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S1 Introduction

S1.1 Optimization problems

In the general case, an optimization involves �nding val-
ues for n parameters such that a merit function that de-
pends on these parameters attains an optimal value. This
simple premise has spawned a sub�eld of computer science
and mathematics. Listing all the optimization algorithms
that are currently available goes far beyond the scope of
this short introduction, but it bears mention that di�er-
ent classes of optimization problems require di�erent opti-
mization algorithms. Speci�cally, if the merit function is
unknown or not analytically solvable, the optimization is
a trial-and-error process. If the merit function has multi-
ple minima, it is often desirable for these trials to explore
parameter space, as opposed to �nding a single local mini-
mum close to a given starting point. Depending on known
or assumed properties of the merit function, trials will
be based on extrapolation from earlier trials; for exam-
ple, a common assumption is �approximately quadratic
as a function of the parameters�. If �rst derivatives of

the merit function are available, this extrapolation can
be made substantially more accurate, especially if the
dimensionality of the problem (ie. the number of inde-
pendent parameters) is high. Second derivatives in the-
ory pose an opportunity to re�ne the extrapolation even
further, although in practice, they are often (but not al-
ways) impractical on account of being too costly to calcu-
late and/or too unwieldy (there are n2 second derivatives)
and/or do not su�ciently improve the extrapolation; in-
deed, if the merit function is far from quadratic, second
derivatives can cause erratic behavior.

S1.2 Multi-objective optimization

A generalization of the above problem is the multi-
objective optimization problem, where the goal is to �nd
values for n parameters such that m numerical properties
(henceforward called �observables�) that are dependent on
said parameters each approach respective target values.
Both the parameters and the properties may be subject
to constraints and restraints, some of which will be dis-
cussed in more detail. Optimization problems in this class
can formally be expressed as a system of equations, where
the parameters to be optimized are the variables, the left
hand side of the equations expresses how the observables
depend on the variables, and the right hand side consists
of the respective target values. As in the previous para-
graph, the equations themselves are not guaranteed to be
linear, analytically solvable, or even known. If the equa-
tions are analytically solvable, the optimization problem
is nontrivial only if the system of equations is mathemat-
ically inconsistent, i.e. an exact solution does not exist.
Thus, the objective is to �nd one or more approximate
solutions for which the vector of observables approaches
the vector of target values. However, in contrast to the
scalar merit functions in the previous paragraph, there
does not exist a �perfect� criterion to rank how well vec-
tors approach a target; hence, multi-objective optimiza-
tion problems may have di�erent end-goals and associated
solution philosophies depending on the context in which
they arise. Examples of common end-goals include ob-
taining a set of Pareto optimal solutions, or quantifying
the trade-o�s in satisfying the di�erent objectives. An-
other possibility is to express the ��tness� of an approx-
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imate solution as a simple scalar numeric value that is a
function of the observables and their target values. In-
troducing a single merit function in this fashion reduces
the problem to the single-objective case discussed in the
previous paragraph.

S1.3 The RESP Model

The desire for robustness in �tting problems is not new; a
prominent example in the �eld of Molecular Mechanics is
electrostatic potential-based charge �tting, where the pa-
rameters are point charges on the atoms in a molecule, the
target vector consists of electrostatic potentials measured
at di�erent positions around the molecule, and the coe�-
cients in the linear system are derived from the �xed po-
sitions of the aforementioned point charges and measure-
ment points through Coulomb's law. Lack of robustness
because of ill-conditionedness is commonly observed when
calculating an LLS solution to this problem, which led
Bayly et al. to propose adding restraints to the system.1

Speci�cally, the preferred variant of their RESP method
includes a constant restraint that pulls every charge to-
wards 0. The most important limitation of this method-
ology is that the restraint needs to be small enough to
avoid pulling down well-de�ned charges too strongly, but
large enough to overcome noise in the system. This not
only includes numerical noise caused by rounding errors,
but also features of the Quantum Mechanics (QM) elec-
tron density the Electrostatic Potential (ESP) of which
cannot be reproduced by atom-centered point charges.
Indeed, in this situation, the LSS algorithm is prone to
over�t, i.e. assign unphysical charges on poorly de�ned
(typically buried) atoms in an attempt to reproduce these
features. The compromise restraint Bayly et al. obtained
through trial and error su�ers to a small extent from both
problems, which were mitigated as follows:

� The small restraint-induced decrease in magnitude
of well-determined charges turned out to be gen-
erally desirable, as the chosen QM level of the-
ory (HF/6-31G*) is known to overpolarize most
molecules to a much larger extent than the e�ect
of the restraint.

� Harmonic restraints have mathematically conve-
nient properties and are trivial to implement in a
LLS context (see section 2.6), but they penalize
large charges stronger than small ones, resulting
in bigger restraint-induced absolute errors on polar
groups. This turned out to be an signi�cant issue
for charge �tting, and was overcome by using a hy-
perbolic restraint instead, at the (small) cost of the
problem becoming nonlinear and requiring iterative
solving.

� The limitations of the atom-centered point charges
in describing the QM ESP turned out to be a rel-
atively benign as such, except when the freedom of

the �t was further constrained by requiring chem-
ically equivalent atoms to have the same charge,
which resulted in a large discrepancy between the
asymmetric QM description and the partially sym-
metrized point charges. This required the ad hoc

workaround of �rst performing an unconstrained
�t, after which the resulting charges on all atoms
are frozen, except the chemically equivalent atoms,
which are forced to be equivalent, and their parent
atoms.

Since the publication of Bayly et al.'s seminal paper,
the above workarounds have proven highly successful, at-
taining the stated goal of making the derivation of point
charges from an ESP robust enough to be �a general and
useful way to generate atomic charges for simulations of
complex systems�. Nevertheless, it should be noted that
these same workarounds are highly speci�c for the prob-
lem of �tting atom-centered point charges to HF/6-31G*
ESP for the purpose of molecular mechanics simulations
in the presence of the explicit TIP3P or SPC water mod-
els.

S2 Methodology

S2.1 Sources of ill-conditionedness in bonded

parameter �tting

S2.1.1 Symmetry-forbidden multiplicities

The simplest case of ill-conditionedness in bonded pa-
rameter �tting is the one where two identical dihedrals
around the same bond cancel each other out. Take for
example the rotation of a carboxylate group or benzene
ring attached to a larger molecule. The dihedral angle
governing this rotation involves a trigonal planar atom
(the sp2 carbon) with two identical substituents (the car-
boxylate oxygen or ortho benzene carbon atoms). This
leads to two identical dihedral terms with an o�set of
180° in their φ angles. It can easily be shown that these
terms mathematically cancel out for odd values of ni;
this is a commonly made mistake when selecting ni val-
ues to be �tted with existing automatic �tting programs.
Similarly, terms associated with ni values that are not a
multiple of 3 will mathematically cancel out for rotations
of tetrahedral atoms with 3 identical substituents, where
two of the φ angles are o�set 120°and �120°, respectively,
with respect to the �rst.* Examples are the rotations
of tri�uoromethyl, sulfonate and quaternary trimethy-
lamino groups. The two cases can even occur together
in one rotatable bond in molecules such as tri�uoroac-
etate, tri�uorotoluene, benzenesulfonate and the N,N,N-
trimethylanilinium cation (compounds 1, 2, 3 and 4 in
�gure S1, respectively), where the only valid ni value is
6.

*i.e. Kφ
i (1 + cos(niφ)) +Kφ

i (1 + cos(ni(φ+ π))) = 2Ki for odd values of ni and K
φ
i (1 + cos(niφ)) +Kφ

i (1 + cos(ni(φ+ 2π/3))) +

Kφ
i (1 + cos(ni(φ − 2π/3))) = 3Ki for ni values that are not multiples of 3; the constant o�sets 2Ki and 3Ki can be ignored for the

present purpose, as explained in section 2.1.
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Figure S1: Skeletal formulas of compounds discussed in
the Supporting Information, with representation chosen
to highlight attributes of interest. 1, 2, 3 and 4 are
respectively tri�uoroacetate, tri�uorotoluene, benzenesul-
fonate and the N,N,N-trimethylanilinium cation, with the
rotatable bond that can only have a 6-fold multiplicity
marked. 5: pyridine, with the coupled angles a and b
discussed in section S2.1 marked.

In the above discussion, idealized geometries were as-
sumed (i.e. o�sets in φ of exactly 180°, 120°and �120°),
giving rise to a linear system that is truly underdeter-
mined. However, forces in actual molecules almost always
cause small deviations in the angles and o�sets, so that
a change in Kφ

i has a small residual impact on the ob-
servable energy pro�le B′, which the algorithm will try
to exploit to �t arbitrary features in the target potential
energy surface B. Just like in section 1.2, this will lead
to very large Kφ

i values, which are extremely problematic
from a transferability point of view, and may even induce
distortions in the structure.

S2.1.2 Underdetermined �t of valence angles

Consider the valence angles involving the ortho-hydrogen
atom of a pyridine ring (compound 5 in �gure 1). As-
suming the ring is relatively rigid and all reference angles
are 120°, the force constant for the overall in-plane hy-
drogen deformation is simply the sum of the force con-
stants of the 2 angle terms involving this hydrogen atom
(Ka + Kb = Ktarget). The out-of-plane potential due
to the angle terms will have a slightly more complicated
functional form depending on how the out-of-plane DF is
de�ned, but it still features the sum Ka+Kb, so although
this is an independent DF from a geometrical point of
view, it is not independent from the point of view of the

parameters Ka and Kb. Moreover, even in the absence
of an improper dihedral term, the hydrogen atom partic-
ipates in three dihedral terms that in�uence the out-of-
plane potential, exacerbating the underdetermination.

S2.1.3 Implicit and unintentional mitigation of

ill-conditionedness

In an ill-conditioned system, the gradient in parameter
space that di�erentiates the exact LLS solution from so-
lutions for which B′ is almost the same but the Kφ

i values
are very di�erent is by de�nition very low. Both local op-
timizers and MCSA are relatively insensitive to such low
gradients; for the former, it may fall below the gradient
tolerance, while for the latter, a step that goes against
a very low gradient only marginally increases the energy
and therefore has a good chance of being accepted by the
Metropolis criterion. In the case of the local methods,
this will result in the optimizer �nding an approximate
solution that is substantially closer to the initial guess
than the exact solution. Conversely, in the speci�c case
of Guvench et al.'s MCSA method,2 it was observed in
practical usage that di�erent runs with di�erent random
number seeds often resulted in widely diverging param-
eter sets with almost identical energy pro�les B′. The
common solution to this problem was to take the average
of the output parameter values from several runs, and a
lot of published results are based on this methodology.3

Indeed, it trivially follows from the linear nature of the
system that a linear combination of possible X vectors
will yield the same linear combination of the correspond-
ing B′ vectors, i.e. A(aXa+bXb+. . . ) = aB′

a+bB
′
b+. . .,

justifying the averaging. More importantly, as theKφ
i val-

ues are typically constrained between -3 and 3 kcal/mol
in this methodology, the average of multiple runs with
arbitrary output Kφ

i values will statistically favor a so-

lution with low
∣∣∣Kφ

i

∣∣∣ values, which is often desirable for
dihedrals.

S2.2 Disproportional scaling of parameters

by constant harmonic restraints

The observation that some parameters (the larger ones in
Bayly et al.'s case) are scaled disproportionally by a con-
stant harmonic restraint is a nontrivial one. If we consider
an initial guess of 0, the restraining force is proportional
to the magnitude of the parameter. However, making a
larger parameter deviate from its unrestrained value by
a given factor also requires a proportionally larger force.
Indeed, if two parameters have orthogonal response vec-
tors of the same magnitude, but one optimizes to a larger
value, then a constant harmonic restraint will pull down
both by an equal factor, so the larger parameters is only
biased stronger in an absolute sense. Conversely, if the
di�erence in the magnitude of the parameters with or-
thogonal response vectors is purely caused by di�erences
in the magnitudes of the response vectors, then the larger
parameter will contribute to the error function less than
the smaller one, and will indeed be biased stronger even in
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a relative sense. Finally, the e�ect of constant restraints
becomes nontrivial for non-orthogonal response vectors;
this is discussed in detail in sections 2.6-2.10.

S2.3 Potential Energy Scanning considera-

tions

The present algorithm's ability to perform sub-second �t-
ting while avoiding trivial cases of ill-conditionedness gave
us an unprecedented opportunity to identify more funda-
mental issues related to the target data. Therefore, the
current section will discuss target data generation consid-
erations that came to light when applying the present
algorithm to practical systems (see also section 4.2.1).
The chief concern here is orthogonality between the tar-
get data generated by di�erent 1-dimensional potential
energy scans, as higher-dimensional scans quickly become
computationally prohibitive. This requirement of orthog-
onality is not trivially ful�lled because in order to be rel-
evant for MD simulations, the DF in a molecule that are
not explicitly being scanned should be allowed to relax
during both the QM and MM scan, opening the door
for concerted motions. Prior to this work, it has been
known that full 360° scans with a 15° step size on dif-
ferent dihedrals in a molecules are typically su�ciently
orthogonal to unambiguously and relatively robustly �t
the di�erent dihedral parameters. Exceptions are cases
where strong electrostatic interactions that are partially
governed by a di�erent dihedral (e.g. hydrogen bonds as-
sociated with an -OH rotation) are established and broken
or steric clashes occur during a scan. For detailed work
such as the parametrization of biomolecular force �elds,
it is occasionally even advantageous to perform 2D scans
on adjacent dihedral. Yet, as a general rule, relaxed 1D
scans work su�ciently well for a majority of dihedrals,
especially for the purpose of parametrizing small organic
molecules.4 The same cannot be said of bonds and angles.
To parametrize the latter, we propose the use of �3-point
scans�, as 3 scan points is the minimum necessary to ap-
proximate a second derivative or spring constant. In our
proposal, one of the scan points is the minimum energy
conformation and for the two others, the DF of interest
is respectively incremented and decremented by a con-
stant. The problem with scanning bonds and angles in
this fashion is the high correlation between the motions
of 2 or more DF in relaxed scans (i.e. one DF adjusting
in a coherent fashion while a second one is being scanned
and vice versa), making it impossible for any �tting al-
gorithm to produce meaningful independent values. This
issue was so pervasive that it was decided to uniquely per-
form constrained QM (3-point) scans on bonds and an-
gles, where only the DF being scanned is allowed to vary.
However, this poses another problem; one could propose
to constrain the corresponding �inactive� DF in the MM
scans at their MM values, but those change as the param-
eters are being optimized, requiring iterative �tting until
self-consistency is reached, a situation the present work
is seeking to avoid. Instead, said inactive DF were con-
strained at their QM values, under the hypothesis that

the MM geometry after �tting will be close to the QM
geometry.4 While doing so conveniently reduces the MM
scan to the calculation of single-point MM energies on the
QM geometries, when �tting dihedrals and rigid DF si-
multaneously, it introduces an energetic gap between the
relaxed sans and the constrained scans because the inac-
tive DF are at their MM values in the former and at their
QM values in the latter. In other words, one could say
the relaxed scan points are relative to the energy of the
MM minimum, while the constrained points are relative
to the MM energy of the QM minimum. This was solved
by using the group �tting discussed in section 2.11 to in-
dependently align points that result from constrained and
relaxed scans.

It should be noted that Burger et al. recently showed
that the orthogonality problem discussed in the present
paragraph can be defeated conveniently by MC sam-
pling of molecular conformations.5 However, this was only
demonstrated in 2-dimensional parameter spaces. In the
formalism from section 1.1, the rows of A represent equa-
tions, and analogous to the columns of A (i.e. the re-
sponse vectors), the set of m row vectors must at least
contain a subset of n vectors for which all the pairwise dot
products are larger than a small predetermined value in
order for the system to not be ill-conditioned. When the
m row vectors are chosen randomly (which is essentially
what is done in MC conformational sampling), for any
given n, one can calculate the number of rowsm necessary
to have a high predetermined probability P that the sys-
tem is not ill-conditioned. As it can easily be shown that
the required number of samples m grows faster than the
dimensionality n, MC is not a solution when performing
concerted �tting of a large number of parameters. That
said, a lot of practical parameter �tting problems involve
small model compounds and modest numbers of param-
eters. In these cases, MC sampling may potentially be
useful to bypass the need for potential energy scans along
carefully chosen sets of coordinates.

Independently of the orthogonality question, the
width of the scan range for 3-point scans should be chosen
carefully; if it is too small, the corresponding energy dif-
ferences will also be small, causing the LLS procedure to
sacri�ce the corresponding data points in favor of �more
important� ones. This can be counteracted by giving said
data points a higher weight wj (see section 2.11), at the
cost of making the �tting procedure somewhat more cum-
bersome. Small values also have a smaller numerical pre-
cision, which cannot be counteracted with weight factors.
Conversely, large values will increasingly exhibit the in-
herent anharmonicity and asymmetry of the QM poten-
tial; since the Class I Potential Energy Function cannot
explicitly capture these e�ects, this incurs a risk of over-
�tting. While these e�ects were modest in some of our
case studies, in other cases, steric clashes and other non-
bonded interactions that occur during the scan exacer-
bated the problem to the point of producing nonsensical
results such as negative force constants. Assuming the
protocol outlined in the previous paragraph is followed
(and ignoring data points greater than 12 kcal/mol above
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the global minimum in the relaxed dihedral scans6), it was
empirically found that the best results were obtained by
choosing the step size for the bond and angle 3-point scans
such that the outer points are between 1 and 3 kcal/mol
above the middle (minimum energy) point. This typically
corresponded to step sizes of ∼0.05Å and ∼5° for bonds
and angles, respectively.

Finally, it should be emphasized that, as discussed in
section 2.10, nonzero targets often signi�cantly improve
�tted bond and angle parameters. Indeed, since restrain-
ing these types of parameters towards zero is questionable,
the program developed as part of the present work will
set σi = 0 for bonds and angles for which no initial guess
is given.

S3 Case studies

S3.1 Analysis of degrees of freedom and sym-

metry in tetrahydrofuran

Ignoring all substituent atoms including hydrogen, a 5-
membered ring has 3n − 6 = 9 geometrical degrees of
freedom. The ring closure makes it impossible to express
these degrees of freedom in terms of isolated bonds, an-
gles and dihedral angles; any change in ring geometry can
only be expressed as a combination of these redundant in-
ternal coordinates. Also, when constraining 2 dihedrals
and allowing the ring to relax in the �eld of the bond
and angle potentials only, the remaining 3 dihedrals are
rigidly determined, so it can be said that a 5-membered
ring has 2 torsional degrees of freedom (more generally
n− 3− (# in-ring double bonds)). These two degrees of
freedom can be represented in di�erent ways. For the
purpose of vibrational analysis, it is convenient to use a
twisting motion that involves 5 dihedrals and an enve-
lope pucker that involves 4 dihedrals, respectively labeled
�torsion� and �torsion′� in reference7. Another common
representation is the pseudorotation angle and puckering
amplitude; PES as a function of the former illustrate well
how subtle the energy pro�le of saturated 5-membered
rings is.8 However, for the purpose of �tting dihedral
parameters, the objective is to cover the ring's torsional
space regardless of whether the order in which di�erent
conformations are visited has any physical meaning. For
this purpose, it su�ces to perform a 2D PES as a function
of any two in-ring dihedrals. A similar pragmatic philos-
ophy is adapted for the bonds and angles, as discussed
in more detail in the next paragraph. Since the present
case study focuses on the 5-membered ring, none of the
parameters involving hydrogen atoms are �t. Just as the
nonbonded parameters, they are kept at their respective
CGenFF values, which were copied from the work in ref-
erence9 during the initial population of the force �eld.4

Because of symmetry, a full bonded description of
THF in a Class I force �eld with the same atom type

for all the carbon atoms requires 2 in-ring bond parame-
ters, 3 in-ring angle parameters and 3 in-ring dihedral pa-
rameters. Accordingly, the set of target data must cover
at least a 8-dimensional conformational space to prevent
the �tting problem from being inherently ill-conditioned.*

This condition can be satis�ed by scanning an appropriate
subset of 8 out of the ring's 9 degrees of freedom; in this
sense, this is an atypical example because a majority of
molecules have more bonded parameters than geometric
degrees of freedom. On the other hand, most actual pa-
rameter optimization projects are extensions of existing
force �elds and in this context, most new model com-
pounds contain signi�cant numbers of transferred param-
eters the optimization of which would negatively a�ect
the force �eld's consistency and transferability. A more
common source of ill-conditioned behavior in these cases
is the usage of a non-optimal conformational ensemble.
Indeed, generating a conformational ensemble that op-
timally samples the internal coordinates associated with
the required parameters without introducing correlation
is not straightforward, especially on cyclic systems. At
any rate, doing so in the context of the present case
study would make the results trivial; instead, we choose to
mimic a more realistic use case by using a conformational
ensemble that is more aimed at being straightforward to
generate than at avoiding correlation.

Another consequence of THF's high degree of symme-
try is that for the 2D C-C-C-O dihedral scan, it would in
principle su�ce to scan only one of the quadrants delin-
eated by the diagonals of �gure 4a; the other quadrants
could be reconstructed using symmetry operations. How-
ever, it is technically more convenient to scan a rectangu-
lar domain, in this case half of the �gure (i.e. one of the
dihedrals was scanned from -48° to +48° and the other one
from -48° to 0°, both in steps of 8°). Moreover, if any sub-
stituents with rotatable bonds were connected to the ring,
doing so would have the added advantage that the result-
ing redundancy could function as a consistency check. In-
deed, while the conformation of a 5-membered ring is fully
de�ned by two dihedrals, in a more general case, relaxed
PES are prone to hysteresis in the energy associated with
dihedrals that are being relaxed, and repeating a scan in
a di�erent direction is a common method to identify and
correct such hysteresis. As in the two dihedral scans, the
angle scans (�gures 4b and 4c) are symmetric around the
�rst bisector of the plot; however, they do not posses the
point symmetry (more precisely central symmetry) that
is unique to dihedrals in achiral molecules. Again, scan-
ning a triangle is technically inconvenient, so the entire
surface was scanned.
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Table S1: Final �tted parameters for Hexopyranose monosaccharides

* Parameters generated by analogy by

* ParamChem least-squares fitting version 0.8.8.0 alpha

* RMSE = 0.561613

*

DIHEDRALS

OD306A CD31HA OD31F HDP1A 1.0146 1 0.00 ! RMSE = 0.561613

OD306A CD31HA OD31F HDP1A 1.0785 2 0.00 ! RMSE = 0.561613

OD306A CD31HA OD31F HDP1A 0.0169 3 180.00 ! RMSE = 0.561613

CD31HB CD31HA OD31F HDP1A 0.3991 1 0.00 ! RMSE = 0.561613

CD31HB CD31HA OD31F HDP1A 0.1491 2 0.00 ! RMSE = 0.561613

CD31HB CD31HA OD31F HDP1A 0.5645 3 0.00 ! RMSE = 0.561613

CD31HA CD31HB OD31F HDP1A 0.0231 1 180.00 ! RMSE = 0.561613

CD31HA CD31HB OD31F HDP1A 0.4967 2 0.00 ! RMSE = 0.561613

CD31HA CD31HB OD31F HDP1A 0.2024 3 0.00 ! RMSE = 0.561613

CD31HB CD31HB OD31F HDP1A 0.3113 1 0.00 ! RMSE = 0.561613

CD31HB CD31HB OD31F HDP1A 0.3404 2 0.00 ! RMSE = 0.561613

CD31HB CD31HB OD31F HDP1A 0.3597 3 0.00 ! RMSE = 0.561613

CD31HC CD31HB OD31F HDP1A 0.2674 1 0.00 ! RMSE = 0.561613

CD31HC CD31HB OD31F HDP1A 0.4684 2 0.00 ! RMSE = 0.561613

CD31HC CD31HB OD31F HDP1A 0.2486 3 0.00 ! RMSE = 0.561613

CD31HC CD32A OD31A HDP1A 0.7172 1 0.00 ! RMSE = 0.561613

CD31HC CD32A OD31A HDP1A 0.7544 2 0.00 ! RMSE = 0.561613

CD31HC CD32A OD31A HDP1A 0.1744 3 0.00 ! RMSE = 0.561613

OD306A CD31HC CD32A OD31A 1.0465 1 180.00 ! RMSE = 0.561613

OD306A CD31HC CD32A OD31A 0.4194 2 0.00 ! RMSE = 0.561613

OD306A CD31HC CD32A OD31A 0.2015 3 0.00 ! RMSE = 0.561613

CD31HB CD31HC CD32A OD31A 0.1296 1 180.00 ! RMSE = 0.561613

CD31HB CD31HC CD32A OD31A 0.0201 2 0.00 ! RMSE = 0.561613

CD31HB CD31HC CD32A OD31A 0.4119 3 180.00 ! RMSE = 0.561613

CD32A CD31HC OD306A CD31HA 0.0766 1 180.00 ! RMSE = 0.561613

CD32A CD31HC OD306A CD31HA 0.0352 2 180.00 ! RMSE = 0.561613

CD32A CD31HC OD306A CD31HA 0.3231 3 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HC CD32A 0.4627 1 180.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HC CD32A 0.1419 2 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HC CD32A 0.0145 3 180.00 ! RMSE = 0.561613

OD31F CD31HB CD31HC CD32A 2.5093 1 0.00 ! RMSE = 0.561613

OD31F CD31HB CD31HC CD32A 0.6924 2 180.00 ! RMSE = 0.561613

OD31F CD31HB CD31HC CD32A 0.1247 3 180.00 ! RMSE = 0.561613
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CD31HC CD31HB CD31HB OD31F 0.1361 1 0.00 ! RMSE = 0.561613

CD31HC CD31HB CD31HB OD31F 0.0384 2 180.00 ! RMSE = 0.561613

CD31HC CD31HB CD31HB OD31F 0.1620 3 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HB CD31HC 0.0732 1 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HB CD31HC 0.0551 2 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HB CD31HC 0.0797 3 180.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HB CD31HC 0.4129 4 180.00 ! RMSE = 0.561613

CD31HB CD31HA OD306A CD31HC 0.1475 1 180.00 ! RMSE = 0.561613

CD31HB CD31HA OD306A CD31HC 0.0866 2 180.00 ! RMSE = 0.561613

CD31HB CD31HA OD306A CD31HC 0.1668 3 0.00 ! RMSE = 0.561613

CD31HB CD31HA OD306A CD31HC 0.0928 4 0.00 ! RMSE = 0.561613

OD31F CD31HA OD306A CD31HC 0.8500 1 180.00 ! RMSE = 0.561613

OD31F CD31HA OD306A CD31HC 0.0066 2 0.00 ! RMSE = 0.561613

OD31F CD31HA OD306A CD31HC 0.2383 3 180.00 ! RMSE = 0.561613

CD31HA CD31HB CD31HB CD31HB 0.2372 1 180.00 ! RMSE = 0.561613

CD31HA CD31HB CD31HB CD31HB 0.1534 2 180.00 ! RMSE = 0.561613

CD31HA CD31HB CD31HB CD31HB 0.0216 3 180.00 ! RMSE = 0.561613

CD31HA CD31HB CD31HB CD31HB 0.2722 4 180.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HB OD31F 0.1236 1 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HB OD31F 0.1346 2 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HB OD31F 0.1225 3 180.00 ! RMSE = 0.561613

CD31HB CD31HC OD306A CD31HA 0.3593 1 180.00 ! RMSE = 0.561613

CD31HB CD31HC OD306A CD31HA 0.1939 2 180.00 ! RMSE = 0.561613

CD31HB CD31HC OD306A CD31HA 0.3261 3 0.00 ! RMSE = 0.561613

CD31HB CD31HC OD306A CD31HA 0.2151 4 0.00 ! RMSE = 0.561613

OD31F CD31HB CD31HC OD306A 0.0586 1 180.00 ! RMSE = 0.561613

OD31F CD31HB CD31HC OD306A 0.2710 2 0.00 ! RMSE = 0.561613

OD31F CD31HB CD31HC OD306A 0.3295 3 180.00 ! RMSE = 0.561613

OD31F CD31HB CD31HB OD31F 0.8264 1 180.00 ! RMSE = 0.561613

OD31F CD31HB CD31HB OD31F 0.0281 2 0.00 ! RMSE = 0.561613

OD31F CD31HB CD31HB OD31F 0.0961 3 0.00 ! RMSE = 0.561613

CD31HA CD31HB CD31HB OD31F 0.1790 1 0.00 ! RMSE = 0.561613

CD31HA CD31HB CD31HB OD31F 0.0062 2 180.00 ! RMSE = 0.561613

CD31HA CD31HB CD31HB OD31F 0.8373 3 180.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HC OD306A 0.1392 1 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HC OD306A 0.0300 2 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HC OD306A 0.0307 3 0.00 ! RMSE = 0.561613

CD31HB CD31HB CD31HC OD306A 0.7560 4 0.00 ! RMSE = 0.561613

OD306A CD31HA CD31HB CD31HB 0.1017 1 180.00 ! RMSE = 0.561613

OD306A CD31HA CD31HB CD31HB 0.0862 2 180.00 ! RMSE = 0.561613

OD306A CD31HA CD31HB CD31HB 0.0564 3 180.00 ! RMSE = 0.561613

OD306A CD31HA CD31HB CD31HB 0.1435 4 180.00 ! RMSE = 0.561613

OD31F CD31HA CD31HB CD31HB 0.1531 1 180.00 ! RMSE = 0.561613

OD31F CD31HA CD31HB CD31HB 0.4706 2 180.00 ! RMSE = 0.561613

OD31F CD31HA CD31HB CD31HB 0.4317 3 180.00 ! RMSE = 0.561613

OD306A CD31HA CD31HB OD31F 0.1350 1 180.00 ! RMSE = 0.561613

OD306A CD31HA CD31HB OD31F 0.0952 2 180.00 ! RMSE = 0.561613

OD306A CD31HA CD31HB OD31F 0.1673 3 0.00 ! RMSE = 0.561613

OD31F CD31HA CD31HB OD31F 0.5995 1 180.00 ! RMSE = 0.561613

OD31F CD31HA CD31HB OD31F 0.3742 2 0.00 ! RMSE = 0.561613

OD31F CD31HA CD31HB OD31F 0.0036 3 180.00 ! RMSE = 0.561613

END
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