLIC pore of a 800-frame trajectory. Epock (red) and Hole (blue) yield very similar
pore profiles.

Supplementary discussion.

Comparison between Epock, POVME and MDpocket.

We benchmarked Epock, POVME and MDpocket programs. POVME (Durrant, de Oliveira, and McCammon
2011) implements an algorithm similar to Epock for free space detection but with a simpler algorithm for
free space volume calculation. MDpocket (Schmidtke et al. 2011) uses Voronoi diagrams and has been
specifically designed for both transient cavity detection and efficient cavity characterisation. MDpocket
computes, in addition to the pocket volume, several other descriptors such as the pocket drugability and
hydrophobicity, among others. While this program’s goal is clearly broader than simple volume
calculation, many authors mention the use of MDpocket to trace single protein pocket volumes along MD
trajectories, faced with the lack of software tools able to perform this task. MDpocket can be seen as the
current de-facto standard tool for this purpose. Importantly, all three programs can be given the same
input grid, allowing for meaningful performance comparisons. In our comparisons we explicitly disabled
the search part where MDpocket searches for all the pockets and cavities that can be found among the
multiple snapshots collected from a trajectory.

We benchmarked all three programs on the GLIC test case presented in the main manuscript. The volume
of a single pocket was computed over an 800-frame trajectory of the protein (25385 atoms, 75 MB) on
Mac 0S 10.6.8 with 2 x 2.93 GHz Quad-Core Intel Xeon processors and 8 GB 1066 MHz DDR3 memory. The
version of the programs used for this benchmark is summarised in Supplementary Table 1.

Epock ran in 6 seconds (i.e less than 0.01 s/frame). This is a dramatically higher speed than both
MDpocket and POVME that feature computing times on the hour timescale (9 and 3 hours, respectively).
We hypothesise that POVME's execution time is largely related to its implementation in Python, which is
known for being slower than a corresponding C++ executable in numerous cases. As MDpocket
implements on one side totally different algorithms than Epock, and, on the other side, has been designed
to calculate several other descriptors in addition to pocket volume, we investigated the reasons for this
slower execution time. Our analysis revealed that, in our example, an important part of MDpocket’s
execution time is spent in the free space detection part of the program (x 37 %, i.e 16 s/frame),
including Voronoi vertex calculation, pocket clustering, and, most importantly, clustering refinement (see
Supplementary Figure 3). Importantly, a call to the function “set_pocket descriptors” represents a
significant part of MDpocket’s execution time (x 44 %, i.e 19 s/frame). Our investigations revealed that
removing the call to this function does not affect MDpocket descriptor output values, at least in our
example. Considering this function call redundant, MDpocket’'s longer execution time may therefore only
be marginally due to the calculation of the pocket descriptors it features, which only took up = 3.2 s. Yet,
in the current version of the Fpocket suite, MDpocket’s execution time is primarily explained by the
clustering refinement step and the call to the “set_pocket_descriptors” function. Finally, it is important to
note that program performances can be dramatically affected by parameters such as the number of atoms
in the systems and the grid size (see Supplementary Table 2).

To complete this benchmark, we compared the three program output volumes. Epock and POVME
algorithms for free space detection are very similar. The two programs however drastically differ in their
algorithm of free space volume calculation. While POVME uses the same grid for free space detection and
volume calculation, Epock uses a second finer grid to calculate the volume, resulting in a more accurate
result. Epock has the ability to calculate the free space volume without using a finer grid, hence to
calculate the volume in the exact same way as POVME does. This is done by setting the precision
parameter to 0.0. Jointly with the contiguous point removal disabled, these parameters allow Epock to
reproduce POVME’s results (Supplementary Figure 2A).

Epock is meant to run with an acceptable degree of precision (precision affects the grid spacing of the
volume calculation grid as opposed to the free space detection grid; a precision of 2.0 A1 corresponds to a
grid spacing of 0.5 A) and possibly with contiguous points removal as well. This set of parameters
produces, as expected, more accurate results that are therefore quantitatively different from POVME
(Supplementary Figure 2B).

MDpocket features totally different algorithms for both free space detection and volume calculation. As
introduced above, MDpocket implements Voronoi diagrams for free space detection. MDpocket then
performs several refinement steps before computing the free space volume thanks to a Monte-Carlo
algorithm. These elements participate in notable quantitative differences with both Epock and POVME
(Supplementary Figure 2B). Importantly, volume variations over time appear statistically significantly
correlated (Pearson’s correlation test p-values < 10-12), reflecting qualitatively identical results on volume

time evolution for all three programs tested, as depicted by Supplementary Figure 2C showing normalized
and smoothed data. It should be noted that by design, Epock slightly underestimates the volume and an
estimation of Epock’s error bounds is provided on Epock’s website. In the example above, Epock’s output
volume is expected to be less than 10 % below the actual pocket volume that lies within the user-defined
maximum encompassing region.

In terms of intended use and efficiency, we would like to highlight that Epock could be a choice program
for a user looking primarily for volume tracking along MD trajectories. MDpocket is, to date, the only
program to our knowledge able of calculating so many pocket descriptors along MD trajectories. Besides,
Epock raw data appears much less noisy than MDpocket, allowing direct analysis of the raw volume data
(no smoothing required). Eventually, the data fluctuations may be analysed to detect erroneous
conformations along a trajectory that are not representative and may be used as a filter to remove outliers.

Program Version Date

Epock 1.0.1rc 2014/09/25
POVME 1.1.0 2014/04/08
MDpocket 2.0 2010/07/15

Supplementary Table 1. Versions and date of the software tools used for comparison in this work. Dates are
sources last modification dates according to the software source code hosting service.

Protein #atoms # structures # grid Epock MDpocket POVME
points
GLIC 25420 800 7970 00h00mO6s 09h10m56s 02h00m30s
HSP90 ~ 1659 86 9771 00h00mO6s 00h00m57s 00h01mO05s
ER 3988 3036 21247 00h00m41s 02h37m39s 184h04m22s*

Supplementary Table 2. Execution times of Epock, MDpocket and POVME on different systems. Although
Epock is consistently the fastest program among the three tested, its run time on the HSP90 system may appear
comparatively high with respect to the two other ones. We hypothesise the reason is that, in this case, Epock has
to be run through a Python script on each PDB structure while, on the two other systems, the native Epock
program ran on Gromacs XTC trajectories. *POVME run time on the ER system has been deduced from its
average execution time on 31 frames. The trajectory of the Estrogen Receptor (ER) system is described in Sinha
et al., Chembiochem (2010).

A 250

200

[
u
o

Volume (A3)
S

50

B 1400

1200

1000

800

600

Volume (A3)

400

200f

Wi

e
i

Normalized volume
-
¢

0.4

i

|

M,,t! HN V

MH

0

Supplementary Figure 2. Comparison between Epock (blue), POVME (green) and MDpocket (red). A)
Comparing POVME and Epock in identical execution conditions with Epock precision parameter set to 0.0 and
non-contiguous points removal disabled. B-C) Adding MDpocket to the comparison and setting Epock precision
to 2.0. B) Raw data. C) Normalised data (each observed value has been divided by the sample average) and
smoothed. The smoothing consists in a moving average over the normalised data with a window size of 5

frames.

100

200 300 400 500 600
Frame id

700

% LOGGING: Snapshot 3/10

** LOGGING: Opening pdb file... 0.01 s.
** LOGGING: Reading pdb file... 0.02 s.
** LOGGING: Calculating vertices... 1.39 s.
** LOGGING: Clustering pockets... 0.96 s.
**% LOGGING: Clustering refinement... 13.95 s.
** LOGGING: Calculating pocket descriptors... 19.61 s.
** LOGGING: Drop small and polar pockets... 2.53 s.
** LOGGING: Sorting pockets... 0.00 s.
** LOGGING: Finding vertices of interest... 1.15 s.
**% LOGGING: Allocating memory... 0.00 s.
**% LOGGING: Writing pgr containing vertices... 0.01 s.
** LOGGING: Finding atoms that contact the pocket... 0.00 s.
** LOGGING: Calculating descriptors... 3.35 s.

** LOGGING: Volume = 925.43
** LOGGING: Calculating the pocket volume...volume = 947.73 (done in 0.07 s)

** LOGGING: Writing descriptor output file... 0.00 s.
** LOGGING: Free some memory... 0.00 s.
** LOGGING: Free some memory (atom data)... 0.00 s.
** LOGGING: Free some memory (pocket data)... 0.86 s.

% LOGGING: Frame done in 43.91 s.

Supplementary Figure 3. MDpocket execution profiling. This is an output from our homemade MDpocket
executable that allowed us to time code sections at each frame. This is the output for the 3rd snapshot from
the GLIC trajectory example.

The example of the Heat Shock Protein 90 (HSP 90)

We have used a dataset of 86 PDB structures of the HSP90 protein determined in different conformations
and with different ligands extracted from the list of molecules presented in MDpocket’s original paper
(Schmidtke et al. 2011). The structures were superimposed using the MultiSeq VMD plugin (Roberts et al.
2006). We defined Epock’s maximum encompassing region as an 8 A radius sphere centred at the centre
of mass of residues defined as important in the literature. A smaller sphere has been used as a seed for
non-contiguous points removal. The bar chart in Supplementary Figure 3 was obtained by using the
Python matplotlib Library (http://matplotlib.org). The rendering of the protein structures and volume of
the pocket were performed using the VMD program (Humphrey, Dalke, and Schulten 1996).

We used a Python script to run Epock on the 86 structures of HSP90 (run time of 6 seconds vs 61 seconds
for MDpocket). Volume data highlight an opening of the binding pocket, with volumes ranging from 391 A3
(PDB id: 3K99) to 572 A3 (PDB id: 3R40). Focusing on structure 3K99, 2 of the 3 main residues highlighted
by the Epock contribution analysis (residues N51 and L107) are quoted as key interaction residues in the
paper describing this structure (Kung et al. 2010) (see Figure 4 in this paper). The structure 3R40
exhibited the largest volume for the dataset, consistently with the fact that a large compound was co-
crystallized in the binding site (Zehnder et al. 2011). The volume increase is related to the movement of a
helix formed by the residues 100 to 110 (see central image in Supplementary Figure 4). The importance of
this region for the binding of ligands and the evolution of the helix were mentioned by Wright and co-
authors (Wright et al. 2004). Again, Epock residue contribution analysis highlights residues that were
depicted by the authors as key for the plasticity of this region (N51, M98 and L107).

Thus, without any knowledge of the target structures, the simple calculation of volume and the analysis of
residue contributions using Epock allowed highlighting important interacting residues as well as helix
movement important for the binding of ligands on HSP90 and thus the design of inhibitors.

All results obtained with Epock as well as the dataset of 86 proteins aligned are available on the Epock
website (http://epock.bitbucket.org). This dataset could be useful to perform further analyses for
interested readers and allow other researchers to easily compare new methodologies with the Epock
implementation.

571.88
538.88
507.25
476.50

Volume (A)

390.75

3K99: 390.75 A

PDB name

il

\

2 4
1UY8: 538.88 A

3R40: 571.88 A

Supplementary Figure 4. Comparison of HSP90 binding pocket volume in 86 X-ray structures. Top panel:
barplot showing the pocket volume for each X-ray structure. Selected structures used to illustrate the other
panels were highlighted in different colours. Right panel: zoom on the HSP90 binding pocket, highlighting, for
each chosen example, the key residues implicated in volume variations. Bottom panel: HSP90 backbone
showing the loop movements in each chosen example.

References

Durrant, Jacob D, César Augusto F de Oliveira, and] Andrew McCammon. 2011. “POVME: an Algorithm for
Measuring Binding-Pocket Volumes.” Journal of Molecular Graphics & Modelling 29 (5): 773-776.
doi:10.1016/j.jmgm.2010.10.007.

Humphrey, W, A Dalke, and K Schulten. 1996. “VMD: Visual Molecular Dynamics.” Journal of Molecular
Graphics 14 (1) (February 1): 33-8, 27-8.

Kung, Pei-Pei, Buwen Huang, Gang Zhang, Joe Zhongxiang Zhou, Jeff Wang, Jennifer A Digits, Judith
Skaptason, et al. 2010. “Dihydroxyphenylisoindoline Amides as Orally Bioavailable Inhibitors of the
Heat Shock Protein 90 (Hsp90) Molecular Chaperone..” Journal of Medicinal Chemistry 53 (1) (January
14): 499-503. doi:10.1021/jm901209q.

Roberts, Elijah, John Eargle, Dan Wright, and Zaida Luthey-Schulten. 2006. “MultiSeq: Unifying Sequence
and Structure Data for Evolutionary Analysis..” BMC Bioinformatics 7: 382. d0i:10.1186/1471-2105-
7-382.

Schmidtke, Peter, Axel Bidon-Chanal, F Javier Luque, and Xavier Barril. 2011. “MDpocket: Open-Source
Cavity Detection and Characterization on Molecular Dynamics Trajectories..” Bioinformatics (Oxford,
England) 27 (23) (December 1): 3276-3285. doi:10.1093 /bioinformatics/btr550.

Wright, Lisa, Xavier Barril, Brian Dymock, Louisa Sheridan, Allan Surgenor, Mandy Beswick, Martin
Drysdale, et al. 2004. “Structure-Activity Relationships in Purine-Based Inhibitor Binding to HSP90
Isoforms..” Chemistry & Biology 11 (6) (June): 775-785. doi:10.1016/j.chembiol.2004.03.033.

Zehnder, Luke, Michael Bennett, Jerry Meng, Buwen Huang, Sacha Ninkovic, Fen Wang, John Braganza, et
al. 2011. “Optimization of Potent, Selective, and Orally Bioavailable Pyrrolodinopyrimidine-
Containing Inhibitors of Heat Shock Protein 90. Identification of Development Candidate 2-Amino-4-
{4-Chloro-2-[2-(4-Fluoro-1H-Pyrazol-1-Yl)Ethoxy]-6-Methylphenyl}-N-(2,2-Difluoropropyl)-5,7-
Dihydro-6H-Pyrrolo[3,4-D]Pyrimidine-6-Carboxamide..” Journal of Medicinal Chemistry 54 (9) (May
12): 3368-3385.d0i:10.1021/jm200128m.

