Supplementary Information

Expanding ester biosynthesis in Escherichia coli

Gabriel M Rodriguez, Yohei Tashiro and Shota Atsumi*

Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616,

USA

^{*}To whom correspondence may be addressed: Email: <u>satsumi@ucdavis.edu</u>

Table of contents

Supplementary Table 1 Genotype of *E. coli* host strains and plasmids used in this study Supplementary Table 2 Yield of isobutyl acetate from glucose by strain 5 Supplementary Table 3 Degradation test of isobutyl acetate in *E. coli* culture Supplementary Table 4 Degradation test of isobutyl isobutyrate in *E. coli* culture Supplementary Table 5 Oligonucleotides used in this study Supplementary Table 6 Plasmid construction by SLIC Supplementary Fig. 1 Isobutyl acetate from glucose in strain 5 Supplementary Fig. 2 Effect of isobutyl acetate on *E. coli* growth Supplementary Fig. 3 Biosynthesis pathway for higher chain ester Supplementary Fig. 4 Reaction mechanism of KDHC Supplementary Fig. 5 Functions of Eth1 and Cat as acetyl-CoA transferase Supplementary Fig. 6 DNA sequence of codon optimized *ATF1* gene References

E. coli strain	Genotype	Reference
BW25113	$rrnB_{T14} \Delta lacZWJ16 hsdR514 \Delta araBAD_{AH33} \Delta rhaBAD_{LC78}$	1
JCL16	BW25113/F' [<i>traD</i> 36, <i>proAB</i> ⁺ <i>lacI</i> ^q Z Δ M15 Tn10(tet ^r)]	2
JCL88	Same as JCL16 but with $\Delta adh E \Delta frd \Delta ldh A \Delta pta \Delta fnr$	3
JCL260	Same as JCL16 but with $\Delta adh E \Delta frd$ -ldhA $\Delta pta \Delta pflB \Delta fnr$	3
AL704	Same as JCL260 but with $\Delta yqhD \Delta adhP \Delta eutG \Delta yiaY \Delta yigB \Delta fucO$	4
AL1050	F-lambda-ilvG-rfb-50 rph-1 lacI ^q tetR spec ^R	This work
Plasmid Name	Genotype	Reference
pGR03	p15A ori; Cm^{R} ; $P_{L}lacO_{1}$: <i>alsS-ilvCD</i>	4
pSA40	p15A ori; Kan ^R ; P _L lacO ₁ :	2
pSA69	p15A ori; Kan ^R ; <i>P</i> _L lacO ₁ : <i>alsS-ilvCD</i>	3
pSA138	ColE1 ori; Amp_{L}^{R} ; $P_{L}lacO_{1}$: kivd-yqhD	3
pZE12-luc	ColE1 ori; Amp^{R} ; $P_{L}lacO_{1}$: <i>luc</i>	5
pAL495	p15A ori; Cm^{R} ; $P_{L}lacO_{1}$: mRFP1	This work
pAL497	p15A ori; Cm^{R} ; $P_{L}lacO_{1}$: <i>luxCDE</i>	This work
pAL603	ColE1 ori; Amp_{r}^{R} ; $P_{L}lacO_{1}$: alsS-ilvCD, $P_{L}lacO_{1}$: kivd-adhA	This work
pAL609	ColE1 ori; Amp ^R ; P _L lacO ₁ : kivd-mhpF	This work
pAL622	ColE1 ori; Kan ^R ; ATF1	This work
pAL633	ColE1 ori; Amp ^k ; <i>P</i> _L lacO ₁ : <i>bkdA1-bkdA2-bkdB-lpdV</i>	This work
pAL670	p15A ori; Cm^{R} ; $P_{L}lacO_{1}$: EHT1	This work
pAL675	p15A ori; Cm^{R} ; $P_{L}lacO_{1}$: <i>EEB1</i>	This work
pAL676	p15A ori; Cm^{R} ; $P_{L}lacO_{1}$: ATF1	This work
pAL679	ColE1 ori; Amp ^K ; P _L lacO ₁ : kivd-ATF1	This work
pAL682	p15A ori; Kan^{R} ; P_{L} lacO ₁ : <i>mRFP1</i>	This work
pAL683	p15A ori; $\operatorname{Kan}_{r}^{R}$; P_{L} lacO ₁ : <i>EEB1</i>	This work
pAL684	p15A ori; Kan ^R ; $P_{\rm L}$ lacO ₁ : <i>EHT1</i>	This work
pAL685	p15A ori; Kan^{R} ; P_{L} lacO ₁ : ATF1	This work
pAL689	p15A ori; Kan ^{κ} ; P _L lacO ₁ : cat	This work
pAL692	ColE1 ori; $\operatorname{Amp}_{\kappa}^{\kappa}$; P_{L} lacO ₁ : <i>EHT1</i> , P_{L} lacO ₁ : <i>bkdA1-bkdA2-bkdB-lpdV</i>	This work
pAL693	ColE1 ori; Amp^{κ} ; $P_L lacO_1$: <i>cat</i> , $P_L lacO_1$: <i>bkdA1-bkdA2-bkdB-lpdV</i>	This work
pAL723	ColE1 ori; Kan ^{κ} ; $P_{\rm L}$ lacO ₁ : ATF1	This work

Supplementary Table 1 Genotype of *E. coli* host strains and plasmids used in this study

Isobutyl acetate (g l ⁻¹)	Glucose consumed (g l ⁻¹)	Yield (g Isobutyl acetate/g Glucose)	% of Max (0.42 g/g)	D ₆₀₀ at 96 h
17.2 ± 0.4	51.6 ± 1.3	0.334 ± 0.016	79.6 ± 3.8	6.63 ± 0.22
Г 1 (2)			

Supplementary Table 2 Yield of isobutyl acetate from glucose by strain 5

Errors are s.d. (n = 3).

	Isobutyl acetate	Isobutanol
No cell	$99.9\pm0.031\%$	$0.12\pm0.031\%$
JCL260	$99.9\pm0.023\%$	$0.14 \pm 0.027\%$
strain 4	$99.8\pm0.023\%$	$0.22\pm0.023\%$

Supplementary Table 3 Degradation test of isobutyl acetate in E. coli culture

Cells were grown in 5 ml M9P with 50 g l⁻¹ glucose in 15 ml-screw-cap tubes at 37°C until D_{600} ~0.4, then 1 mM IPTG was added and tubes were transferred to 30°C. Then, 1 h after induction, 1 g l⁻¹ isobutyl acetate was added. Remaining isobutyl acetate and formation of isobutanol was measured after 24 h by GC-FID analysis. Errors are s.d. (n = 3).

	Isobutyl isobutyrate	Isobutanol
No cell	$99.3\pm0.22\%$	$0.7\pm0.22\%$
AL704	$98.8\pm0.18\%$	$1.2\pm0.18\%$
strain 9	$98.5\pm0.48\%$	$1.5\pm0.48\%$
strain 16	$97.5\pm0.48\%$	$2.5\pm0.48\%$
strain 18	$98.8\pm0.40\%$	$1.2\pm0.40\%$

Supplementary Table 4 Degradation test of isobutyl isobutyrate in E. coli culture

Cells were grown in 5 ml M9P with 50 g Γ^1 glucose in 15 ml-screw-cap tubes at 37°C until D_{600} ~0.4, then 1 mM IPTG was added and tubes were transferred to 30°C. Then, 1 h after induction, 1 g Γ^1 isobutyl isobutyrate was added. Remaining isobutyl isobutyrate and formation of isobutanol was measured after 24 h by GC-FID analysis. Errors are s.d. (n = 3).

Name	Sequence
GR387	TCTAGAGGCATCAAATAAAACGAAA
GR388	GTGACCTTTCTCCTGCATGC
GR689	GCATGCAGGAGAAAGGTCACATGAGTAAGCGTAAAGTCGCCATTATC
GR698	TCTAGAGGCATCAAATAAAACGAAAGGC
GR699	GGTACCTTTCTCCTCTTTAATGAATTCGG
GR701	TTTTATTTGATGCCTCTAGATCATGCCGCTTCTCCTGCCTT
GR720	GCATGCAGGAGAAAGGTCACATGAACGAAATCGACGAAAAGAATCAAG
GR721	TTTTATTTGATGCCTCTAGATTACGGACCCAGCAGCAGTG
GR724	TTAAAGAGGAGAAAGGTACCATGAACGAGTACGCCCCCTG
GR725	TTTTATTTGATGCCTCTAGATCAGATATGCAAGGCGTGGC
SD67	GAACGCCGTACGCGAGCGGTATCAGCTCACTCAAA
SD68	GCCTCGTCCTAGGTCTAGGGCGGCGGGATTTGTC
SD69	CGCCGCCCTAGACCTAGGACGAGGCCCTTTCGTCTTCACCTCGAG
SD70	GAGCTGATACCGCTCGCGTACGGCGTTCACCGACAAACAA
YT018	TAAACGCGTGCTAGAGGCATCAAAT
YT040	CATGGTACCTTTCCCTCTTTAATGAATTCGGTCA
YT087	CATTGTACCTTTCCCTCTTTAATGAATTC
YT193	CATTAAAGAGGAGAAAGGTACCATGGCTTCCTCCG
YT194	TTATTTGATGCCTCTAGAGTCATTAAGCACCGGTGGAGT
YT253	CATTAAAGAGGAGAAAGGTACAATGGAAAAACACTTACCTTTAATAATAAAA
YT255	ATCGTTTAAACGAACATTTCCTTATTTGTTGGTATTAC
YT256	TAAGGAAATGTTCGTTTAAACGATGCTGAAG
YT257	ATTTGATGCCTCTAGCACGCGTTTAGTTGCCTCCTTCATTCTTAG
YT438	CATTAAAGAGGAGAAAGGTACAATGTTTCGCTCGGGTTACTATCCAAC
YT439	ATTTGATGCCTCTAGCACGCGTTTATAAAACTAACTCATCAAAGCTGCCCAAGA
YT440	CATTAAAGAGGAGAAAGGTACAATGTCAGAAGTTTCCAAATGGCCAG
YT441	TTTGATGCCTCTAGCACGCGTTTATACGACTAATTCATCAAACTTAGTGAAAAATTCTGC
YT442	CATTAAAGAGGAGAAAGGTACAATGAACGAAATCGACGAAAAGAATCAAG
YT443	ATTTGATGCCTCTAGCACGCGTTTACGGACCCAGCAGCAGTG
YT466	TCTCACCAATAAAAAACGCCCGGCGAATTGTGAGCGGATAACAATTGACATT
YT467	GGATTTGTTCAGAACGCTCGGTTGCCTAGCACGCGTTTATACGACTAATTCATCA
YT468	GCAACCGAGCGTTCTGAACAAATC
YT469	CGCCGGGCGTTTTTTATTGGT
YT470	GAATTCATTAAAGAGGAGAAAGGTACAATGGAGAAAAAAATCACTGGATATACCACCG
YT471	ATTTGATGCCTCTAGCACGCGTTTACGCCCCGCCCTGC
YT479	GGATTTGTTCAGAACGCTCGGTTGCCTAGCACGCGTTTACGCCCC

Supplementary Table 5 Oligonucleotides used in this study

	Vector PCR			Insert PCR			
Plasmid	Primer 1	Primer 2	Template ^a	Primer 1	Primer 2	Template	Gene of Interest ^f
pAL495	YT087	YT018	pGR03	YT193	YT194	BBa_E1010 ^b	mRFP1
m A I 407	VT097	VT019	-CD02	YT253	YT255	gDNA	luxCD
pAL497	1108/	11018	ракоз	YT256	YT257	V. harveyi ^c	luxE
pAL603	SD67	SD68	pSA138	SD69	SD70	pSA69	alsS-ilvCD
pAL609	GR387	GR388	pSA138	GR689	GR701	gDNA <i>E.coli</i> JCL16	mhpF
pAL633	GR698	GR699	pSA138	GR724	GR725	gDNA P. putida g7	KDHC operon
pAL670	YT087	YT018	pGR03	YT440	YT441	gDNA S. cerevisiae ^d	EHT1
pAL675	YT087	YT018	pGR03	YT438	YT439	gDNA S. cerevisiae ^d	EEB1
pAL676	YT087	YT018	pGR03	YT442	YT443	pAL622	ATF1 ^e
pAL679	GR387	GR388	pSA138	GR720	GR721	pAL622	ATF1 ^e
pAL682	YT087	YT018	pSA69	YT193	YT194	BBa_E1010 ^b	mRFP1
pAL683	YT087	YT018	pSA69	YT438	YT439	gDNA S. cerevisiae ^d	EEB1
pAL684	YT087	YT018	pSA69	YT440	YT441	gDNA S. cerevisiae ^d	EHT1
pAL685	YT087	YT018	pSA69	YT442	YT443	pAL622	ATF1 ^e
pAL689	YT087	YT018	pSA69	YT470	YT471	pGR03	cat
pAL692	YT468	YT467	pAL633	YT466	YT467	pAL684	EHT1
pAL693	YT468	YT467	pAL633	YT466	YT479	pAL689	cat
pAL723	YT040	YT018	pSA40	YT442	YT443	pAL622	ATF1 ^e

Supplementary Table 6 Plasmid construction by SLIC

a. All plasmids and oligonucleotides are listed in Supplementary Table 1 and 5, respectively.

b. BBa_E1010 sourced from parts.igem.org

c. Vibrio harveyi BB120 (ATCC BAA-1116D-5)

d. Saccharomyces cerevisiae BY4741 (ATCC 4040004)

e. Codon optimized *ATF1* was synthesized by GenScript USA Inc. (Piscataway, NJ). The sequence is shown in Supplementary Fig. 6.

f. NCBI reference number: *mhpF*, NP_414885; the KDHC genes (*bkdA1-bkdA2-bkdB-lpdV*), YP_001266792.1 YP_001266793.1 YP_001266794.1 YP_001266795.1; *EHT1*, NP_009736.3; *EEB1*, NP_015230.1; *ATF1*, NP_015022.3.

Supplementary Figure 1. Isobutyl acetate from glucose in strain 5. (a) Isobutyl acetate synthesis pathway from glucose in *E. coli*. (b) Isobutyl acetate and isobutanol concentrations in culture layer during the production with a hexadecane layer by strain 5. Production of isobutyl acetate from strain 5 grown in M9P containing 50 g Γ^1 glucose for 96 h. Cells were grown in 20 ml media in 250 ml screw-cap flasks at 37°C until $D_{600} \sim 0.4$, then 1 mM IPTG was added. Hexadecane (20 ml) was added 1 h after induction. Production was performed at 30°C in a rotary shaker at 250 rpm. Errors are s.d. (n = 3).

Supplementary Figure 2. Effect of isobutyl acetate on *E. coli* growth. JCL260 was grown at 30°C in 5 ml M9P media containing 50 g l^{-1} glucose in 15 ml-screw-cap tubes. Black Arrow indicates the time point when isobutyl acetate (None (gray), 1 g l^{-1} (black), or 3 g l^{-1} (red)) was added into culture. Error bars are s.d. (n = 3).

Supplementary Figure 3. Biosynthesis pathway for higher chain ester. (a) Higher chain ester pathways from 2-keto acid *via* Kdc-MhpF route and KDHC route. Cells were grown in M9P media containing 10 g l⁻¹ glucose in 5 ml M9P media in 15 ml-screw-cap tubes at 37°C until $D_{600} \sim 0.4$. Then, 1 mM IPTG was added and cultures were transferred to 30°C. After 1 h of induction, 3 g l⁻¹ 2-ketoisovalerate and 3 g l⁻¹ of isobutanol were added. Production was performed at 30°C for 24 h. The concentrations of isobutyl isobutyrate (b), isobutyl acetate (c), ethyl isobutyrate (d) in the cultures were measured. Error bars are s.d. (n = 3).

Net Reaction: 2-Keto acid + NAD(P)⁺ + CoA-SH \rightarrow Acyl-CoA + NAD(P)H + CO₂

Supplementary Figure 4. Reaction mechanism of KDHC. KDHC consists of four proteins. *bkdA1, bkdA2, bkdB*, and *lpdV* encode α -subunit (E1), β -subunit (E1), dihydrolipoyl transacylase (E2), and dihydrolipoamide dehydrogenase (E3), respectively. Thiamine diphosphate (TPP), lipoamide-E (Lip), and flavin adenine dinucleotide (FAD) are involved in this reaction as cofactor.

Supplementary Figure 5. Functions of Eth1 and Cat as acetyl-CoA transferase. Cells were grown in 5 ml M9P media containing 10 g l⁻¹ glucose in 15 ml-screw-cap tubes at 37°C until D_{600} ~0.4. Then, 1 mM IPTG was added. After 1 h of induction, 3 g l⁻¹ 2-ketoisovalerate and 3 g l⁻¹ 3- methyl-1-butanol (**a**) or 3 g l⁻¹ 2-phenylethanol (**b**) were added and production was performed at 30°C for 24 h at 250 rpm in a rotary shaker. Error bars are s.d. (*n* = 3).

1	ATGAACGAAA	TCGACGAAAA	GAATCAAGCC	CCGGTCCAAC	AAGAATGCCT
51	GAAAGAAATG	ATCCAGAATG	GTCACGCCCG	CCGTATGGGC	TCAGTGGAAG
101	ACCTGTATGT	TGCACTGAAC	CGTCAGAATC	TGTACCGCAA	TTTTTGCACC
151	TATGGTGAAC	TGTCGGACTA	CTGTACGCGT	GATCAACTGA	CCCTGGCTCT
201	GCGCGAAATC	TGCCTGAAAA	ACCCGACGCT	GCTGCATATT	GTGCTGCCGA
251	CCCGTTGGCC	GAACCACGAA	AACTACTACC	GTAGCTCTGA	ATACTACAGT
301	CGCCCGCATC	CGGTTCACGA	TTATATTAGT	GTCCTGCAAG	AACTGAAACT
351	GTCCGGCGTG	GTTCTGAATG	AACAGCCGGA	ATACAGCGCG	GTTATGAAGC
401	AAATCCTGGA	AGAATTTAAA	AACAGCAAGG	GTTCTTACAC	GGCCAAAATC
451	TTTAAGCTGA	CCACGACCCT	GACGATTCCG	TACTTCGGTC	CGACCGGTCC
501	GAGCTGGCGC	CTGATCTGCC	TGCCGGAAGA	ACATACCGAA	AAGTGGAAGA
551	AGTTCATCTT	CGTGTCAAAC	CACTGTATGT	CGGATGGCCG	TAGTTCCATC
601	CATTTCTTTC	ACGACCTGCG	CGATGAACTG	AACAATATCA	AGACCCCGCC
651	GAAAAAGCTG	GACTACATCT	TCAAGTACGA	AGAAGATTAC	CAGCTGCTGC
701	GTAAGCTGCC	GGAACCGATT	GAAAAAGTGA	TCGATTTTCG	TCCGCCGTAC
751	CTGTTTATCC	CGAAAAGTCT	GCTGTCCGGC	TTTATTTACA	ATCATCTGCG
801	TTTCTCATCG	AAGGGTGTGT	GCATGCGCAT	GGATGACGTT	GAAAAAACGG
851	ATGACGTCGT	GACCGAAATT	ATCAACATTA	GCCCGACCGA	ATTTCAGGCG
901	ATCAAGGCCA	ACATCAAGTC	TAACATCCAA	GGCAAATGCA	CGATCACCCC
951	GTTTCTGCAT	GTCTGTTGGT	TCGTGAGCCT	GCACAAATGG	GGCAAGTTTT
1001	TCAAACCGCT	GAACTTTGAA	TGGCTGACGG	ACATTTTCAT	CCCGGCGGAT
1051	TGTCGTTCTC	AGCTGCCGGA	TGACGATGAA	ATGCGTCAAA	TGTATCGCTA
1101	CGGCGCCAAT	GTGGGTTTTA	TCGATTTCAC	CCCGTGGATT	AGTGAATTTG
1151	ACATGAACGA	TAACAAGGAA	AACTTCTGGC	CGCTGATCGA	ACATTATCAC
1201	GAAGTTATTT	CCGAAGCGCT	GCGTAACAAA	AAGCATCTGC	ACGGCCTGGG
1251	TTTCAACATC	CAGGGTTTCG	TTCAAAAGTA	CGTCAACATC	GACAAAGTCA
1301	TGTGTGATCG	CGCCATTGGC	AAACGTCGTG	GCGGCACCCT	GCTGTCCAAC
1351	GTTGGTCTGT	TTAATCAGCT	GGAAGAACCG	GACGCAAAAT	ATTCAATTTG
1401	CGATCTGGCT	TTTGGCCAGT	TCCAAGGTTC	GTGGCATCAG	GCATTCAGCC
1451	TGGGCGTCTG	TTCTACGAAC	GTGAAGGGTA	TGAATATTGT	TGTCGCTTCT
1501	ACCAAAAATG	TGGTTGGTAG	CCAAGAATCG	CTGGAAGAAC	TGTGTAGTAT
1551	CTATAAGGCA	CTGCTGCTGG	GTCCGTAA		

Supplementary Figure 6. DNA sequence of codon optimized ATF1 gene

References

- Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640-5 (2000).
- Atsumi, S. et al. Metabolic engineering of *Escherichia coli* for 1-butanol production.
 Metab Eng 10, 305-311 (2008).
- 3. Atsumi, S., Hanai, T. & Liao, J.C. Non-fermentative pathways for synthesis of branchedchain higher alcohols as biofuels. *Nature* **451**, 86-9 (2008).
- 4. Rodriguez, G.M. & Atsumi, S. Isobutyraldehyde production from *Escherichia coli* by removing aldehyde reductase activity. *Microb Cell Fact* **11**, 90 (2012).
- Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Research 25, 1203–1210 (1997).