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Supplementary Figure 1: Simulation results giving wτ=1(x) − 1 (blue) and y1(x, x) (red) for a single random sample (a) and
their ensemble averages (b). The wave is diffusive in this sample with N = 35, L/` = 5.6, and L/ξ = 0.16.
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Supplementary Figure 2: The same as Supplementary Fig. 1, but the wave is localized in samples with N = 11, L/` = 18.3,
and L/ξ = 1.66.
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Supplementary Figure 3: A typical diagram representing 〈|E(x, y)|2〉. The usual disorder-averaged two-particle Green’s function
composed of the free propagating lines and the interaction (dashed) line is connected to an opaque box which represents the
correlation of v(v∗) and dielectric fluctuations (crosses).
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Supplementary Figure 4: Diagrams giving 〈|E(x, y)|2〉 for the eigenchannel with specified transmission eigenvalue can be divided
into two categories (upper). The first category includes two subclasses with representative examples given in the lower left
panel (see the text for explanations). In the second category the diagrams are separated by an interaction (dashed) line into
two subdiagrams: the left part consists of diagrams corresponding one-to-one to those in the first category (lower left panel)
and the right to those leading to the usual disorder-averaged two-particle Green’s function (lower right panel). The solid
(empty) circles in the ends of the interaction line stand for that the corresponding integral over the longitudinal coordinate is
restricted to (excludes) a layer enclosing (x, y) namely the interval Ix; otherwise there is no restriction on the integral. The
line propagating from left (right) to right (left) stands for the Green’s function G (G∗).

Supplementary Note 1: Simulations demonstrating the relationship between the energy density profile
of the completely transmitting eigenchannel and the return probability to a cross section

Here we demonstrate in simulations the relationship between the profiles of the completely transmitting eigenchannel
and the probability for the wave to return to a cross section in a single random configuration of a sample. We denote the
energy density profile of the completely transmitting eigenchannel in a single configuration by wτ=1(x). It is obtained
from G(x, a, x′ = 0, a′) in the same way as that described in the main text. The probability density for a wave to return
to a cross section in a single configuration at depth x, y1(x, x), can be evaluated from N−1

∑
a,a′ |G(x, a, x′ = x, a′)|2.

Here a, a′ are the mode indices of the empty waveguide modes. We recall that N is the channel number. For x = 0,
y1(x, x) must satisfy y1(0, 0) = 0. Because

∑
a,a′ |G(x = 0, a, x′ = 0, a′)|2 is equal to the sum of the N reflection

eigenvalues 1− τn, this gives y1(x, x) = N−1
∑
a,a′ |G(x, a, x′ = x, a′)|2 − (1−

∑
n τn/N).

The results of simulation results for diffusive and localized waves are shown in Supplementary Figs. 1 and 2,
respectively. In each of these figures, panel a shows the profiles of wτ=1(x) − 1 (blue) and of y1(x, x) (red) for a
single random sample, while panel b shows the ensemble average for these two functions. These functions differ in
a single configuration since the return probability is calculated using the same weight for each modes at x while
the enhancement of the energy density in a particular sample at x relates to the actual transverse spatial intensity
distribution at x in each sample, which is a random speckle pattern. On average, the energy density in all modes is the
same and so the ensemble averages 〈wτ=1(x)〉 − 1 and 〈y1(x, x)〉 converge to Wτ=1(x)− 1 and Y1(x, x), respectively,
as can be seen in Supplementary Figs. 1b and 2b. This is in agreement with the relationships F1(x) = Y1(x, x) and
Wτ=1(x) = 1 + Y1(x, x) established in the main text.

Supplementary Note 2: Diagrammatic theory of the energy density profile of transmission eigenchan-
nels

The energy density profile in a locally 2D sample for a single random configuration and the incoming eigenchannel
v with specific transmission eigenvalue τ , is given by

|E(x, y)|2 =

∫ Lt

0

dy′
∫ Lt

0

dy′′G(x, y, x′ = 0, y′)G∗(x, y, x′ = 0, y′′)v(y′)v∗(y′′). (1)

We expand the Green’s function in terms of dielectric fluctuations k20δε, which are represented by crosses in Supple-
mentary Fig. 3, to obtain

G = G0 +G0(k20δε)G0 +G0(k20δε)G0(k20δε)G0 + · · · , (2)
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where G0 = 1/(−∇2−k20 + i0) is the free Green’s function which is represented by propagating lines in Supplementary
Fig. 3. Both the incoming eigenchannel v(v∗) and Green’s function G(G∗) change with the disorder configuration.
Consider the diagrammatic representation of the disorder average of energy density, denoted by 〈|E(x, y)|2〉. We find
that it must have the general structure shown in Supplementary Fig. 3. On the left of the diagram is an opaque box
which represents the correlation of v(v∗) and dielectric fluctuations. Connected to this complicated diagrammatic
element is the usual disorder-averaged two-particle Green’s function, which is composed of the free propagating lines
representing G0(G∗0) and the interaction (dashed) line. The interaction is introduced by the spatial correlation of
dielectric fluctuations, k40〈δε(r)δε(r′)〉 = ∆δ(r − r′), with ∆ being the disorder strength.

All of these diagrams can be divided into two categories (Supplementary Fig. 4). The first category includes two
subclasses (upper left): (i) There are no isolated (i.e., not crossed by others interaction lines) connecting upper
and lower lines (top of the lower left panel); (ii) Such interaction lines exist, but the integral over the corresponding
longitudinal coordinate excludes the regime of Ix ≡ (x− 1

2v+τtr, x+ 1
2v+τtr) namely the layer enclosing the observation

point, (x, y), of thickness v+τtr, which is represented by dashed lines with empty circles at the ends (bottom of the
lower left panel). Here τtr is the transport mean free time. In the second category (upper right), a unique interaction
line connects upper and lower lines so that the diagram separates into two parts and, moreover, the integral over the
corresponding longitudinal coordinate is restricted to the regime of Ix which is represented by the dashed line with
solid circles at the ends.

We first sum all the diagrams in the second category (Supplementary Fig. 4, upper right). This gives

∆

∫
Ix
dx′′

∫
dy′′

(
v−1+ S̃τ (x′′, y′′)

)
〈G(x, y, x′′, y′′)G∗(x, y, x′′, y′′)〉. (3)

Here v−1+ S̃τ (x′′, y′′), represented by a dashed box, accounts for the part on the left of the dashed line whose detailed
structure is given in the lower left panel of Supplementary Fig. 4, and the disorder average of the two-particle Green’s
function, 〈G(x, y, x′′, y′′)G∗(x, y, x′′, y′′)〉, for the part on the right of the dashed line whose detailed structure is given
in the lower right panel. Both quantities vary in their arguments over a scale much greater than the transport mean
free path ` = O(v+τtr). It is important to note that only the former, namely, S̃τ (x′′, y′′), depends on the incoming
eigenchannel. In other words, only this part depends on τ . We integrate Eq. (3) over the transverse coordinate y to
obtain

Iτ (x) ≡ ∆

∫
dy

∫
Ix
dx′′

∫
dy′′

(
v−1+ S̃τ (x′′, y′′)

)
〈G(x, y, x′′, y′′)G∗(x, y, x′′, y′′)〉

≈ ∆

∫
dy

∫
Ix
dx′′

∫
dy′′

(
v−1+ S̃τ (x′′, y′′)

)
〈G(x, y, x′′ = x, y′′ = 0)G∗(x, y, x′′ = x, y′′ = 0)〉

= ∆

(
τtr

∫
dyS̃τ (x, y)

)∫
dy〈G(x, y, x, 0)G∗(x, y, x, 0)〉. (4)

The correlation function,
∫
dy〈G(x, y, x, 0)G∗(x, y, x, 0)〉, was previously calculated in the quasi-1D geometry [1] by

using the supersymmetry field theory for waves in open scattering media [2]. Substituting the result obtained there
into Eq. (4) gives

Iτ (x) =

(
v−1+

∫
dyS̃τ (x, y)

)
Y1(x, x), (5)

where Y1(x, x) is given in Eq. (2) of the main text.
For the diagram in the second category, the dashed box consists of diagrams corresponding one-to-one to those

in the first category. Therefore, the sum of the latter is v−1+ S̃τ (x, y). The total energy density integrated over the

transverse coordinate is the sum of v−1+

∫
dyS̃τ (x, y) and Iτ (x), i.e.,∫

dy〈|E(x, y)|2〉 = v−1+

∫
dyS̃τ (x, y) + Iτ (x) =

(
v−1+

∫
dyS̃τ (x, y)

)
(1 + Y1(x, x)) . (6)

The first factor in the second equality depends on τ but the second factor does not. This justifies the factorization of
Wτ (x), namely Eq. (3) in the main text, with

Sτ (x) =

∫
dyS̃τ (x, y). (7)
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As such, the diagrammatic technique gives the precise meaning of the source strength Sτ (x) which is the sum of all
the diagrams in the first category integrated over the transverse coordinate.
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