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1 Pre-generated Data

For the convenience of researchers we generate to 100x coverage the following
three genomes and made the following data available online.

• Female personal genome: We used high-confidence variants for NA12878
from literature (Abecasis et al., 2010; Mills et al., 2011) and used read sim-
ulation to generate the reads.

• Male personal genome: Similar to the above, except that we used vari-
ants from NS12911 (the Venter genome (Pang et al., 2010; Levy et al.,
2007)). This includes exact insertion breakpoints and novel insertion se-
quences.

• Female tumor genome: A random subset of variants from the COS-
MIC (Danecek et al., 2011) database was added to the “Female personal
genome”. Normal contamination was simulated at 0.1 somatic allele fre-
quency.

∗The authors wish it to be known that, in their opinion, the first two authors should be
regarded as joint First Authors.
†To whom correspondence should be addressed.
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2 Other Existing Simulation Tools

VarSim currently supports DWGSIM, and ART (Huang et al., 2012). They
are the two most common and popular read simulators. DWGSIM generates
base error qualities based on a parametric model. ART attempts to learn the
quality score distribution from read sequencer reads. Both these tools have
the limitation that they simulate sequencing errors based on the base quality
reported. Hence, base quality re-calibration is not required.

Other read simulation tools include GemSIM (McElroy et al., 2012) and
pIRS (Hu et al., 2012) that generate detailed error profiles based on aligned
reads; this mitigates the need to trust the based qualities generated by the
sequencer. If the alignment is correct, this will generate more realistic base
qualities. Wessim (Kim et al., 2013) is specifically designed for simulating exome

sequencing reads. PBSIM (Ono et al., 2013) is designed for Pacific Biosciences
TM

reads.
Other SV simulation tools (Xi et al., 2011; Zhang et al., 2011; Mimori et al.,

2013) exist as part of SV callers and are also not comprehensive.

3 Supplementary Methods

This section described in detail the methods used by VarSim for both simulation
and validation.

3.1 Simulation

Simulation involves first generating a perturbed diploid genome with the desired
variants. Reads are then simulated from this perturbed genome.

3.1.1 Genome

The set of variants that are inserted into the reference genome to create the per-
turbed genome must be representative of the amount of and type of variation
observed in a typical individual. VarSim simulates SNVs, deletions, insertions,
MNPs, complex variants, tandem duplications and inversions. The number of
each type of variant is specified by the user. The distribution of the variant
size within each type is the empirical distribution in the provided database. For
a human reference we use dbSNP build 138 (Sherry et al., 2001) for variants
less than 50 bp and DGV (MacDonald et al., 2014) for variants larger than
or equal to 50 bp. The contents of an insertion with unknown novel sequence
are randomly sampled from a user provided insertion sequence file. For a hu-
man reference, we use the concatenation of Venter insertion sequences (Levy
et al., 2007). Novel variants are generated by randomly choosing a variant
in the database and randomly moving it to a new location within the same
chromosome. This preserves the size distribution of the variants as well as the
distribution of variants among chromosomes. The phase of variants is randomly
assigned if not provided.
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In order to generate a diploid genome with the simulated variants we en-
hanced vcf2diploid (Rozowsky et al., 2011) for this purpose. Specifically, we
added support for handling more types of SVs (inversions, duplications) and
improved VCF reading. We also added the ability to generate a map between
the perturbed genome and the reference genome in the new map file format (see
Section 3.1.1). This map is used to convert locations on the perturbed genome
to locations on the reference genome. It is more flexible than the traditional
chain file in the original vcf2diploid since it can easily handle complex structural
variants such as translocations, which will be simulated by VarSim in a future
version.

Map file format (MFF) The map file format contains 8 columns:

<size_of_block> <host_chr> <host_loc>

<ref_chr> <ref_loc> <direction_of_block>

<feature_name> <variant_id>

It records a map between blocks of the perturbed genome to blocks of the
reference genome and vice versa. Each line describes the mapping of one block.
The direction of the block (+ or -) indicates whether the block is reverse comple-
mented. The feature name indicates the type feature a block comes from; INS,
DEL, DUP, DUP TANDEM, SEQ or INV. When the feature is INS, the ref loc field
indicates the location before which the insertion occurred. This is vice versa
for DEL. variant id is used to keep track of variants that built from multiple
blocks. Also, all locations are 1-based.

The MFF can be thought of as a compression of the naive method of pro-
viding mapping for each individual location in the perturbed genome — the
compression groups together consecutive locations which map to consecutive
locations or reversed consecutive locations. In addition, the feature name an-
notation helps to identify which variation the block is part of, which can be
helpful in validation. In the case of inversions, the direction of the block would
be “-” to indicate the sequence in the perturbed genome block is reversed with
respect to the reference genome block. We note that in the case of blocks
corresponding to an inserted sequence, there is no corresponding block on the
reference genome — in this case, we report the location in the reference before
the inserted sequence. Similarly, in the case of deletions, we indicate the lo-
cation in the perturbed genome after which the deletion happened. Thus, the
MFF allows conversion of locations between the perturbed and the reference
genomes. In VarSim, we use it for converting alignments from the perturbed
genome to the reference genome.

3.1.2 Reads

VarSim calls external tools to perform read simulation. This allows flexibility in
supporting future sequencing platforms. Since the reads are generated from the
perturbed genome, the true alignment location on the reference genome is not
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available. In order to determine the true alignment location on the reference
genome, VarSim utilizes the MFF generated in the genome simulation step.

Currently, VarSim supports ART (Huang et al., 2012) and DWGSIM (Homer,
2014) for read simulation and either of them can be used to simulate the reads.
ART is the default choice since it is well established and supports simulating
from a sequencer error profile learned from real data. Since read simulation
is slow (compute-intensive single-threaded code), it is a significant bottleneck
for any simulation validation tool. In order to improve the speed of read sim-
ulation, we generate multiple sets of FASTQs in parallel by leveraging modern
multi-core CPUs—since these tools are typically limited by CPU performance,
generating multiple FASTQs in parallel speeds up read simulation almost lin-
early. Furthermore, these tools typically require a seed for the random-number
generator, we are careful to generate the different FASTQs with different seeds
to ensure that the FASTQs are not identical when generating multiple FASTQs.
Once the simulated FASTQs have been generated, they are lifted over to the
reference genome (e.g. GRCh37) by updating the source locations in the read
names. This meta-data is stored in the read names for simplicity of validation
as the reads are permuted from their original location in the file after alignment
and sorting. If a read spans multiple map blocks then the lift-over can yield
multiple locations along with different orientations—this means that alignment
validation would match against all the possible source locations and orienta-
tions. In order to save disk space, all FASTQs are compressed when written
to disk. Furthermore, to avoid any performance hit due to compression, the
compression/decompression is run in parallel with read simulation and lift-over.

The lift-over requires each read to be annotated with the locations where
the read was simulated from in the read name. Hence, a simple parser is needed
for each read simulator. We have built parsers for both ART and DWGSIM.

3.2 Validation

Two types of validation are possible with VarSim. Firstly, the alignment of
the reads can be validated with the true alignment locations. Secondly, the
called variants can be compared to the true variants. It is useful to validate the
read alignments as well as the called variants since incorrectly called variants
are frequently related to mis-alignments. VarSim is also able to accept a BED
file (Quinlan and Hall, 2010) as input and only perform validation within the
BED file specified regions. This is useful for focused studies only interested in
specific genes or genomic regions.

3.2.1 Read Alignments

VarSim validates alignments via meta-data stored in the read name of the
SAM/BAM (Li et al., 2009) file, which characterizes the true alignment lo-
cation. As described in Section 3.1.2, all possible true read alignment locations
are reported in the read meta-data. This allows VarSim to validate alignments
overlapping the breakpoints of structural variants. An alignment is called cor-
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Figure 1: Structural variants can cause reads to have multiple possible align-
ments

rect if it is close to any of the true locations (see Figure 1). For instance, if a read
overlaps the edge of an inversion, the read could either be aligned partially out-
side the inversion with the rest soft-clipped or partially inside the inversion and
similarly soft-clipped. VarSim validates against all of these possible alignments.
The wiggle parameter that defines closeness can be set by the user.

The accuracy of read alignment is reported as a plot of true positive rate
(TPR) versus false discovery rate (FDR) varying cutoffs of the mapping quality
(MAPQ) (Li et al., 2008) score. The area under this curve is also reported.

Furthermore, each read is annotated with the type of region it was generated
from so during the validation it is possible to examine only the reads overlapping
insertions, deletions or any other type of variant. The provides detailed accuracy
reports on reads overlapping each type of variant, ignoring the reads without
variation.

3.2.2 Called Variants

VarSim validates variants by comparing them to the true set of variants inserted
into the perturbed reference genome. The main issue when comparing variants
is the definition of a correctly called variant. Due to the flexibility allowed in
the VCF format, it is entirely possible for two different variant callers to encode
a variant in different ways in a VCF file. It is also possible for variant callers
to output different numbers of VCF records for the same group of variants.
Hence, all VCF files need to be normalized before comparison. A normalization
procedure was also proposed in (Zook et al., 2014). However, their approach
is not compatible with reporting methodology that divides the comparison into
multiple variant types.

VarSim handles the variety of possible encodings for a VCF record by nor-
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Figure 2: Validation of variants uses this range

malizing each record to a canonical form before comparison. The canonical form
is generated by converting the VCF record into a simple insertion or deletion
followed by a number of SNVs. VarSim tries to put the insertion or deletion
at both the start and the end of the variant. It keeps the representation that
results in the least number of mismatches with respect to the reference. This
normalization procedure covers most possible variations in encoding. One no-
table exception is when multiple insertions or deletions are encoded in a single
VCF record. The only way to handle this case is to rebuild the entire variation
sequence and compare at a sequence level. This sequence level comparison will
have to take into account phasing ambiguity. Since this case was only very rarely
observed in the tools we examined, this modification is left for future work.

Variant comparison is performed at the allele level. Hence, if genotype con-
cordance is required to be computed, homozygous variants will only match ho-
mozygous variants, similarly for heterozygous variants.

The accuracy of variant calling is reported as an F1 score, which is the
harmonic mean of sensitivity (TPR) and precision (PPV). The accuracy com-
putation is governed by two parameters γ and δ that represent the overlap ratio
and wiggle. A match between two canonical variants is defined between SNVs,
insertions and deletions since these are the only types of canonical variants.

SNV: An SNV must be in exactly the same position as another SNV to be
called a match. SNVs cannot match insertions or deletions.

Deletion: A deletion’s start position can be shifted within the allowable
wiggle δ. If the reciprocal overlap is greater than or equal to γ for any shift, it
is called a match (see Figure 2).

Insertion: The same as for deletions, but the reference and alternate se-
quence are inverted.

Computing TPR requires the number of true positives (TP). A TP is defined
in terms of the true variants (i.e. variants in the truth set). Let V be an arbitrary
true variant, vi be the canonical variants V is broken down into and |vi| as the
length of the variant. Define the match ratio as
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matchratio =

∑
i |vi|1{vi matches a call}∑

i |vi|
.

If matchratio is greater than or equal to γ, the true variant is called a TP.
The TPR is computed as the number of TP (from true variants) divided by the
number of true variants.

PPV also requires a count of TP; however, it is computed based on the called
variants. If a called variant has a match ratio greater than or equal to γ, then
it is marked as a TP. The PPV is computed as the number of TP (from called
variants) divided by the number of called variants.

VarSim’s computation of TPR and PPV allows it to report accuracy broken
down into variant types and also variant size ranges. Intuitively, TPR represents
the ability to recover true variation and PPV represents the ability to make less
incorrect calls. This is why TPR is computed based on the true variants and
PPV is computed based on the variant calls.

The genotype of a variant is compared to the truth by individually consid-
ering each allele. For SNVs, both alleles must match exactly for the genotype
to be called correct. For insertions and deletions, we only check if the variant
is correctly heterozygous or homozygous. The contents does not have to match
exactly.

3.2.3 Analysis Output

VarSim outputs the TPR and PPV/FDR for both read alignments and variants.
In both cases, the results are grouped by the type of variant. We define variant
classes in the following way.

• Reference: Identical sequence to the reference

• SNV: Length one with different sequence to the reference.

• Insertion: Length greater than or equal to one added to reference.

• Deletion: Length greater than or equal to one removed from reference.

• Complex: All other types of variants, including MNPs

• Inversion: Inversion structural variation

• Tandem Duplication: Tandem duplication structural variation

For heterozygous variants, we classify variants with alleles from two different
classes as ”Complex”.

For read alignments, the output is grouped by the type of variant the read
overlaps in the truth set and also plotted for a range of mapping quality scores
(Li et al., 2008).

For variants, the output is grouped by the type of variant and also length of
variant. For heterozygous variants, the length is given as the maximum length
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Figure 3: Cropped view of the alignment comparison page in a web browser

of all alleles. For both cases an optional BED file can be provided to restrict
the analysis to specific regions.

The resulting analysis output is a JSON file that can be viewed as a single
HTML document with SVG plots generated using the D3 (Bostock et al., 2011)
library. This platform agnostic format makes sharing and comparing results
relatively simple.

Figures 3 and 4 show examples of the comparison pages as viewed in a web
browser.
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Figure 4: Cropped view of the variant comparison page in a web browser
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Figure 5: Histogram of insertions and deletions lengths simulated

4 Supplementary Results

In order to demonstrate VarSim’s completeness in both simulation and vali-
dation, we simulated NA12878’s personal genome with variants from genome
in a bottle (GiaB) high-confidence regions (Zook et al., 2014) with structural
variations from 1000 Genomes (Mills et al., 2011) and DGV (MacDonald et al.,
2014) and generated reads to 50x coverage. We used the high-confidence regions
for this comparison since it should be a baseline where all tools are expected
to perform well. This personal genome is used to compare the performance of
several common secondary analysis tools. The distribution of the indel sizes are
provided in Figure 5.

The aligners we considered for this analysis were BWA-backtrack (Li and
Durbin, 2009), BWA-MEM (Li, 2013) and Novoalign (Novocraft Technologies,
2014). Novoalign is run without GATK realignment and GATK base recali-
bration as recommended by authors. The small variant calling algorithms we
considered were HaplotypeCaller (HC) and UnifiedGenotyper (UG) from the
Genome Analysis Toolkit (McKenna et al., 2010), and FreeBayes (FB) (Garri-
son and Marth, 2012). UG and HC were run following best practices from the
Broad Institute (Van der Auwera et al., 2013) while FB was run with the de-
fault settings. For structural variation calling we used Pindel (Ye et al., 2009),
CNVnator (Abyzov et al., 2011) and BreakDancer (Chen et al., 2009). We
also analyzed the simulated tumor genome with VarSim. The somatic vari-
ant callers MuTect (Cibulskis et al., 2013), VarScan2 (Koboldt et al., 2012),
JointSNVMix (Roth et al., 2012) and Somatic Sniper (Larson et al., 2011) were
compared based on this simulated genome.

Overall, the following results only represent a subset of what VarSim outputs.
The reader is encouraged to explore further at the VarSim website, where all of
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Figure 6: Alignment accuracy of all reads

the datasets for the following results are available.

4.1 Alignment Accuracy

VarSim was used to compare the alignment accuracy of BWA-backtrack, BWA-
MEM and Novoalign before realignment. The results are shown in Figure 6.
Overall they all performed very well on the 100 bp paired-end reads. Novoalign
and BWA-MEM were slightly more accurate compared to BWA-backtrack in
terms of area under the curve1 (AUC). However, BWA-backtrack is able to
achieve a lower error floor.

4.2 Variant Calling Accuracy

For all variant calling comparisons we used the results of BWA-MEM after re-
alignment and re-calibration with GATK. Figures 7 and 8 show the accuracy
for simple small indels. We used 20 bp wiggle and 80% reciprocal overlap as the
matching criteria. The F1 score, which is the harmonic mean of precision and
sensitivity (Section 3.2.2), is reported as a measure of accuracy. HaplotypeCaller
performs very well and was superior to both UnifiedGenotyper and FreeBayes,

1This definition of AUC is based on TPR and FDR rather than the traditional TPR and
FPR. It should only be used as a guide as TPR vs FDR is not guaranteed to be monotonically
increasing.
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Figure 8: Small insertion accuracy

especially for larger indels. However, we note that all callers suffered a loss in
accuracy for indels greater than 10 bp.

We also compared the effect of using different aligners on the accuracy of
variant calling. In particular, we compared Novoalign and BWA-MEM as input
to Haplotype Caller. BWA-MEM was run with GATK realignment and GATK
base quality calibration, while Novoalign was run without as recommended by
the authors. We found a slight, but significant difference in the resulting variant
calling accuracy. For SNVs, the F1 score was 0.997 for BWA-MEM and 0.971
for Novoalign. For deletions, the F1 score was 0.986 for BWA-MEM and 0.961
for Novoalign. For insertions, the F1 score was 0.980 for BWA-MEM and 0.955
for Novoalign. We believe this difference could be attributed to realignment.
However, this would require further study.

Figure 9 shows the results of some popular structural variation callers on
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Figure 9: SV deletion accuracy

large deletions. We used 100 bp wiggle and 50% reciprocal overlap as the match-
ing criteria. The three tools represented three different methods for SV calling
– Split-read, read-depth and paired-end. All tools performed well for moderate-
sized deletion SVs. Only BreakDancer was able to recover larger deletion SVs.
However, it was not able to recover exact breakpoints. All tools failed to ad-
equately recover deletion SVs in the smaller range. Insertion SVs are much
harder to recover via short reads with limited insert size. No tools were able
to recover insertion SVs beyond 200 bp. For insertion SVs less than 200 bp,
breakdancer recovered a small number of them.

4.3 Somatic Variant Calling Accuracy

Accuracy results for somatic SNV variation calling at two different allele fre-
quencies is shown in Figure 10. We used a pure normal sample for this analysis.
Overall, MuTect was superior to the other tools. When the tumor allele fre-
quency was 0.1, the difference was much more stark. Only MuTect and VarScan2
were able to call somatic indels. At 0.3 allele frequency, the F1 score for inser-
tions was 0.41 for MuTect and 0.43 for VarScan2. For deletions the F1 score
was 0.42 for MuTect and 0.50 for VarScan2. Overall, VarScan2 had a higher
sensitivity at the cost of lower precision, while MuTect had lower sensitivity and
higher precision. At 0.1 allele frequency, both tools essentially found no somatic
indel mutations.

4.4 Real Data Comparison

NA12878 is a well studied individual and hence an abundance of real sequenc-
ing data is available. One such set is the Illumina platinum genome (IPG)
sequence of NA12878, sequenced to 50x coverage (ERP001960). We compared
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Figure 10: Somatic SNV calling accuracy at two allele frequencies

the accuracy of variants called from this set to the accuracy of the calls from
the VarSim simulated reads. BWA-MEM was used for alignment. Haplotype
Caller and FreeBayes was used for variant calling. Figures 11 and 12 show the
results for insertions and deletions. For SNVs, the overall F1 score was 0.9967
for VarSim and 0.9950 for IPG. Overall, the F1 scores were close. We found
that the differences in insertions and deletions were mostly due to limitations
in the read simulator. In particular, ART does not account for the low quality
bases typically found around homopolymers for Illumina reads.
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