Supplemental Information About Pharmacological Agents:

Mepyramine: Selective inverse agonist for the H₁ receptor. Inhibits histamine induced inositol phosphate (InsP) production (log EC₅₀ = -7.94) and intracellular calcium mobilization. Sequesters $G_{q/11}$ protein, reducing its availability for other receptors associated with the same signaling pathway (3).

Cetirizine dihydrochloride: This histamine H_1 receptor antagonist displays selectivity over other receptors at concentrations up to 10 μ M (1).

Cimetidine: Widely used H_2 histamine antagonist, which has more recently been described as an inverse agonist (12).

Ciproxifan: A novel chemical series of histamine H_3 -receptor antagonists. *In vitro*, it behaved as a competitive antagonist at the H_3 autoreceptor controlling ³H histamine release from synaptosomes and displayed similar Ki values (0.5-1.9 nM) at the H_3 receptor controlling the electrically-induced contraction of guinea pig ileum or at the brain H_3 receptor labeled with ¹²⁵I-iodoproxyfan (10).

JNJ 7777120: H₄ receptor antagonist; displays high affinity ($K_i = 4.5$ nM) and is >1000-fold selective for H₄ over other histamine receptors (11).

H1152: Rho-kinase (ROCK) inhibitor that displays high selectivity over other protein kinases (cell-free in vitro kinase activity IC_{50} values are 0.012, 0.180, 0.360, 0.745, 3.03, 5.68 and 28.3 µM for ROCKII, CAMKII, PKG, Aurora A, PKA, PKC and MLCK respectively). Inhibits sulprostone-induced contractions in guinea pig aorta (IC_{50} = 190 nM) and displays proerectile effects in rats (2).

ML-7: Selective inhibitor of myosin light chain kinase (MLCK) ($K_i = 0.3 \mu M$). Exhibits more potent inhibition than the parent compound ML-9. Displays reversible, ATP-competitive inhibition of both Ca²⁺-calmodulin-dependent and Ca²⁺-calmodulin-independent smooth muscle MLCKs (9).

GFX109203X: Very potent and selective inhibitor of protein kinase C, selective for the α and β 1 isoforms (cell-free in vitro kinase IC₅₀ values are 0.0084, 0.0180, 0.210, 0.132, and 5.8 μ M for α , β 1, δ , ϵ and ζ isoforms respectively). Selective over MLCK, PKG and PKA (IC₅₀ values are 0.6, 4.6, and 33 μ M respectively). Potent antagonist at the 5-HT₃receptor (K_i = 29.5 nM) (8).

PI828: PI 3-Kinase inhibitor (cell-free in vitro kinase IC₅₀ values are 0.098, 0.183, 0.227 and 1.967 μ M for p110 β , p110 α , p110 δ and p110 γ respectively) that displays higher potency than LY 294002 (4).

Immepip dihydrobromide: Potent histamine H_3 receptor agonist. Also binds to H_4 receptors (K_i values are 0.4 and 9 nM at human recombinant H_3 and

 H_4 receptors respectively). Equipotent to or slightly more active than (R)- α -methylhistamine at H_3 receptors (5).

SB203580: Selective inhibitor of p38 mitogen-activated protein kinase (Cell-free in vitro kinase assay IC_{50} values are 50 and 500 nM for SAPK2a/p38 and SAPK2b/p38 β 2 respectively). Displays 100-500-fold selectivity over LCK, GSK-3 β and PKB α (6).

Y16: A cell-permeable pyrazolidinedione compound that is shown to target RhoGEF DH-PH domain junction with high affinity ($K_d = 65$ nM) and effetively prevent RhoGEFs LARG, p115, and PDZ from interacting with RhoA, while displaying little potency against DBL-RhoA, LBC-RhoA, intersectin-Cdc42, or TrioN-Cdc42 interaction. Shown to completely prevent serum-induced activation of cellular RhoA, but not Cdc42 or Rac1, in NIH-3T3 cultures (10 µM) and RhoA downstream signaling events. Greatly synergizes with Rho GEF-binding domain blocker Rhosin in blocking RhoA-LARG interaction and in preventing cellular RhoA activation (both drugs at 5 µM) (7).

Additional Information:

1. Snowman and Snyder (1990) Cetirizine: actions on neurotransmitter receptors. J.Allergy.Clin.Immunol. *86* 1025. PMID: <u>1979798</u>.

2. Tamura *et al* (2005) Development of specific Rho-kinase inhibitors and their clinical application. Biochim.Biophys.Acta **1754** 245. PMID: <u>16213195</u>.

3. Liu *et al* (1994) Does the $[^{3}H]$ mepyramine binding site represent the histamine H₁ receptor? Re-examination of the histamine H₂ receptor with quinine. J.Pharmacol.Exp.Ther. **268** 959. PMID: <u>8114011</u>.

4. Gharbi *et al* (2007) Exploring the specificity of the PI3K family inhibitor LY294002. Biochem.J. **404** 15. PMID:<u>17302559</u>.

5. Vollinga *et al* (1994) A new potent and selective histamine H_3 receptor agonist. J.Med.Chem. **37** 332. PMID:<u>8308858</u>.

6. Davies *et al* (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem.J.**351** 95. PMID: <u>10998351</u>.

7. Shang *et al* (2013) Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors. *Proc. Natl. Acad. Sci. USA.* **110,** 3155. PMID: 23382194.

8. Toullec *et al* (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J.Biol.Chem. **266** 15771. PMID: <u>1874734</u>.

9. Saitoh *et al* (1987) Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J.Biol.Chem.**262** 7796. PMID: <u>3108259</u>.

10. Ligneau *et. al* (1998) Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J Pharmacol Exp Ther, 287(2), 658. PMID: <u>9808693</u>

11. Jablanowski *et al* (2003) The first potent and selective non-imidazole human histamine H₄ receptor antagonists. J.Med.Chem. *46* 3957. PMID: <u>12954048</u>.

12. Hill (1990) Distribution, properties and functional characteristics of three classes of histamine receptor. Pharmacol.Rev. **42** 45. PMID: <u>2164693</u>.