

Supplementary Figure 1. Full blot for Kalirin expression analysis. Kalirin isoforms were detected with a pan antibody (JH2580), with Tubulin as loading controls.

а

Supplementary Figure 2. Expression analysis of spinal dorsal horn Kalirin isoforms derived from the mouse *Kalrn* gene. (A) Immunohistochemistry with a pan-Kalirin antibody revealed immunoreactivity in the neuropil of the superficial spinal dorsal horn (middle), which was blocked by preincubation with the antigen-bearing peptide (far right) (Scale bar = 300μ m). (B) RT-PCR analysis of diverse Kalirin transcripts within the spinal cord. Individual amplicons were digested with specific restriction enzymes to verify specificity according to the site maps shown below. (C) 3' RACE was performed to validate the presence of functional full length isoforms of particular interest. Results showed that Kal-7 has two major versions of 3' UTR (1.0 Kb, 1.5 kb respectively). (D) Cloning of each individual 3' UTR (L - longer or S - shorter form in Kal-7).

Supplementary Figure 3. Strategy for deletion of Kal-7 specifically in the spinal dorsal horn and analysis of other isoforms. (A) Two tandem injections AAV-Cre-2A-GFP into the spinal dorsal horn *in vivo* led to a rostro-caudally 4 mm long transduced area in the superficial lumbar spinal cord stretching over spinal segments L3, L4 & L5 (Scale bar = $300 \mu m$). (B) Following AAV-Cre injection into the prefrontal cortex, Cre-mediated Kalirin-7 deletion was validated by quantitative RT-PCR. In contrast, expression of other major isoforms, such as Kal-9 and Kal-12, was increased (n = 3; * p < 0.01, data were collected from 3 independent experiments, two-way ANOVA followed by Bonferroni post-hoc test), as seen in other brain regions in the Kal7^{-/-} mouse. Error bars represent standard error of the mean (s.e.m.).

Supplementary Figure 4. Behavioral characterization of the effects of spinal deletion of Kal-7 via targeting distinct exons of the *Kalrn* gene. (A) Deletion of Kal-7 in spinal dorsal horn neurons (SDH-Kal7^{-/-} mice) did not alter basal sensitivity to mechanical stimuli as compared to the control mice (n = 11-16 per group). Error bars represent standard error of the mean (s.e.m.).

Supplementary Figure 5. Disrupting interactions of endogenous Kal-7 with PDZ domain proteins in spinal neurons via intracellular application of a Kal-7 C-terminal (CT) interfering peptide did not exert significant effect on membrane properties and excitability of spino-PAG projection neurons or basal synaptic transmission. Resting membrane potential (RMP), action potential (AP) properties, such as amplitude (A & B), half-width (C), threshold (D), latency of first AP (E), Rheobase (F) and firing frequency (G) to depolarizing step current were not altered by Kal-CT interfering peptide (10 μ M). Error bars represent standard error of the mean (s.e.m.).

Supplementary Tables:

Gene Name	Oligo Name	Sequence (5'->3')	
Full front Kalirin	Kal-Top-FL	CACAGCCACAGCCAACTACTCCAAG	
	Kal-FLI-3'	TTGGTGTGCGTGTGGAAAGAGAC	
Delta front Kalirin	∆Kal-Top	TGACTTTGCCTCACTTTTGTTGCTG	
	Kal-∆-3'	TCTTCGCCTTCCTTGATGACATT	
Kalirin7-specific	KalEx33A_for	ATGGGGTAGAGGATGGTGACAG	
	Kal7_UTR_rev2	AGGTTGGGAGCTGGGGAAGTAC	
Kalirin8-specific	KalEx36A_for	GACAACGACCCCACACAGGATG	
	Kal8_UTR_rev	TCGTGAAATTAGGATGTGGGAG	
Kalirin9-specific	KalEx48A_for	CTCTGCCACCCCTGAAGATAT	
	Kal9_UTR_rev	AAATGTAGCAACGGAAGGCATG	
Kalirin12-specific	KalEx59A_for	GCTGATGGAAGAAAAGGTAGCT	
	Kal12_UTR_rev	CTTGGAGTAGCTGCCGTTGTGG	

Supplementary Table 1 Primers for RT-PCR

Gene Name	Oligo Name	Sequence	Tm (°C)	Expected Size		
GAPDH	mrCandh tan	TTGTCAGCAATGCATCCTGCACCACC	61	110 hr		
NM_008084.2	migapon-top			rig pp		
	mrGapdh-rev2bot	CTGAGTGGCAGTGATGGCATGGAC	61			
Kalirin7-specific	KalEx33-for	GATACCATATCCATTGCCTCCAGGACC	61	127 bp		
	Kal7unique-rev	CCAGGCTGCGCGCTAAACGTAAG	62			
Kalirin9-specific	KalEx51-for	GCCCCTCGCCAAAGCCACAGC	62	125 bp		
	Kal9unique-rev	CCAGTGAGTCCCGTGGTGGGC	62			
Kalirin12-specific	KalEx62-for	CAGCAGCCACGTGCCTGCAGC	62	140 bp		
	KalEx62-rev	TCTTGACATTGGGAATGGGCCGCAC	61			

Supplementary Table 2 Primers for Quantitative Real Time-PCR