## **Supplementary Information**

## PU.1 is Essential for MLL Leukemia Partially via Crosstalk with the

### **MEIS/HOX Pathway**

Running title: PU.1 is essential for MLL Leukemia

Jing Zhou<sup>1</sup>\*, Jun Wu<sup>1</sup>\*, Bo Li<sup>1,3,4</sup>\*, Dan Liu<sup>1,3</sup>, Jian Yu<sup>2</sup>, Xiaomei Yan<sup>4</sup>, Si Zheng<sup>1,3</sup>, Jiguang Wang<sup>1,5</sup>, Lixia Zhang<sup>1,3</sup>, Lin Zhang<sup>1</sup>, Fuhong He<sup>1</sup>, Qiang Li<sup>1</sup>, Aili Chen<sup>1,3,4</sup>, Yue Zhang<sup>4</sup>, Xinghui Zhao<sup>4</sup>, Yinghui Guan<sup>6</sup>, Xiaohong Zhao<sup>1</sup>, Jin Yan<sup>1</sup>, Jun Ni<sup>7</sup>, Marcelo A. Nobrega<sup>8</sup>, Bob Löwenberg<sup>9</sup>, RDelwel<sup>9</sup>, Peter J.M. Valk<sup>9</sup>, Ashish Kumar<sup>12</sup>, Lu Xie<sup>2</sup>, Daniel G. Tenen<sup>10,11</sup>, Gang Huang<sup>4#</sup> and Qian-fei Wang<sup>1#</sup>

This file contains Supplementary Figures related to main Figures 1, 2, 3, 4, 5, and 6. It also provides all of the primer sequences used in the study, as well as supplementary Methods and Materials information.

Figure S1 (related to Fig.1)

A





## Figure S1.

(A) Expression level of PU.1 in different cytogenetic subgroups of AML in GSE1159. Data are shown as a box plot with whiskers. Wilcoxon rank sum test was performed for testing expression difference between corresponding groups, respectively; p values are given.

С

- (B) Box plot showing the comparison of PU.1 expression levels between AML with t(11q23)/MLL, Pro-B-ALL with t(11q23)/MLL, cytogenetically normal AML and other cytogenetic subgroups of AML in GSE13159. Wilcoxon rank sum test was performed for testing expression differences between corresponding groups, respectively; p values are given
- (C) Percentage of csh3 cell in G1, S and G2 phase with and without PU.1 specific shRNA treatment. Each bar represents the mean ± SD of three independent experiments. (t-test, G0/G1: p=0.001841, S: p=0.000169) (\*\*: p<0.01, \*\*\*: p<0.001).</p>
- (D) Percentage of apoptotic cells in csh3 with and without PU.1 specific shRNA treatment. Each bar represents the mean ± SD of three independent experiments. (t-test, p=4.46\*10<sup>-5</sup>) (\*\*\*: p<0.001).</p>



#### Figure S2.

Gene expression levels of three different gene sets of known MLL fusion targets (A: Wang et al., 233 MLL-ENL targets; B: Zuber et al., 936 MLL-AF9 regulated genes;

C: Bernt et al., 139 MLL-AF9 targets) in MLL-ENL induced (MLL-ENL(+)) and inactivated (MLL-ENL(-)) conditions.

Left panels in A-C: Scatter plot showing gene expression levels in MLL-ENL induced (MLL-ENL(+)) and inactivated (MLL-ENL(-)) conditions. All 7858 expressed genes detected by mouse exon array are displayed<sup>1</sup>. Significantly down-regulated genes upon inactivation of MLL-ENL (FDR<0.05) are shown as blue dots. Significantly up-regulated genes upon inactivation of MLL-ENL (FDR<0.05) are shown as red dots. Genes whose expression levels are not significantly changed between the two conditions are shown as grey dots. Genes in each gene set of MLL fusion targets are shown as green dots. PU.1, Meis1 and Hoxa9 are indicated by black dots.

Right panels in A-C: Enrichment plots of GSEA are shown for each gene set of MLL fusion targets. The normalized enrichment scores (NES) and p-values are given.

A



B

ROSS 2004



7

#### Figure S3.

- (A) The average expression level of 15 PU.1 core targets in MLL
  - compared with distinct cytogenetic sub-groups (t(8;21), t(15;17), tri8, inv16 and del7) and CD34 cells in GSE1159. Data are shown as a box plot with whiskers. Wilcoxon rank sum test was performed for testing the expression difference between corresponding groups, respectively; p values are given.
- (B) Relationship between expression level of PU.1 and its 15 core targets in a large cohort of 150 AML patients (Ross et al., 2004). Red dots indicate MLL patients; the remaining AMLs are indicated by grey dots. The Pearson correlation coefficient between PU.1 and the average expression level of 15 core targets is 0.7064791 (p<2.2e-16).</p>

Figure S4 (related to Fig. 4 and Fig. 5)







## Figure S4.

- (A)Effects of PU.1 knockdown on additional target genes expression in MLL-ENL cells. The MLL-ENL cells were transduced with PU.1 shRNA lentivirus and scramble control lentivirus. The expression of PU.1 and its additional target genes were examined through real-time PCR 48h after transduction. The relative expression was normalized to GAPDH. Bar charts are mean ± SD. Genes with significantly decreased levels of expression after PU.1 knockdown are indicated (ttest, \*: p<0.05, \*\*: p<0.01).</p>
- (B)PU.1 binding at gene regions of PU.1 15 core target genes in THP1 and MV4;11. The amounts of input DNA and ChIP DNA were

normalized, and the data are shown as the relative enrichment ratio of precipitated DNA to input DNA. Intergenic region was used as the negative control. Bar charts are mean  $\pm$  SD. The dotted line indicates the level of no enrichment over input.

(C)PU.1 and MEIS1 binding at gene regions without predicted
PU.1/MEIS1 binding sites of PU.1/MEIS1 co-target genes. PU.1 and
MEIS1 binding was examined using ChIPqPCR. The amounts of
input DNA and ChIP DNA were normalized, and the data are shown
as the relative enrichment ratio of precipitated DNA to input DNA.
Intergenic region was used as the negative control. Bar charts are
mean ± SD. MH/Mesi1, MH/Kit, Syk and Nfkb1 are positive controls.
The dotted line indicates the level of no enrichment over input.

# Figure S5 (related to Fig. 5)



12

























# Figure S5.

PU.1 binding at gene loci of 15 PU.1 targets in MLL-ENL cells detected by ChIP-sequencing.

# Figure S6 (related to Fig. 5)



**Figure S6.** PU.1 and MEIS1 co-binding at the Meis1 locus. The DNA element bound by both PU.1 and MEIS1 is enlarged from the gene structure (chromosome coordinates from mm9 are indicated). Positions of the conserved MEIS1/HOXA9 motif (http://genome.ucsc.edu/) and the PU.1 binding signal detected by ChIP-qPCR were shown as red and blue rectangles, respectively. The paired arrows above the DNA element represent the primers used in detecting the binding of both MEIS1 and PU.1 The enrichments levels of MEIS1 and PU.1 detected by ChIP-qPCR are shown in the bar plot. Bar charts are mean ±SD.





**Figure S7**. (A-B) Overall survival analysis of PU.1 15-gene signature in AML patients of GSE10358 (A, p=0.0002) and GSE12417 (B, p<1e-4).

| Datasets_ID      | Data_type     | Sample/Cell_type                                                     | Sample_Num |
|------------------|---------------|----------------------------------------------------------------------|------------|
| GSE1159          | mRNA-Array    | AML                                                                  | 285        |
| GSE6891          | mRNA-Array    | AML                                                                  | 260        |
| GSE10358         | mRNA-Array    | AML                                                                  | 279        |
| GSE12417         | mRNA-Array    | AML                                                                  | 163        |
| GSE13159         | mRNA-Array    | AML,ALL,NBM                                                          | 2096       |
| <b>ROSS 2004</b> | mRNA-Array    | AML                                                                  | 150        |
| GSE24794         | ChIP-chip     | MLL/H3K79me2<br>detection in a<br>MLL-ENL fusion<br>inducible system | 10         |
| GSE22178         | PU.1 ChIP-seq | HPC-7 (a murine<br>hematopoietic<br>progenitor cell line)            | 1          |
| GSE21314         | PU.1 ChIP-seq | Macrophage<br>(mouse)                                                | 1          |
|                  |               |                                                                      |            |
| In-House<br>Data | mRNA-Array    | LSK (mRUNX<br>URE KI/KI mice)                                        | 2          |
| In-House<br>Data | PU.1 ChIP-seq | csh3 (MLL-ENL,<br>mouse)                                             | 1          |

Table S1. All datasets used in this study.

# Table S2 (related to Fig.4 and Fig. 5). Primer sequences

| ChIP-qPCR Prime                                                                                                                                                                                                                                                                                                  | er in Fig. 5C:                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mMS/MS F                                                                                                                                                                                                                                                                                                         | GCAAGGAGAGGAAAGAGCATGT                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mMS/MS R                                                                                                                                                                                                                                                                                                         | CATGCATCAACTGCGGTTAGA                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mMS/LY86 F                                                                                                                                                                                                                                                                                                       | CAGTCCAGCTTTCTATTGACTTTGG                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mMS/LY86 R                                                                                                                                                                                                                                                                                                       | GCACCCACAGGGCTTAGAGTT                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mMS/pbx3 F                                                                                                                                                                                                                                                                                                       | TGGGCTGGCAGCTTCACT                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mMS/pbx3 R                                                                                                                                                                                                                                                                                                       | TTCCCTTGCACAACAAATAGGA                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mMS/KT F                                                                                                                                                                                                                                                                                                         | GCCTCCCTTTGCTATCTCTTTG                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mMS/KT R                                                                                                                                                                                                                                                                                                         | TGCGGCGTGGGCTTAA                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mMS/flt3 F                                                                                                                                                                                                                                                                                                       | CGTAGGATTAGGATATGGGCACAT                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mMS/flt3 R                                                                                                                                                                                                                                                                                                       | GGGCAGCACCTCCTACACA                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mMS/TBX1-1 F                                                                                                                                                                                                                                                                                                     | CAAGGCAGACTCTCTTCTGGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mMS/TBX1-1<br>R                                                                                                                                                                                                                                                                                                  | TTGACAGGAAACATTTGCATAAGC                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mMS/cd180 F                                                                                                                                                                                                                                                                                                      | TTATCTTCTTTGAGGTGCCAGATTT                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mMS/cd180 R                                                                                                                                                                                                                                                                                                      | AACCGATGTTGGCTTTGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| pu/syk F                                                                                                                                                                                                                                                                                                         | TGGCGGAGAAGGGTCTTTC                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pu/sykR                                                                                                                                                                                                                                                                                                          | AGGCCCCTGCTTGAAGCT                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| pu/nfkb1 F                                                                                                                                                                                                                                                                                                       | GCTGGTATGGCAGGGAATGT                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| pu/nfkb1 R                                                                                                                                                                                                                                                                                                       | TTTTCCCACCTTGGCTTCAC                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ChIP-qPCR Prime                                                                                                                                                                                                                                                                                                  | er in Fig. 4C:                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ChIP-qPCR Prime                                                                                                                                                                                                                                                                                                  | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R                                                                                                                                                                                                                                                                      | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA                                                                                                                                                                                                                                                                                                                                                                                               |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F                                                                                                                                                                                                                                                      | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC                                                                                                                                                                                                                                                                                                                                                                       |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R                                                                                                                                                                                                                                      | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG                                                                                                                                                                                                                                                                                                                                             |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on pbx3 F                                                                                                                                                                                                                      | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG                                                                                                                                                                                                                                                                                                                |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R                                                                                                                                                                                                      | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCCTTTCCTCGGTTCCTCAA                                                                                                                                                                                                                                                                                        |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F                                                                                                                                                                                       | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGACTGTGGTTTCCT                                                                                                                                                                                                                                                            |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R                                                                                                                                                                        | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT                                                                                                                                                                                                                                     |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R<br>pu on kit-F                                                                                                                                                         | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT<br>GTGAATGGAAAGGTTGTAGGACAA                                                                                                                                                                                                         |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R<br>pu on kit-F<br>pu on kit R                                                                                                                                          | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT<br>GTGAATGGAAAGGTTGTAGGACAA<br>CCTAGGACCCACACGGTAGAAG                                                                                                                                                                               |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R<br>pu on kit-F<br>pu on kit R<br>pu on tbx F                                                                                                                           | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT<br>GTGAATGGAAAGGTTGTAGGACAA<br>CCTAGGACCCACACGGTAGAAG<br>AAACAAACAGGCTGGGTGTCTAC                                                                                                                                                    |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R<br>pu on kit-F<br>pu on kit R<br>pu on tbx F<br>pu on tbx R                                                                                                            | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT<br>GTGAATGGAAAGGTTGTAGGACAA<br>CCTAGGACCCACACGGTAGAAG<br>AAACAAACAGGCTGGGTGTCTAC<br>TGAGAACCACTGTGCTGGACTCT                                                                                                                       |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R<br>pu on flt R<br>pu on kit-F<br>pu on kit-F<br>pu on kit R<br>pu on tbx R<br>pu on cd180 F                                                            | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT<br>GTGAATGGAAAGGTTGTAGGACAA<br>CCTAGGACCCACACGGTAGAAG<br>AAACAAACAGGCTGGGTGTCTAC<br>TGAGAACCACTGTGCTGGACTCT<br>GCCCTTCTGAGGCCACAA                                                                                                 |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R<br>pu on flt R<br>pu on kit-F<br>pu on kit R<br>pu on tbx F<br>pu on tbx R<br>pu on cd180 F<br>pu on cd180 R                                                           | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT<br>GTGAATGGAAAGGTTGTAGGACAA<br>CCTAGGACCCACACGGTAGAAG<br>AAACAAACAGGCTGGGTGTCTAC<br>TGAGAACCACTGTGCTGGACTCT<br>GCCCTTCTGAGGCCACAA<br>GCTCAGTACCTCCGCTGGAA                                                                          |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R<br>pu on flt R<br>pu on kit-F<br>pu on kit-F<br>pu on kit R<br>pu on tbx R<br>pu on tbx R<br>pu on cd180 F<br>pu on csf F                              | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT<br>GTGAATGGAAAGGTTGTAGGACAA<br>CCTAGGACCCACACGGTAGAAG<br>AAACAAACAGGCTGGGTGTCTAC<br>TGAGAACCACTGTGCTGGACTCT<br>GCCCTTCTGAGGCCACAA<br>GCTCAGTACCTCCGCTGGAA<br>GCAACAGACAGGAACGTGTTCA                                               |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R<br>pu on flt R<br>pu on kit-F<br>pu on kit-F<br>pu on kit R<br>pu on tbx R<br>pu on cd180 F<br>pu on csf F<br>pu on csf R                              | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT<br>GTGAATGGAAAGGTTGTAGGACAA<br>CCTAGGACCCACACGGTAGAAG<br>AAACAAACAGGCTGGGTGTCTAC<br>TGAGAACCACTGTGCTGGACTCT<br>GCCCTTCTGAGGCCACAA<br>GCTCAGTACCTCCGCTGGAA<br>GCAACAGACAGGAACGTGTTCA<br>GGGCTCCCAGCTGCTAGTT                         |
| ChIP-qPCR Prime<br>pu on ms F<br>pu on ms R<br>pu on ly86 F<br>pu on ly86 R<br>pu on ly86 R<br>pu on pbx3 F<br>pu on pbx3 R<br>pu on flt F<br>pu on flt R<br>pu on flt R<br>pu on kit-F<br>pu on kit-F<br>pu on kit R<br>pu on tbx R<br>pu on tbx R<br>pu on cd180 F<br>pu on csf F<br>pu on csf R<br>pu on PU F | er in Fig. 4C:<br>CAACAGCAGCTCTCCAGGAGTT<br>CGGCCCAGGAGCAGTTAA<br>AACCAAACCGCCATGAACTC<br>CATATCTTGCTCTGGGCATGTG<br>CATAACCAGAAAGCAAGGGTAGATG<br>CCTTTCCTCGGTTCCTCAA<br>TCTGTCAAGAGAGACTGTGGTTTCCT<br>CTTAGCCGCCCGGTACTGT<br>GTGAATGGAAAGGTTGTAGGACAA<br>CCTAGGACCCACACGGTAGAAG<br>AAACAAACAGGCTGGGTGTCTAC<br>TGAGAACCACTGTGCTGGACTCT<br>GCCCTTCTGAGGCCACAA<br>GCTCAGTACCTCCGCTGGAA<br>GCAACAGACAGGAACGTGTTCA<br>GGGCTCCCAGCTGCTAGTT<br>CGGCCCATGACACAATACAC |

| pu on nfkb1 F    | CCTCGCCGCTCTGGAA            |
|------------------|-----------------------------|
| pu on nfkb1 R    | TGCTTGTCAACCAACAACATAA      |
| pu on aif F      | GCTGTGTGGAGCTAGGTGTGTT      |
| pu on aif R      | CTGCCTCAGCCTCCCAGAT         |
| pu on syk F      | GCTTACAGGCACATGTGAAGATG     |
| pu on syk R      | TGGTTCAGTGGGTGAGAACACTT     |
| pu on ctsh F     | CCAAGTGTGAGGGCCTGAGT        |
| pu on ctsh R     | TGCCCCACATCTGACTTTTTATG     |
| pu on ccl3 F     | CGGCCCATGACACAATACAC        |
| pu on ccl3 R     | GGGCCAGCACCTCTCTGA          |
| pu on tpm4 F     | TGGCTATGGGACCTGAGATGT       |
| pu on tpm4 R     | GACCCATCTCCACGGATACTCT      |
| mMs1D130 F       | CCAGCCCTTGAAACAATAGCA       |
| mMs1D130 R       | AATGGAGCATTTCTCTCCGCT       |
|                  |                             |
| Expression Prime | r:                          |
| mMeis1 F         | AGTGCAGCCCATGATAGACC        |
| mMeis1 R         | TGCTGACCGTCCATTACAAA        |
| mLy86 F          | TGGAAGTAGTCTACCAGAGCTGTGA   |
| mLy86 R          | GGAACACTGGTCAATGGAAAGG      |
| mPbx3 F          | TGC CAA AAG CAT ATT GTC CA  |
| mPbx3 R          | CAG CGT CTT GTG TGA GAT CAA |
| mFlt3 F          | AACTGGGCGTCATCATTTTC        |
| mFlt3 R          | GTGAACAGAGAGGCCTGGAG        |
| c-Kit F          | ATT GTG CTG GAT GGA TGG AT  |
| c-Kit R          | GAT CTG CTC TGC GTC CTG TT  |
| mTbxas1 F        | GAGGCTTCTGAAAGAGGTGG        |
| mTbxas1 R        | ATGTCCAGATACGGCAGACC        |
| mCsf1r F         | TTGCCTTCGTATCTCTCGATG       |
| mCsf1r R         | CTCTGCTGGTGCTACTGCTG        |
| mAIF1 F          | GAGGATCTGCCGTCCAAACTT       |
| mAIF1 R          | GATATCTCCATTTCCATTCAGATCAA  |
| mPu.1 F          | AGCGATGGAGAAAGCCATAG        |
| mPu.1 R          | TGCAGCTCTGTGAAGTGGTT        |
| mNfkb1 F         | GAACGATAACCTTTGCAGGC        |
| mNfkb1 R         | CATCACACGGAGGGCTTC          |
| mSyk F           | TCCTTTCAACGTTCCATGCT        |
| mSyk R           | TCTGCACCCCTTCAGAGTTC        |
| mCtsh F          | CCTGGCTGCTGAGTACTGG         |
| mCtsh R          | TCCACCGAGCTGTACGTCTT        |
| mCD180 F         | CATGAAAGGCTTCCTGCTTC        |
| mCD180 R         | GTGCCACCAGAAGACGATGT        |
| mCCL3 F          | TCCCAGCCAGGTGTCATTTT        |
| mCCL3 R          | TTGGAGTCAGCGCAGATCTG        |
|                  |                             |

| mTPM4 F  | TCTAAACTGGAGAAGACAATCGATGA |
|----------|----------------------------|
| mTPM4 R  | AAGCCCACATTCTCTTTTGG       |
| mPgk F   | GGGACTGTCATCCTGCTGGA       |
| mPgk R   | CATCAATTTTGGCCGGCTC        |
| mGAPDH F | AGGTCGGTGTGAACGGATTTG      |
| mGAPDH R | TGTAGACCATGTAGTTGAGGTCA    |

### **Supplementary Materials and Methods**

#### **Survival Analysis**

Kaplan-Meier method was used to estimate overall survival (OS), and log-rank test was used to compare prognostic difference among different groups. To evaluate the potential effect of our gene list on patient outcome, a risk score generated from Cox proportional hazards regression was used to associate the expression level with prognosis. The 75% quantile of the risk score was used to classify patients into high or low risk group, in which the high risk group indicated poorer survival for patients<sup>2</sup>. To investigate the prognostic ability across all patients, the hazard ratio and 95% confidence interval in each dataset were combined using a random-effects model in the meta-analysis<sup>3</sup>, and a unified p-value was also generated.

To address a recent concern that many published gene signatures are not significantly better prognostic predictors than random ones with the same size<sup>4</sup>, we used 10,000-time gene sampling to generate a Monte Carlo p-value<sup>5</sup>. In each sampling, a random signature with matched genes in each dataset was extracted to calculate a p-value by meta-analysis, representing the prognostic ability of any 40-gene signature by chance:

$$p = (r + 1) / (n + 1)$$

Here n is the simulation time, and r is the number that p-value generated

from random meta-analysis, which is smaller than the observed p-value

obtained from real meta-analysis.

### **Supplemental References**

- 1. Wang Q-f, Wu G, Mi S, He F, Wu J, Dong J, *et al.* MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. *Blood* 2011; **117**(25): 6895-6905.
- 2. Chen H-Y, Yu S-L, Chen C-H, Chang G-C, Chen C-Y, Yuan A, et al. A five-gene signature and clinical outcome in non–small-cell lung cancer. *New England Journal of Medicine* 2007; **356**(1): 11-20.
- 3. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Controlled clinical trials* 1986; **7**(3): 177-188.
- 4. Venet D, Dumont JE, Detours V. Most random gene expression signatures are significantly associated with breast cancer outcome. *PLoS computational biology* 2011; **7**(10): e1002240.
- 5. North BV, Curtis D, Sham PC. A note on the calculation of empirical P values from Monte Carlo procedures. *American journal of human genetics* 2002; **71**(2): 439.