Supplementary Data - Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification

Ivan Borozan, Stuart Watt and Vincent Ferretti

December 2014

0.1 Tables

Fragment	PhymmBL	CSSS accu-	CSSS	CSSS (BLAST scores	PhymmBL (BLAST
length	accuracy	racy (%)	k-mer	alone) accuracy (%)	scores alone) accuracy
	(%)		size		(%)
Full	86.56 ± 2.19	91.43 ± 0.99	3	82.95 ± 1.35	57.66 ± 0.93
genomes					
1000	68.90 ± 1.78	70.02 ± 2.01	4	66.93 ± 1.55	31.37 ± 1.30
500	57.28 ± 2.09	63.02 ± 1.49	4	59.98 ± 1.52	26.83 ± 1.75
100	29.79 ± 1.66	35.94 ± 3.31	3	42.06 ± 1.59	19.0 ± 1.88

Table 4: Shows the classification accuracy (see eq.16) for Dataset I obtained with the CSSS (1-NN classifier) and PhymmBL models when predicting 147 different viral genera across 266 viral DNA sequences as a function of the viral fragment length. The optimum value of the k-mer parameter used by the CSSS model is indicated in column 4. Columns 5 and 6 indicate the classification accuracy obtained by each model when using BLAST scores alone.

Phylum	PhymmBL ac-	CSSS accuracy	CSSS	k-mer	CSSS ((BLAST	Phymm	BL
	curacy (%)	(%)	size		scores	alone)	(BLAST	scores
	-				accurac	y (%)	alone)	accu-
							racy (%)	
Euryarchaeota	81.14	87.03	4		32.30		0.60	
Nitrospirae	97.67	96.66	4		88.77		69.07	

Table 5: Shows the classification accuracy (see eq.16) for Dataset II obtained with the CSSS (1-NN classifier) and PhymmBL models when predicting the phyla for 20907 reads (with an average of 759bp in read length) belonging to Leptospirillum sp. groups II and III genomes (18579 reads) and Ferroplasma acidarmanus genome (2328 reads). The optimum value for the k-mer parameter used by the CSSS model is indicated in column 4. Columns 5 and 6 indicate the classification performance of the BLAST scores alone as implemented in CSSS and PhymmBL models.

Fragment	CSSS(BLAST	CSSS(JSD	CSSS(ED	CSSS(CB	PhymmBL	PhymmBL(BLAST
size	scores	scores	scores	scores	(Phymm(IMMs)	scores alone) (%)
	alone)(%)	alone) (%)	alone) (%)	alone) (%)	scores alone)	
					(%)	
Full	82.95 ± 1.35	80.01 ± 1.65	79.98 ± 1.39	69.99 ± 1.50	85.74 ± 2.55	57.66 ± 0.93
genomes						
1000	66.93 ± 1.55	55.25 ± 2.15	54.21 ± 1.30	< 10	67.92±2.04	31.37 ± 1.30
500	59.98 ± 1.52	42.79 ± 1.58	41.25 ± 1.66	< 10	55.78 ± 2.38	26.83 ± 1.75
100	42.06 ± 1.59	14.40 ± 2.09	13.57 ± 1.24	< 10	24.36 ± 1.86	19.0 ± 1.88

Table 6: Shows the classification accuracy (see eq.16) obtained with individual similarity/distance measures used by the CSSS (1-NN classifier) and PhymmBL models for predicting 147 different viral genera across 266 viral DNA sequences as a function of the viral fragment length. The values of the k-mer parameter used by the JSD (see eq.5) and ED (see eq.3) similarity measures are identical to those presented in Table.4.

0.2 Figures

Figure 2: Shows relative classification performance of the CSSS model with the 1-NN classifier and the best performing classifier (i.e. Smith-Waterman p-values with the 1-NN classifier) presented in Kocsor et *al., 2006* on Dataset III used in this study. The graph plots the total number of families for which the integral of the ROC curve (AUC) exceeds a score threshold indicated on the x-axis. A higher curve indicates a more accurate classification performance.

Figure 3: Shows results of the PCA analysis of similarity scores obtained using viral genomes from Dataset I. On the x-axis are shown the first two components and on the y-axis relative weights of each component. The bar plots show that the first component (PCA1) is mostly associated with the ED measure while the second component (PCA2) is mostly associated with the JSD measure independently of the viral fragment length.

0.3 Set of parameters used to run different models/algorithms

NBC (default): To build the database: >countncbi genomes_training_directory 15 To score: >score -a reads_test.fasta -r 15 -j genomes_directory Kraken (default): To build the database: >kraken-build -add-to-library training.fasta -db genomeDB >kraken-build -build -db genomeDB To run Kraken: >kraken -preload -db genomeDB reads_test.fasta -output results_kraken.txt **RAIphy (default):** To build the database: >raiphy -m 2 -i training.fasta To run RAIphy: >raiphy -i reads_test.fasta -d defaultDb -m 1 -o results_RAIphy.txt PAUDA (default): To build the database: >pauda-build training.fasta paudaDB To run PAUDA: >pauda-run -slow reads_test.fasta results_pauda.blastx paudaDB **PhymmBL** (default): To build the database: >customGenomicData.pl Config.txt To run PhymmBL: >scoreReads.pl reads_test.fasta **PhyloPythiaS:** Please see the instruction on the following webpage: http://phylopythias.cs.uni-duesseldorf.de/index.php?phase=wait