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INTRODUCTION

The sulfate-reducing bacteria form a special-
ized group of microbes that use sulfate as terminal
electron acceptor for their respiration. Though
many microbes generate H2S metabolically,
sulfate often being the primary source of that
H2S, the process is normally a small-scale one
involving the incorporation of sulfur into cell
protein and its subsequent degradation by
catabolic and autolytic processes. Dissimilatory
(or respiratory) sulfate reduction is a direct
process that involves 10- to 100-fold greater
turnovers of sulfur. It is of great physiological
interest because of the analogies sulfate res-
piration provides with oxygen and nitrate res-
piration; for example, the metabolism of these
bacteria is essentially oxidative, involving a
cytochrome system and respiratory chain phos-
phorylation, yet to the bacteriologist they are
among the most awkward and exacting of anaero-
bes. Their carbon metabolism is generally incom-
plete, yielding fatty acids as well as C02, yet
with certain substrates (pyruvate, choline),
some strains can conduct "sulfate-free" growth
analogous to the facultatively anaerobic growth
of an aerobe. Recently a most exciting vista of
anaerobic assimilatory processes, such as that
performed with iso-butanol, has been uncovered.

Despite their anaerobic habit, representatives
of the group tolerate some of the most extreme
terrestial conditions of heat, cold, salinity, and
pressure, so that, in an era when science may be
poised on the discovery of a true exobiology,
knowledge of bacteria so firmly independent of
the common terrestial environment assumes
renewed interest. In more mundane terms, the
ubiquity of these bacteria and their proneness to
generate large quantities of H2S lead to a variety
of impressive industrial, economic, and ecological
effects, and for this reason papers relevant to
them tend to be scattered over journals ranging
from purely academic to those devoted to detailed
technology. During the past 20 years, consider-
able advances have been made in our under-
standing of these bacteria; yet, no doubt because
of its scattered character, information about
these bacteria is not always readily accessible,
and, as a glance at any text book of microbiology
will show, this information has not penetrated
far beyond the circle of those directly concerned
with sulfate-reducing bacteria.

In two previous reviews (137, 139) I covered
several aspects of academic knowledge of sulfate-
reducing bacteria and attempted to deal ex-
haustively with their economic activities. Be-
cause of space limitations, certain aspects of the
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academic side were not covered, notably their
nutrition, hydrogen metabolism, chemical com-
position, and inhibition. The present review, then,
will attempt to cover these topics exhaustively
but will otherwise bring together mainly such
information as has come to my attention between
the dates of publication of my previous reviews
and the end of 1964. A general survey of these
bacteria was given by Starkey (184); reviews of
more limited aspects of their behavior will be
cited under the appropriate heading below.

CLASSIFICATION
Coleman (49, 50) described a new mesophilic,

sporeforming organism isolated from the rumen
of a hay-fed sheep. It had superficial resemblances
to Desulfovibrio orientis but was not curved; it has
since proved, by serological and deoxyribonucleic
acid (DNA)-composition tests, to be a mesophilic
relative to the sporogenous thermophile Clos-
tridium nigrificans (147), the base composition
of which is remote from that of six other clos-
tridia (160). A slight serological relationship
between D. orientis and the other two sporog-
enous types was observed; it seems likely that
D. orientis was incorrectly assigned to the genus
Desulfovibrio by Adams and Postgate (55). A
case has been made for classifying all three
sporogenous types in a separate genus for which
the name Desulfotomaculum has been proposed by
Campbell and Postgate (46). This name will be
adopted for the rest of the present review; the
three known species of this genus with their new
names follow: Desulfotomaculum nigrificans,
earlier Clostridium nigrifwans; Desulfotomaculum
orientis, earlier Desulfovtibrio orientis; Desulfo-
tomaculum ruminis, earlier "Coleman's orga-
nism."
The name Desulfovibrio will be retained for the

nonsporulating types. A new species of nonspor-
ulating vibrio was described and named Desulfo-
vibrio gigas by LeGall (109). It is large, granular in
appearance, and shows lophotrichous flagellation.
A survey of the buoyant density of DNA from
many strains of Desulfovibrio by Saunders et al.
(159) showed three categories: group 1 [61%
guanine + cytosine (G + C)], group 2 (52%
G + C), and group 3 (45% G + C); by one of
the remarkable coincidences that sometimes
advance science, Saleh (157) was surveying the
resistance to inhibitors of an almost identical
group of strains and observed that they fell into
three categories according to their tolerance of a
proprietary bactericide Hibitane (chlorhexidine;
bis-p-chlorophenyldiguanidohexane diacetate).
With one exception the chlorhexidine resistance
categories overlapped those of DNA composition,

suggesting that these properties will be of value
for compiling a rational classification of Desul-
fovibrio species. Attempts to reisolate Desulfovi-
brio rubentschikii, all unsuccessful, were published
(161), and renewed doubts were cast on the real
existence of this species. A choline-fermenting
anaerobe ("Vibrio cholinicus," 74) was identified
by growth, serology, and DNA-composition
tests as an ordinary Desulfovibrio (13, 166, 171).

GROWTH AND NUTRITION

Growth Curves and Yields

Desulfovibrio cultures normally show linear
growth and, indeed, provide excellent examples
of such growth; typical growth curves are avail-
able in an early publication by Senez (162), and
figures that may be found in the literature pur-
porting to be exponential are often seen to be
linear or indeterminate on careful inspection of
the experimental points. Linear growth may
arise for three reasons. (i) Sulfide accumulates in
the cultures during growth and acts as a growth
inhibitor. (ii) Sulfide precipitates iron, which is
required as a micronutrient, and thus decreases
its availability. (iii) Sulfide evaporates during
growth, thus lowering the pH value of the culture.
This pH change alters both growth rate and yield
and, in extreme cases, can cause alkaline lysis of
the population.
A fourth, practical, problem in determining

growth rates and yields arises because media
containing sufficient iron salts for optimal growth
darken as the culture grows, thus making photo-
electric turbidimetry difficult.

Unpublished experiments by L. L. Campbell
and myself indicate that sulfide inhibition takes
place at least partly by mechanism (ii), because
nonlinear growth curves can be obtained if citrate
or ethylenediaminetetraacetate (EDTA) is added
to the medium. Use of a weak-base sulfate,
together with a continuously renewed atmosphere
containing CO2 to buffer the medium and remove
sulfide, permits exponential growth in a defined
medium at a minimal doubling time of about 3
hr to produce cell yields in the region of 0.75 mg
(dry weight) of organism per ml. LeGall and Senez
(110) and Senez (164) quoted exponential-growth
rates and final cell yields, but they have so far
published insufficient experimental data for one
to judge whether these parameters were optimal
in their experiments. Quantitative data based on
growth rates and yields of sulfate-reducing
bacteria should be interpreted with reserve
unless the above considerations have been ex-
plicitly allowed for.
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Inorganic Nutrition
Butlin, Adams, and Thomas (43) showed that

Desulfovibrio has an absolute requirement for
inorganic iron. Postgate (136) determined the
optimal concentration at 10 to 15 jig-atoms of
Fe per liter; his strain was capable of growth
without sulfate in pyruvate media and had no
absolute iron requirement in those circumstances.
Hata (69) confirmed a requirement for iron. Hata
(70) showed that marine Desulfovibrio required
Na+, K+, Mg2+, S042, C17, CO32, and H2POC
for growth but not Ca2+ or Br-% Senez and Pascal
(166) stated that Desulfovibrio requires HCO3' for
growth with choline; a requirement for HC03' in
complex media was also recorded (134). The
sporeforming sulfate-reducing bacteria contain
cytochromes, and, thus, an iron requirement is to
be expected; it has been reported in the case of
Desulfotomaculum ruminis (50).

Organic Nutrition
Stimulation of growth or sulfide yield, or

both, by materials such as yeast extract or
peptone has been reported often (19, 38, 43, 119,
134). Postgate (134) analyzed the effects of
peptone and yeast extract by replacement studies
and attributed them to their content of serine,
ornithine, isoleucine, and cysteine; his early
experiments were confused by use of an impure
culture, but the finding was still valid for purified
strains of Desulfov'ibrio (135). Grossman and
Postgate (66) then observed that the effect of
cysteine had nothing to do with nutrition: it
poised the Eh value of the medium at a level
favorable to growth and could be, for example,
replaced by Na2S. Unpublished work by the
writer indicates that ornithine, serine, and
isoleucine can be replaced by the chelating agent
EDTA; consequently these amino acids may
simply render inorganic iron available in the
presence of sulfide. That amino acids and pep-
tones increase the solubility of FeS has been
known for some years (122). Thus, the situation
returns to the position held in 1949: inorganic
iron partly accounts for the growth-stimulating
effect of yeast extract; the other stimulants are
unidentified and may not, in fact, be real in a
nutritional sense. Similar criticisms must be
applied to some recent work in this field. Kadota
and Miyoshi (93, 94) found that 18 amino acids
plus adenosine triphosphate (ATP) would replace
ammonium for a salt-water strain of Desulfovibrio
(strain "maizuru"). In view of the involvement
of ATP in sulfate activation (below), unqualified
evidence that ATP has growth factor activity
would be of great interest; unfortunately Kadota

and Miyoshi's reports must be criticized on four
grounds: (i) there is no evidence that chelating
effects on traces of iron were considered; (ii) the
buffering power of their medium was so slight as
to render yield experiments dubious; (iii) despite
the report to the contrary of Kimata, Kadota,
and Hata (100), their strain grows well with
ammonium as sole nitrogen source in other
laboratories; and (iv) preparation of their basal
medium involved filtration after autoclaving
(93), a procedure which is known to remove iron
by a coprecipitation mechanism. Although one
must doubt the evidence so far presented by
Kadota and Miyoshi, it is noteworthy that
Macpherson and Miller (116) claimed stimulation
of growth of a fresh-water strain by ATP and
amino acids. The question requires re-exam-
ination, and at present the status of ATP as a
micronutrient growth stimulant is doubtful.

Several published studies have used sulfide
rather than cell yield as an index of growth.
Stimulation of sulfide yield by excess ferrous
salts (38), and ascorbate or cysteine (148) has
been reported. These effects can reasonably be
attributed to the reducing action of the additives
on the media. Iya and Sreenivasaya (87) noted
that urea, peptone, or casein hydrolysate ac-
celerated sulfide formation by a salt-requiring
strain [Postgate (134) found no effect of urea on
growth yield]. Bunker (38) and Miller (119)
showed that a wide variety of organic materials
accelerated sulfide formation; Wiken and Ghose
(196) found a similar effect with biotin at 25
A4M [biotin at this concentration did not affect
the cell yield of the Hildenborough strain (Post-
gate, unpublished data)]. Sulfide yields depend
stoichiometrically on the carbon source and are
influenced both by chelating agents and by the
Eh of the medium; the significance of studies on
sulfide yields to understanding the nutrition of
these bacteria is therefore marginal.
Coleman (50) showed that D. ruminis re-

quired iron, p-aminobenzoic acid, and biotin for
growth; otherwise, the nutrition of Desulfo-
tomaculum species has not been studied system-
atically.

Autotrophy
Though sulfate-reducing bacteria are widely

believed to be facultative autotrophs, the reports
of Mechalas and Rittenberg (117) and Postgate
(140) cast doubt on their autotrophic status. The
proportions of labeled C02 incorporated during
putatively autotrophic growth never exceeded 15
to 25% of the cel carbon and usually only differed
slightly from the amounts of C02 assimilated
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during heterotrophic growth. This conflict with
earlier findings might be dismissed as due to
strain differences, but the strain used in this work
was in fact "Hildenborough," one of those found
by Butlin and Adams (42) to establish autotrophy
originally. The explanation seems to depend on
the fact that even the purest laboratory reagents
contain traces of organic matter; for example,
0.067 M phosphate buffer can support growth of
about 106 coliform bacteria per milliliter (61,
187). These impurities support growth of Desul-
fovibrio and the illusion of autotrophy occurs,
because, when incubated under hydrogen, the
bacteria utilize the impurities more efficiently
because they obtain energy from the H2-sulfate
reaction. Consequently, better growth on im-
purities appears under H2 than under N2, under A,
or in vacuo. Mechalas and Rittenberg showed
that H2 is an inorganic representative of several
substrates that are energy, but not carbon,
sources for Desulfovibrio, and they studied par-
ticularly the case of iso-butanol. Growth with
this substrate required yeast extract, and neither
labeled C09. nor iso-butanol carbon was incor-
porated into the cells appreciably, though iso-
butanol was oxidized stoichiometrically to iso-bu-
tyric acid. Postgate (142) isolated a strain uniquely
able to utilize oxamate and showed that the func-
tionof oxamate was probably similar to that of
H2: it was an energy, but not a carbon, source.
Oxamidase, oxalic decarboxylase, and formic hy-
drogenlyase activities were demonstrated, indicat-
ing that oxamate was formally equivalent to hydro-
gen in the metabolism of this strain. Assimilation
reactions coupled with oxidation of energy sources
such as H2, iso-butanol, or oxamate recall the
function of glucose in the metabolism of Strep-
tococcus faecalis (see 18) and are probably of wide
importance in the ecology of Desulfouibrio; their
use of hydrogen as an energy source for such
reactions is at present a unique example of
"litho-heterotrophy" among microorganisms.
Comparable assimilatory reactions should be
sought among other chemotrophic bacteria,
particularly those that give poor growth yields
in "autotrophic" conditions.

ESTIMATION AND CULTIVATION
Abd-el-Malek and Rizk (1) published evidence

that the presence of contaminants was not neces-
sary for the success of their counting procedure
involving the use of an iron nail. Bufton (36)
examined several media and showed that none
was quantitatively satisfactory for the thermo-
phile D. nigrificans. Postgate (143) published a
procedure permitting colony counts on impure
cultures and natural samples for which only
most probable number (MPN) determinations

were hitherto reliable. Genovese, Rigano, and
La Cava (see 62j) had success with a comparable
thioglycolate medium. Postgate (138, 146)
described procedures for obtaining enrichment
cultures and isolating pure cultures of sulfate-
reducing bacteria.

Salt Tolerance
Ochynski and Postgate (123) showed that

salt-water strains of Desulfovibrio differed from
fresh-water strains in having lower osmotic
fragility, a different amino nitrogen pool, and in
forming a viscous mucin. Some, but not all, of
the characters studied by Ochynski and Postgate
were acquired or lost on training a salt- or fresh-
water strain to grow in the opposite environment.
The strains compared by these authors are now
known to differ according to the DNA composi-
tion and chlorhexidine resistance tests mentioned
above.

Dostalek and Kvet (57) observed that sulfate-
reducing bacteria can be placed in three dif-
ferent groups described by their ability to grow
in media of various salinities; Kutznetzova and
Pantskhava (107) and Kutznetzova, Li, and
Tiforova (108) used a similar principle in eco-
logical studies to be discussed later; Hata (71)
surveyed the salt tolerance of various strains of
marine sulfate-reducing bacteria.

INHIBITION
A comprehensive survey of inhibitors tested

with sulfate-reducing bacteria was published,
with full quantitative details, by Saleh, Mac-
pherson, and Miller (158). It is a valuable sum-
mary of an otherwise scattered literature to
which the interested reader is referred. Notable
points concerning inhibitor studies include the
finding of Bennett and Bauerle (21) that mixed
populations of Pseudomonas aeruginosa and
D. desulfuricans show a different pattern of
sensitivity to inhibitors from those shown by
either species alone, and Saleh's (157) discovery
that various strains of sulfate-reducing bacteria
can be categorized according to their resistance
to certain inhibitors. Desulfotomaculum species
show greater general sensitivity to inhibitors
than do the nonsporulating types. The latter
show three classes of sensitivity to the microbi-
cides chlorhexidine and cetyltrimethylammonium
bromide. The taxonomic importance of this
categorization was mentioned earlier; in the
present context emphasis should be placed on
the remarkably high resistance to these microbi-
cides shown by Saleh's "group 3" strains of
Desulfovibrio.

Of more academic importance is the finding of
Ghose and Wiken (63) that short chain fatty
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acids exert an inhibitory effect by lowering the
growth rates of cultures. Acetate is an end
product of growth in most conventional media,
but the concentrations recorded by Ghose and
Wiken as inhibitory are above those normally to
be expected before the stationary phase of
growth is reached.

HYDROGEN METABOLISM
Though Stephenson and Stickland (186)

regarded hydrogenase as exceptional when they
first discovered it in sulfate-reducing bacteria, it
is now known to be widespread. Sisler and ZoBell
(174) observed that 33 of 39 cultures absorbed
hydrogen over nine weeks at 28 C. Twenty-four
pure strains of Desulfovibrio, tested as nongrowing
suspensions by the author, showed hydrogenase
activity towards sulfate or dyestuffs. Adams
et al. (7) reported a hydrogenase-deficient strain
of Desulfovibrio, but the culture was lost. D.
ruminis showed hydrogenase activity (50); D.
orientis did not (5). Only four of seven strains of
D. nigrificans examined by the author showed
hydrogenase activity to dyestuffs. The substrates
that act as hydrogen acceptors for sulfate-re-
ducing bacteria are discussed briefly below.

Sulfur-containing anions such as sulfate,
sulfite, thiosulfate, tetrathionate, etc. are reduced
in hydrogen by intact cell suspensions of Desul-
fovibrio. D. ruminis reduced sulfate, sulfite,
thiosulfate, or, apparently, persulfate (50), pro-
vided yeast extract was present in the reaction
vessel. D. nigificans does not reduce sulfate in
hydrogen when tested as a washed suspension in
phosphate buffer.
Dye reductions are generally faster than

substrate reductions. Methylene blue can inhibit
hydrogenase activity of Desulfovibrio, a phenom-
enon augmented by NaCl (101, 115), and methyl
violet or a viologen dye seem less risky as sub-
strates for tests with this genus. Methyl violet
is unsuitable for D. nirficans (9). Table 1
illustrates that the rate of dye reduction by
Desulfotvibrio may depend on a permeability
factor: organisms made permeable to small
molecules by treatment with a detergent reduced
certain dyes more rapidly than did undamaged
cells.
The " Knallgass" reaction occurs in Desulfovibrio

as a consequence of the autoxidizability of
cytochrome c3 and has no known physiological
importance (see 137).

Nitrate is not reduced by pure cultures of
Desulfovibrio (170). Nitrite or hydroxylamine
become reduced as a consequence of the autoxi-
dizability of cytochrome ca (149, 167, 168).
Hydroxylamine is reduced by hydrogenase from
D. nigrificans (195).

Sorokin (176) obtained CO2 fixation by resting
Desulfovibrio utilizing hydrogen to reduce sulfate.
CO2 uptake could be separated from hydrogen
absorption and involved no direct coupling of the
hydrogenase and CO2.

Certain Desulfovibrio strains reduce fumarate
faster than sulfate in hydrogen (67, 174) to yield
succinate. Fumarate and other carbon compounds
accelerate the reduction of sulfate in hydrogen by
resting suspensions (67, 163).

Selenite is reduced by extracts of D. desul-
furicans (120) but not by intact cells (133) and is
thus an extreme case of the permeability barrier
referred to above. Cytochrome C3 and flavins are
reduced readily by enzyme preparations but

TABLE 1. Influence of permeability on rate of dye
reduction in hudroaen*

Q valuet

Acceptor dye
Intact Bacteria +

bacteria CTAB

Janus green ................... 690 3,100
Sodium indigodisulfonate...... 300 960
Phenol-indo-dichlorophenol 210 940
Methylene blue ................ 2,730 2,730

* Desulfovibrio desulfuricans (Hildenborough)
from a continuous culture was washed and tested
for dye reduction under hydrogen by conventional
Warburg manometry. The osmotic barrier was
destroyed by adding cetyltrimethylammonium
bromide (CTAB) at 0.1 mg/mg (dry weight)
of equivalent organisms, and in some cases an
augmented reduction rate was observed.

t Rates (Q) expressed as microliters of H2
absorbed per milligram (dry weight) of organisms
per hour.

slowly, if at all, by intact cells. Enzyme prepara-
tions from Desulfovibrio reduce ferricyanide (152),
nitroprusside (104), and azo-pyridine but not
several other azo-compounds (45). The deuterium
exchange reaction and the ortho-para hydrogen
conversion, as well as "reversed" evolution of
H2 from dithionite, have been demonstrated (103,
131, 149).
Hydrogenase may be extracted from cells of

Desulfotribrio by many conventional procedures;
what proportion of the hydrogenase is truly
soluble apparently depends on the strain of
bacteria, the manner in which it is grown, and the
extraction procedure. Rittenberg and Krasna
(149) obtained exclusively particulate prepar-
ations, but Sadana and Jagannathan (154)
obtained a soluble preparation using ostensibly
the same strain. Sadana and his colleagues have
obtained the purest hydrogenase preparation on
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record from Desulfovibrio (153, 154, 155), in-
cluding one that is free from cytochrome c3. Riklis
and Rittenberg (149a) later obtained a soluble
hydrogenase from Desulfovtibrio and estimated its
molecular weight as between 9,000 and 15,000
from diffusion and ultracentrifugal studies.
Krasna, Rickles, and Rittenberg (105) studied
the inhibition pattern of hydrogenase from
Desulfovibrio and showed that it resembled that
of Proteus vulgaris though it conducted a more
rapid exchange reaction between H2 and D20.
Sadana's group decided from inhibition studies
that iron was a functional element in the pros-
thetic group of the enzyme, a view also favored
by Rittenberg's school. Sadana's group claimed
activation of purified enzyme preparations by
FeCI2 or FeCl3, but Rittenberg's school, using
less highly purified preparations, has not con-
firmed this report. Sadana and Rittenberg (156)
provided added support for the view that iron is
a cofactor by demonstrating light-reversible
inhibition by carbon monoxide of the D2-exchange
reaction. Since contamination of preparations by
iron-containing materials such as cytochrome
C3 or ferredoxin is probable, analytical data are
not of great value in considering whether iron
is involved. Postgate (136) showed that iron-
deficient strains possess about one-fifth of their
normal hydrogenase content, but his media may
well have been deficient in trace metals other
than iron as well.
A cell-free hydrogenase from D. nigrificans was

particulate and, unlike the enzyme of Desulfovi-
brio, it did not reduce methyl violet: benzyl
viologen was the least inhibitory substrate. Loss
of activity after dialysis and its restoration
by adding inorganic iron were demonstrated;
inhibition by iron-chelating agents was also
reported (9). A very similar particulate enzyme
from D. ruminis also showed activation by iron
(37). A curious finding, that cytochrome ca is
reduced by hydrogenase from D. nigrificans, was
mentioned by Valentine and Wolfe (195).

CARBON METABOLISM

The important observations of Mechalas and
Rittenberg concerning the assimilation of nu-
trients by Desulfovtibrio, together with their
reflection on the autotrophic status of this group,
were discussed earlier.

Sttiven (188) studied an obligate salt-requiring
strain of Desulfovtibrio and mentioned that mucin
formation was maximal in media based on py-
ruvate. Studies with carbon-labeled substrates
indicated that heterotrophic and "autotrophic"
assimilation took place and also that acetate, the
normal end product of carbon dissimilation, was
assimilated (189). CO2 assimilation by Desul-

fovibrio during heterotrophic growth is more
pronounced than by other heterotrophs: Postgate
(140) quoted figures about three times those
obtained with Aerobacter aerogenes, and Sorokin's
(177, 178) strain achieved the impressive figure of
30% of its cell carbon fixed from CO2 compared
with 3 to 8% fixed by other heterotrophs. With
lactate as growth substrate, Sorokin's strain
fixed 30% of its cell carbon from the carboxyl
group (179).
Though acetate is formed from substrates such

as ethyl alcohol, succinate, malate, and lactate,
Mechalas and Rittenberg (117) reported for-
mation of homologues of acetate from homologues
of ethyl alcohol (e.g., propionic acid from pro-
panol). Formate does not yield acetate during
growth and is probably formally equivalent
to hydrogen and not a true substrate; certainly
it gives very low yields of Desulfovibrio. Yagi
(200, 201, 202) reported reversible oxidation of
CO by sulfite in cell-free extracts, stimulated by
formate. The reaction was essentially a generation
of hydrogen from the reaction, CO + H20
CO2 + H2, followed by the normal sulfite-hydro-
genase interaction.

Postgate's (142) proposal of the pathway
oxamate -÷ oxalate -* formate -*1H2 + CO2
for oxamate metabolism by a special strain was
mentioned earlier. Hayward and Stadtman (74)
described an organism, later classified as Desul-
fovibrio, which was able to grow in sulfate-free
media with choline as growth substrate. Sonic
extracts decomposed choline to ethyl alcohol,
acetate, and trimethylamine; the reaction was
coupled with ATP formation and iron was in-
volved (75). Acetaldehyde was formed in the
dismutation reaction, and glutathione, nicotin-
amide adenine dinucleotide phosphate (NADP),
and coenzyme A were needed in addition (73).
Choline metabolism is fairly common among
Desulfovibrio species (13, 166). Sulfate-free
growth in pyruvate media has been reported in
D. nigrificans (144) to yield acetate, hydrogen,
and CO2; Akagi (8) extracted its phosphoclastic
system, which functions at 50 C and requires
coenzyme A, thiamine diphosphate, and certain
cations. D. ruminis, unlike D. orientis, also shows
sulfate-free growth with pyruvate (147).

Kaplan and Rittenberg (98) have shown that
fractionation of carbon isotopes takes place
during growth of Desulfoviio on lactate and, if
sulfite is the electron acceptor, is greater the
slower the culture grows. C12 is enriched in both
cell carbon and CO2.

SULFUR METABOLISM

The major advance in this field during the last
5 years has been the resolution of the sulfate
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reductase system of Desulfovibrio by Peck (124)
and by Ishimoto (81). Cell-free extracts of De-
sulfovibrio species were found to reduce sulfate
provided stoichiometric amounts of ATP were
present, and the primary activation step proved
to be formation of adenosine-5-phosphosulfate
(APS), not the phospho-adenosine phosphosul-
fate (PAPS) of sulfate esterification (82, 124,
126, 128, 129, 130). APS is formed from ATP
and sulfate by the enzyme ATP-sulfurylase.
This enzyme has been extracted from Desulfo-
vibrio and considerably purified (10, 14). The
ATP-sulfurylase of D. nigriftcans has an increased
heat stability over that from Desulfovtibrio (10).
APS is reduced by the enzyme APS-reductase
which has also been extracted and partly purified
(83, 129), and which yields sulfite, pyrophos-
phate (PP), and adenosine monophosphate
(AMP) as the reduction products. Peck (128)
showed that APS-reductase was also present in
Thiobacillus species and that it is characteristic
of organisms whose metabolism is based on a
gross turnover of inorganic sulfur. Assimilatory
sulfur metabolism is characterized by PAPS
reduction (see also 77, 85). The APS-reductase of
Desulfovibrio gives some reverse action when
tested in the conditions in which thiobacilli form
sulfate from sulfite (127). The reduction of APS
is "pulled" in sulfate-reducing bacteria by a pyro-
phosphatase (124) which has been extracted and
purified (11, 83, 130). Thus, the initial steps of
sulfate reduction can be expressed as:

S042- + ATP = APS + PP
PP + H20-- 2 P
APS + 2 e = AMP + SO32-

Peck (130) ably reviewed knowledge of these
and associated reactions; details of their en-
zymology and enzyme chemistry will not be
reviewed here.
During sulfate reduction these reactions lead

to a net loss of one ATP molecule per sulfate ion
reduced. Considering the reaction

2 Lactate- + S042-
- > 2 Acetate- + 2H20 + 2C02 + S2-

which is known to pass through pyruvate and
acetyl phosphate, it is obvious that substrate
level phosphorylation is equivalent to the regen-
eration of one ATP molecule (equivalent to two
acetyl phosphates) per sulfate ion reduced. Thus,
respiratory chain phosphorylation must occur
for the organisms to grow at all, and Peck (125)
presented evidence for such reactions based on
inhibitor studies. The energy balances in sulfate-
reducing bacteria, particularly when growing
with a relatively oxidized carbon source such as
succinate, provide fascinating problems in bac-

terial energetics; it is unfortunate that the special
growth characteristics of this group, discussed
earlier, render studies of these problems by
means of growth yields valueless at present.
Growth yield studies misled Senez (164) into

proposing that sulfite required activation just as
does sulfate, because cell yields were similar in
sulfite and sulfate media. In fact, cell-free sulfite
reduction takes place readily without ATP; Post-
gate's report (141) that ATP or acetyl phosphate
augmented sulfite reduction can be attributed to
the presences of sulfate in the substrate and of
the sulfate reductase system in the particulate
enzyme preparation. Though particulate prepa-
rations are active, soluble sulfite reductase prep-
arations can be obtained and, by depletion with
ion-exchange resins, the involvement of cyto-
chrome c3 claimed earlier has been demonstrated
unequivocally by Ishimoto and Yagi (84). At
least one, and possibly as many as three, electron-
transporting cofactors seem to be involved in
addition to c3 during sulfite reduction (141). The
later steps en route to sulfide are unknown and
may not, in fact, be represented by stable inter-
mediates.

Furusaka (59) criticized earlier work elimi-
nating gross permeability of Desulfovibrio to
sulfate and, using labeled sulfate, presented evi-
dence that a pool of sulfate exists within the cell
when sulfate is being metabolized; accumulation
of sulfate in the pool was antagonized by selenate.
His technique did not unequivocally identify the
"pool" material as sulfate: any intermediate
sulfur derivative would have been recovered as
sulfate, but it provided evidence that radioactive
sulfur accumulated in the cells at about one-
eleventh of the rate of its reduction. A 10-fold
difference in rate roughly distinguishes dissimila-
tory from assimilatory sulfate reduction; since
dissimilatory sulfate reducers must also conduct
assimilatory reactions the possibility remains that
Furusaka's accumulated sulfur compounds were
unrelated to the respiratory reduction of sulfate
to sulfide. Kaplan and Rittenberg (97) considered
the relevance of isotope fractionation data to the
question of the existence of a sulfate pool and
concluded that no useful deduction would be
made, because an improbably strong pool (2 M
with respect to sulfate) would be required to in-
terpret the considerable fractionations performed
by these bacteria. The fractionation of sulfur
isotopes conducted by sulfate-reducing bacteria
is of considerable importance in geochemistry
and ecology (see below); it appears at its maximal
extent when the bacteria are growing slowly at a
relatively low temperature (91, 92, 96, 97, 121)
and is generally more pronounced in nature than
in the laboratory (121).
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NITROGEN METABOLISM
Sisler and ZoBell's (174) early claim that certain

strains of Desulfovibrio fix atmospheric nitrogen
was confirmed by LeGall, Senez, and Pichinoty
(111), who isolated new strains (the "Berre"
strains) and deposited them with a recognized
collection. LeGall and Senez (110) reported that
growth was slow and yields were low when these
strains grew with gaseous nitrogen. Most strains
of Desulfovibrio do not fix nitrogen. Other aspects
of the nitrogen metabolism of this group have
shown little advance apart from Cattaneo and
Senez's (47) 330-fold purification of a 3-aspartate
decarboxylase from Desulfovibrio.

CHEMISTRY AND FUNCTION OF CERTAIN
CELL CONSTITUENTS

Subba Rao (190) found most of the common
amino acids in hydrolysates of a salt-water De-
sulfovibrio. Work and Dewey (199) identified
diaminopimelic acid. Pools of free amino material
exist in Desulfovibrio, the character of which
depends on the salt habit of the strain examined;
sporeforming sulfate-reducing bacteria have
little pool material (123). Qualitative analysis of
cell walls of Desulfovibrio showed the usual
amino acids, including diaminopimelic, together
with glucosamine and a pentose resembling ri-
bose (123).
Many workers have recorded the presence of

mucoid material, particularly in old culture of
Desulfovtibrio. In the Hildenborough strain it is a
muco-polymannoside (123, 183); its synthesis is
related to the salt habit of the strain for reasons
that are not clear.
Cytochrome c3 was reviewed by the author

(141). Takahashi, Titani, and Minakami (193)
published its amino acid composition, Horio and
Kamen (79) crystallized it and reported on vari-
ous physical properties, and Corval, Horio, and
Kamen (52) described its amino acid composi-
tion, noting its high content of cysteine and ly-
sine. Slight differences between the findings of
Takahashi et al. and those of Corval et al. may
be attributed to strain differences between the
organisms used. Unqualified involvement of cyto-
chrome C3 in sulfate reduction has been shown
and was discussed in the section on sulfur me-
tabolism. Cytochromes of the b type have been
reported in both mesophilic Desulfotomaculum
species (5, 147), but the evidence for cytochromes
in the thermophiles remains oblique. Pyridine
hemochromes may be found spectroscopically
after suitably destructive treatment of the orga-
nisms.
The function of the porphyroprotein desulfo-

viridin has become more mysterious with the

report of Miller and Saleh (118) of strain Nor-
way 4, a putative mutant of Desulfovibrio that is
devoid of this pigment. Though morphologically
unusual, strain Norway 4 seems to be biochem-
ically normal.

Ferredoxin has been extracted from Desulfo-
tibrio (192), but its function is obscure. It will
replace the natural nucleotide reductase of spin-
ach leaves. Valentine and Wolfe (195) showed
that ferredoxin from Clostridium pasteurianum
would act as cofactor for pyruvic phosphoclastic
enzymes extracted from Desulfovibrio, but they
did not use the native ferredoxin from Desulfo-
vibrio. Akagi (8) found that C. pasteurianum fer-
redoxin is active in the phosphoclastic system of
D. nigrificans, though he could extract no native
ferredoxin from D. nigrificans. This finding partly
conflicts with Valentine and Wolfe's (195) earlier
report that C. pasteurianum ferredoxin was not
active for the phosphoclastic system of D. nigrif-
icans; it was also inactive in hydroxylamine
reduction by hydrogenase from D. nigrificans
and in the sulfite-hydrogenase system of Desulfo-
vtibrio.
Coenzyme Q is absent from Desulfovibrio (112);

a statement to the contrary (51) was mistaken
(T. Cook, personal communication).
Data on the DNA base composition of various

strains are available; serological data have also
been obtained and used in taxonomic studies.
Both subjects were discussed in the first section
of this review in which recent literature citations
may be found.

ECONOMIC ACTIVITIES
This section brings up to date my earlier review

(139) of this subject.

Waters and Soils
Furusaka and Hattori (60) used the hydrogen-

ase activity of paddy field soil samples towards
sulfate, sulfite, or thiosulfate as a measure of
their content of sulfate-reducing bacteria. Silica
gel may be used as a soil substitute in laboratory
experiments designed to mimic the natural en-
vironment (72). Desrochers and Fredette (55)
showed that the population of sulfate-reducing
bacteria in the Ottawa River increased dramat-
ically downstream from a paper mill. Lighthart
(114) showed that their growth in a California
reservoir was associated with a marked drop in
redox potential; he recorded bacterial numbers.
Studies by Kadota's group on the ecology of sul-
fate-reducing bacteria in certain Japanese waters
were summarized in English by Kadota and
Miyoshi (95).

General experience with polluted waters seems
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to indicate that counts of 104 to 106 sulfate-
reducing bacteria per milliliter are associated with
serious pollution; sewage may have counts as
high as 107 per milliliter. Data for populations
of sulfate-reducing bacteria at various times and
locations in the river Thames over a period of
12 months are available in a report by Booth,
Cooper, and Tiller (33) on corrosion experiments.
Their report did not specify that a counting me-
dium of poised Eh was, in fact, used (G. Booth,
personal communication). Sorokin (180) used
S0435 measurements to show that sulfate-reducing
bacteria were most active in the near-shore sedi-
ments of the Black Sea. He has published several
papers on the use of isotopes for determining
microbial activity in natural ecosystems, nor-
mally including sulfate-reducing bacteria among
the types investigated. His findings emphasize
the importance of chemotrophic CO2 fixation in
the carbon cycle and give some measure of the
contribution of sulfate-reducing bacteria to this
cycle. This and related work is reviewed in two
recent articles (181, 182); the former has an al-
most complete bibliography of Sorokin's work in
this field. Kaplan, Emery, and Rittenberg (99)
obtained the plausible count of 3.5 X 107 sulfate-
reducing bacteria per milliliter of marine sedi-
ment off Santa Barbara by what is possibly the
most back-handed count on bacteriological
record: back-calculation from isotope fractiona-
tion data. Isotope fractionation is of great impor-
tance in studying the ecological and geological
activities of these bacteria and has been the sub-
ject of a symposium (88); extreme isotope frac-
tionation may occur in certain natural environ-
ments (54). Genovese, in a sequence of papers
(62, 62a to k), has continued his studies of Lake
Faro in Messina, recorded a new outbreak of red
water (due to Thiorhodacease), and recorded
counts, sulfide concentrations, and Eh values at
various levels over a long period. A paradoxical
situation exists in the deeper mud, where the
H2S concentration is high but the bacterial count
is low. Wood (198) reported an unusual type of
water pollution due to these bacteria: they in-
creased the Fe content of water in an iron main
by corrosion, and the black FeS suspension sub-
sequently yielded "rusty" water from domestic
taps. Unaerated deep well water is likely to cause
this problem; it can be solved by aeration (197).
Adams and Postgate (6) recorded that the

heat-resistant sulfate-reducing bacteria in soils
were not Desulfovtibrio but were of the mesophilic
Desulfotomaculum type. Among the limited num-
bers of soils examined they were the more ubiq-
uitous. Ochynski and Postgate (123) mentioned
the curious absence of reports of sporeformers
from marine environments, despite the readiness

with which fresh water strains of Desulfotomacu-
lum acclimatize to seawater. Senez (165) reviewed
the ecology of sulfate-reducing bacteria with
particular emphasis on their activities in the sea.

Effluent Treatment

The use in India of crude cultures of sulfate-
reducing bacteria for the treatment of distillery
wastes has been reported (17, 64, 65). Compa-
rable work has continued in Czechoslovakia (15,
16) where the bacteria were used to treat dis-
tillery and citric acid wastes. In both instances
assignment of the effective organism to the spe-
cies Desulfovibrio rubentschickii is probably in-
correct. An important advantage, in general
sewage works practice, of a sulfate-reducing fer-
mentation as against a methane fermentation for
the treatment of sewage sludge lies in the de-
creased water content of the digested product
(39, 102).

Mineral Formation
The British project for the production of sul

fide by bacterial fermentation was discontinued
It had reached the stage of economic feasibility
(44) and had shown the economic bonus of im.
proved dewatering if sewage sludge were used as
reducing agent. Accounts of pilot plant experi-
ments in a sewage works were given (39, 40, 41),
Pipes (132) studied a laboratory model of the
sulfide fermentation of sewage. Details of yields
as well as extraction, disposal, and corrosion
problems associated with the process are now
available; it may be expected to be revived as the
world's resources of native sulfur become depleted
once more. That the formation of natural sulfur
from gypsum involves sulfate-reducing bacteria
in the reductive steps is confirmed by quantita-
tive counts (86, 151). Ivanov (see 106) attributed
20% of the oxidative step to thiobacilli and 80%
to chemical action in the Or-Shu sulfur beds of
the U.S.S.R.

Mineral sulfide and other reduced sulfur de-
posits occur where sulfureta are active, though
Gunkel and Oppenheimer's (68) data indicate
that much of the reduced sulfur in marine sedi-
ments originates from organic sulfur. Ault and
Kulp (12), from a study of sulfur isotope ratios
in very many deposits, have questioned the sug-
gestion of Thode's school that the earliest sul-
fureta occurred some 8 X 108 years ago, and have
detected biological isotope ratios in rocks as old
as 2 X 109 years. Jensen (88) edited a symposium
on the biogeochemistry of sulfur isotopes.

Berner (22) implicated sulfate-reducing bac-
teria in the formation of hydrotroilite, a precur-
sor of iron pyrites. A remarkable observation,
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that in special circumstances these bacteria gave
rise to a magnetic iron sulfide, was reported by
Freke and Tate (58). Sukow and Schwartz (191)
added iron and copper salts to laboratory sul-
fureta and noted that their behavior was consist-
ent with a probable function in the natural for-
mation of copper sulfide ores. Davidson (53) criti-
cized the idea of a biogenic origin of copper sul-
fide on the grounds that Desulfo'vibrio was ex-
cessively sensitive to copper ion toxicity, a
criticism supported by Booth and Mercer (27).
Cheney and Jensen (48) rightly objected to
Davidson's argument on the grounds that much
soil copper is nonionic and presumably nontoxic;
Booth and Mercer's argument took no account
of the detoxifying effect of H2S towards copper
and thus ignored the point that an actively
growing population of sulfate-reducing bacteria
could precipitate and therefore detoxify copper
far in excess of the concentration required to pre-
vent the initiation of growth. Studies on the sul-
fur isotope distribution in copper sulfide deposits
might be valuable in this context. Abd-el-Malek
and Rizk (2, 3, 4) confirmed the hypothetical
role of sulfate-reducing bacteria in the formation
of natural soda deposits by a chemical and bac-
teriological examination of Wadi Natrun in
Egypt. Jensen and Nakai (89), from isotope
fractionation data, attributed a biogenic origin
to most of the atmospheric sulfur outside indus-
trial areas.

Corrosion

Reviews of bacterial corrosion were published
by Postgate (145) and Booth (26). Booth and
his colleagues have made impressive progress in
establishing that cathodic depolarization is a
major mechanism of anaerobic corrosion by sul-
fate-reducing bacteria, correlating corrosion
rates and polarization curves with the hydrogen-
ase contents of the strain and species used (30,
31, 32, 194). Anodic processes may influence the
corrosion rate with certain strains, however.
Hoar and Farrer's (78) evidence against cathodic
depolarization was insubstantial and has been
properly criticized (25). The view that tannates
inhibit growth may now be dismissed and so may
the claim that they protect against anaerobic
corrosion: careful experiments show that mimosa
tannin may somewhat augment such corrosion
(24, 29). The preservation of ancient iron objects
in certain environments, once attributed to tan-
nates, seems due to a particularly impenetrable
phosphate coating (34, 35). Tannates lower the
hydrogenase contents of Desulfovibrio strains
(28); so, as mentioned earlier, does iron defi-
ciency, and it is likely that the effects of tannates

in this direction depend on their chelating effects
on iron. Solti and Horvath (175) and Horvath
(80) studied polarization curves of iron in the
presence of sulfate-reducing bacteria and also
supported the cathodic depolarization mecha-
nism; Blanton and Oppenheimer (23) published
an elementary demonstration of a function of
sulfate-reducing bacteria in marine corrosion.
Booth, Cooper, and Tiller (33) studied corrosion
rates of steel samples in the river Thames and
associated these findings with counts of sulfate-
reducing bacteria in the water. Their experi-
ments are being continued and should ultimately
give an estimate of the importance of aerobic
versus anaerobic corrosion in this environment

Pitting of aluminum by Desulfovibrio has been
claimed by Hedrick et al. (76), whose publication
includes the impressive self-contradiction that
the bacteria were cultured aerobically.

Oil Technology
Baumgartner (20) has reviewed the role of

sulfate-reducing bacteria in corrosion and the
blockage of injection waters. Dostalek (56) has
provided more details of enhanced secondary
recovery after injection of sulfate-reducing bac-
teria into oil wells. Some progress has been
claimed on ZoBell's (203) provoking question
whether the sulfate-reducing bacteria in oil wells
are truly indigenous. Dostalek and Kvet (57), as
well as Kutznetzova and her colleagues (107,
108), maintained that the salt tolerance of in-
digenous sulfate-reducing bacteria should match
the salinity of their environment; Kutznetzova
and her colleagues argued that, since the sulfate-
reducing bacteria in brines from the Romaskhina
oil field grew better in more dilute media they
could not be indigenous. The logic of this argu-
ment eludes the present reviewer: inability to
grow rapidly in its habitual environment may
equally have survival value for an organism in
nature.

Miscellaneous
Starkey (185) reviewed the behavior of these

bacteria with particular emphasis on their role
in the paper industry. Russell (150) uncovered a
complex situation whereby growth of Desulfo-
vibrio in waterlogged pulp wood led to the thio-
lignin formation. This material neutralized mer-
curical fungicides added at a later stage in paper
manufacture and permitted rotting. Levin et al.
(113) incriminated Desulfovibrio in the spoilage
of brines used for preserving olives. In a publica-
tion inadvertently omitted from my earlier
reviews, Johnson, Postlethwaite, and Rittenberg
(90) proved that Desulfovibrio is not concerned
in the maturing of pottery clays. Sisler (172) has
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rediscovered the fact that an oxidation-reduction
cell yields current, and has given a cell with a sul-
fate-reducing bacterial culture as half-cell the
name "biochemical fuel cell." It seems that the
aqueous environments, particularly the sea, are
fraught with such cells which, according to Sisler
and Senftle (173), will not behave in predictable
fashions because of interference by the earth's
magnetic field.
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