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Supplemental Text 
 
Updating previous compilations 
 
Paleontological sequence data from two recent compilations (1, 2) were retained, with the 
following exceptions: 

• Unpublished data from Hunt and Brown in (1) was replaced with published versions (3). 
• We corrected an error in one sequence from (2) for a sequence published by Bown and 

Rose (4). 
• Two studies computed a large number of principal component scores that were included 

in the original compilations.  As trailing axes are likely to be dominated by sampling 
error, we discarded all PC scores beyond PC 6 for the data from Hunt (5) and Kim et al. 
(6).  

• The earlier compilations analyzed sequences with at least six sampled populations.  We 
increased this threshold to seven to lessen the difficulty in assessing evolutionary mode in 
very short sequences.   

  
 
Evolutionary models considered in this paper 
 
Random Walks and Directional Evolution.  Time in these models occurs in discrete 
increments, at each of which an evolutionary change is drawn independently from a distribution 
of evolutionary steps. As long as more than a few generations occur between sampling 
opportunities, the behavior of this model depends only on the mean and variance of the step 
distribution (7). If the mean of the step distribution is zero, on average traits increase as much as 
they decrease, and the result is an unbiased random walk (hereafter, random walk).  If the mean 
step is nonzero, the resulting sequence has underlying directionality, although a trend might not 
be evident in a particular realization if it is weak compared to the variability endowed by the step 
variance. Directional evolution has three parameters: the ancestral state, the mean step, and the 
step variance. A random walk is a special case of this directional evolution model in which the 
mean step is zero. 
 
Stasis.  Stasis has been modeled in various ways in the literature. Here we follow Sheets and 
Mitchell (8) in construing stasis as white noise – uncorrelated, normally distributed variation 
around a steady mean. This model has two parameters: the mean and the variance around that 
mean. 
 
This model of stasis has the same mathematical form as sampling error, so it will have a 
tendency to be preferred whenever true evolutionary changes are quite small, regardless of their 
form (7, 9). For example, if a trend or random walk results in trait changes so modest that they 
are swamped by sampling noise, it is likely that the stasis model will win any model comparison.  
This property is not necessarily a disadvantage, though, as it is consistent with notions of stasis 
that emphasis the magnitude of change rather than their form (see discussion in 10).   
 
Strict Stasis.  This model is a special case of stasis for which the variance around the long-term 
mean is zero.  In other words, this represents the strictest notion of stasis as no real evolutionary 



differences among samples; all observed differences in this model must be accounted for by 
sampling error. This is a useful model because it is of biological interest to distinguish truly 
static morphologies from the broader definition of stasis that can encompass substantial 
fluctuations around a steady mean.  In addition, this model allows us to avoid ambiguous model 
interpretation when there are no real evolutionary differences among samples in a sequence. In 
this case, the stasis model (with zero variance) and the random walk model (with zero step 
variance) become equivalent, and thus have equal likelihoods and model support. This shared 
support for two models makes it seem as though there is equal evidence for two different modes 
of evolution, whereas instead both model fits are special cases that correspond to the same 
model. Adding strict stasis solves this issue because, even though it has the same likelihood as 
stasis with a fitted variance parameter of zero, it has one fewer parameter and therefore garners 
higher model support because of its parsimony advantage. 
 
Punctuations.  This model is discussed extensively elsewhere (11), where it is referred to as an 
“unsampled punctuation.” This model involves two segments of stasis with an instantaneous 
shift in the stasis mean between the two segments. We constrain the stasis variance to be shared 
across the two segments (see 11), so this model has four parameters: two stasis means (one for 
each segment), a stasis variance that is shared across segments, and the timing of the shift from 
one stasis interval to the other. 
 
Mode-shift models.  This kind of model, discussed briefly in (11), considers an evolutionary 
sequence to be composed of two segments, each of which evolves according to its own 
evolutionary model. Full maximum-likelihood inference (the “Joint” option in the paleoTS 
package) uses the appropriate likelihood functions in (12), applied to each segment separately.  
These models were named according to the operative models in the two segments of the 
sequence, separated by a hyphen: 

• Stasis – Random walk has four parameters: the stasis mean and variance, the step 
variance (rate) of the random walk, and the timing of the mode shift. The ancestral trait 
value of the random walk segment was taken to be the stasis mean of the initial segment. 

• Stasis – Directional has the same parameters as above, plus an additional directionality 
parameter (the mean step) that determines the strength of the trend. 

• Random walk – Stasis has five parameters: the ancestral state value and step variance of 
the random walk, the mean and variance of stasis, and the timing of the mode shift. 

• Directional – Stasis has the same parameters as Random walk – Stasis, plus an additional 
directionality parameter (the mean step) that determines the strength of the trend. 

 
 
Age model error 
 
Fitting evolutionary models requires that ages be estimated for the analyzed fossil populations 
and such age models are always subject to uncertainty. Some kinds of chronological errors will 
not affect the relative support of different models (11), such as those that are uniformly additive 
or multiplicative (i.e., all ages are too old or young by the same amount or factor). Thus, the 
kinds of error that are of most concern are those that alter the relative temporal spacing of 
samples.   
 



Constructing age models involves some degree of age interpolation because it is almost never 
practical, or even possible, to directly date all samples independently. Rather, one or more tie 
points of absolute age (or absolute durations between points) are determined, and then an 
assumption of constant sedimentation rate is used to assign ages to samples between tie points. 
Given this interpolation, it is a possible that paleontological age models may systematically miss 
real, significant variations in sedimentation rates. If this is the case for a particular fossil series, it 
is likely that its age model will be overly smooth because of this undetected variation.  
 
When just one or a few time-series are of interest, it is prudent to perform simulations that 
explore model fits over plausible alternative age models (11). This is impractical for a large 
compilation, and so instead we use a series of simulations to explore the potential for undetected 
variation in sedimentation rate to influence our analyses. Specifically, we simulate trait evolution 
under simple models of evolutionary mode (random walk, directional change, stasis) and real age 
models that have substantial variation in sedimentation rates. We then smooth these 
sedimentation rates so that samples are wrongly assumed to be equally spaced. Finally, we fit the 
full set of models to the trait data under the correct and incorrect age models. Of particular 
interest is whether undetected variation in sedimentation rate shifts support towards or away 
from complex (punctuated and mode-shift) models of evolutionary mode. 
 
All simulated time series were assumed to span 1 Myr.  Sampling times were generated by 
sampling ages uniformly from 0 to 1 Myr and sorting from smallest to largest. This produces age 
models with substantial variation in temporal spacing; most points are rather close together with 
fewer larger gaps (point-to-point durations are exponentially distributed under this approach). 
These true age models were retained, and smoothed age models were also generated by spacing 
points evenly over the 1 Myr duration of the sequence.  This smoothing is probably 
unrealistically severe for many sedimentological conditions, biasing against our 
methods/assumptions in the primary analyses of this paper. However, it is valuable to exaggerate 
this effect in order to get an upper bound on its likely role. We generated trait sequences 
according to (i) a random walk with unit step variance, (ii) a moderately strong trend (mean step 
= 2, unit step variance), and (iii) stasis (stasis variance = 1). We simulated sequences of 21, 41, 
and 61 samples, with 500 replicates for each combination of generating model and sequence 
length. 
 
For each realized sequence, we fit the suite of nine models to the trait data using the true and 
(incorrectly) smoothed age models. We are most concerned that undetected variation in 
sedimentation rates might unduly favor complex evolutionary models, so we summarized the 
aggregate support for all complex models as their summed Akaike weights and compared this 
value across both age models. Figure S9 plots the difference between this summed support 
between the true and smoothed age models, with positive values indicating that support for 
complex models is spuriously increased by smoothing the spacing between samples.   
 
There is a tendency for age model error caused by undetected variation in sedimentation rate to 
shift support to more complex models of evolution, but the effect is not large. The median 
increase in summed Akaike weight across mode-shift and punctuational models ranges from 
2.5% to 7.8% across different null models and sequence lengths (Fig. S9). Importantly, this 



effect does not vary much with sequence length. Thus, this source of age model error is not 
likely to account for the increasing dominance of complex models in longer sequences.   
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Supplemental Tables 
 
Table S1.  Post-hoc significant differences among env and taxon variables values for logistic 
model predicting whether Strict Stasis will be the best-supported model.  The environment 
variable (env) takes on values of lacustrine, marine-deep, marine-pelagic, marine-shelf, and 
terrestrial.  The taxon variable has possible values of macroinvertebrate (invert), benthic 
microfossil (bm), planktonic microfossil (pm) and vertebrate (vert).  Significance codes: ***, P < 
0.001; **, P < 0.01; *, P < 0.05 
 
Variable  Difference Estimate P-value 
env marine.deep – lacustrine 5.4778 0.00442 ** 
 marine.pelag – lacustrine  4.7036 0.01118 * 
 marine.shelf – lacustrine  4.5704 0.0132 * 
 terrestrial – lacustrine  1.7487 0.46269 
 marine.pelag – marine.deep  -0.7742 0.6871 
 marine.shelf – marine.deep  -0.9074 0.35331 
 terrestrial – marine.deep  -3.729 0.01773 * 
 marine.shelf – marine.pelag -0.1332 0.99559 
 terrestrial – marine.pelag  -2.9549 0.05515 
 terrestrial – marine.shelf  -2.8217 0.06277 
    
taxon invert – bm 1.6126 < 0.001 *** 
 pm – bm  -0.9824 0.33927 
 vert – bm  3.7171 0.00572 ** 
 pm – invert  -2.595 < 0.001 *** 
 vert – invert  2.1045 0.17943 
 vert – pm  4.6995 < 0.001 *** 
 
 
  



Table S2.  Post-hoc significant differences among env and taxon variables values for logistic 
model predicting whether Stasis (including strict stasis) will be the best-supported model. 
Conventions follow Table S1. 
 
Variable  Difference Estimate P-value 
env marine.deep – lacustrine 2.549 0.03961 * 
 marine.pelag – lacustrine  1.4196 0.36652 
 marine.shelf – lacustrine  2.2357 0.02407 * 
 terrestrial – lacustrine  -0.5064 0.94329 
 marine.pelag – marine.deep  -1.1294 0.26155 
 marine.shelf – marine.deep  -0.3133 0.95474 
 terrestrial – marine.deep  -3.0554 0.00141 ** 
 marine.shelf – marine.pelag 0.8161 0.14939 
 terrestrial – marine.pelag  -1.926 0.04047 * 
 terrestrial – marine.shelf  -2.7421 < 0.001 *** 
    
taxon invert – bm 1.8388 <0.001 *** 
 pm – bm  1.0022 0.16 
 vert – bm  2.8095 <0.001 *** 
 pm – invert  -0.8366 0.1058 
 vert – invert  0.9707 0.36 
 vert – pm  1.8073 0.0542 
 
  



 
 
Table S3.  Post-hoc significant differences among env and taxon variables values for logistic 
model predicting whether Directional evolution will be the best-supported model. Conventions 
follow Table S1.  Contrasts for the environment variable not shown because this variable was not 
retained by the stepwise AIC procedure. 
 
Variable  Difference Estimate P-value 
taxon invert – bm -0.8178 0.195 
 pm – bm  -0.5265 0.545 
 vert – bm  0.1509 0.988 
 pm – invert  0.2914 0.817 
 vert – invert  0.9688 0.121 
 vert – pm  0.6774 0.368 
 
  



Table S4.  Post-hoc significant differences among env and taxon variables values for logistic 
model predicting whether any of the complex models will be the best-supported model. 
Conventions follow Table S1. 
 
Variable  Difference Estimate P-value 
env marine.deep – lacustrine -1.807 0.43301 
 marine.pelag – lacustrine  -15.8814 1 
 marine.shelf – lacustrine  -1.1714 0.4024 
 terrestrial – lacustrine  0.8891 0.71845 
 marine.pelag – marine.deep  -14.0744 1 
 marine.shelf – marine.deep  0.6357 0.93397 
 terrestrial – marine.deep  2.6961 0.06197 
 marine.shelf – marine.pelag 14.7101 1 
 terrestrial – marine.pelag  16.7705 1 
 terrestrial – marine.shelf  2.0604 0.00981 ** 
    
taxon invert – bm -1.1914 0.04847 * 
 pm – bm  14.5462 1 
 vert – bm  -2.8895 0.00183 ** 
 pm – invert  15.7376 1 
 vert – invert  -1.6981 0.05362 
 vert – pm  -17.4357 1 
 
 
  



Table S5.  Frequency with which each model is the best supported under the “Joint” and “AD” 
approaches to fitting the models, which correspond to maximum-likelihood (ML) and restricted 
maximum-likelihood (REML), respectively.  Number of estimated parameters for each model in 
parentheses; where number is different for the “AD” approach, this is given in italics (the “AD” 
approach does not require a parameter estimating the trait mean at the beginning of the series, 
12). Conventions follow Table 1.   
   
Model category Model Joint (ML) AD (REML) 
Simple Strict Stasis (1) 124  144 
 Stasis (2) 147 153 
 Random Walk (2, 1) 201 190 
 Directional (3, 2) 62 27 
Complex  Punctuation (4) 67 92 
 Stasis-RW (4) 19 30 
 Stasis-Dir (5) 16 8 
 RW-Stasis (5, 4) 59 59 
 Dir-Stasis (6, 5) 14 6 
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Figure S1.  Sequence duration plotted with respect to 
sequence length for the 709 time-series of trait evolu-
tion captured in the fossil record.  Points are semi-
transparent; darker shades represent overplotting of 
multiple points.  Both variables plotted on a logarithmic 
scale.
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Figure S2. Example of a species lineage where all measured traits show the same mode of 
evolution (here, a shift from a random walk to stasis) and the shift in evolutionary 
dynamics coincides in time. Error bars represent 95% confidence intevals. Red line shows 
maximum-likelihood solution and pink lines show all solutions within 1.92 log-likelihood 
units of the maximum-likelihood solution (corresponding to a 95% confidence interval around 
the placement of the shift point).  Time in millions of years ago. Data from Stephanodiscus 
yellowstonensis (13). (A) Diameter of diatom test. (B) Number of costae. (C) Number of spines. 
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Figure S3. Example of a species lineage where measured traits show the same mode of 
evolution (here, punctuation bracketed by two intervals of stasis) but the timing of the 
shift in evolutionary dynamics is different. Error bars are 95% confidence intervals. 
Red line shows maximum-likelihood solution (no other shift points are in the 95% 
confidence interval around the placement of the shift point). Time in millions of years 
ago. Data from Calcidiscus leptoporus (14). (A) Diameter of distal shield. (B) Number of 
elements in distal shield.    
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Figure S4. Example of a species lineage where most measured traits show coordinated timing 
of shifts in evolutionary dynamics even though the pattern of evolution varies. Error bars are 
95% confidence intervals. Red line shows maximum-likelihood solution and pink lines show 
all solutions within 1.92 log-likelihood units of the maximum-likelihood solution (corresponding 
to a 95% confidence interval around the placement of the shift point). Time in millions of years 
ago. Data from Contusotruncata sp. (15). (A) Conicity of test, best-fit by a random walk shifting 
to stasis. (B) Mean test size, best-fit by stasis followed by a random walk. (C) Mean number of 
chambers in the last whorl, best-fit by stasis followed by a random walk. (D) Mean spiral 
roundness of test, best-fit by a punctuation separating two intervals of stasis. (E) Mean number 
of chambers, best-fit by a punctuation separating two intervals of stasis.  
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Figure S5. Example of a species lineage where both evolutionary mode and timing of shifts 
in evolutionary mode (where they occur) vary across measured traits. Error bars are 95% 
confidence intervals. Red line shows maximum-likelihood solution and pink lines show all 
solutions within 1.92 log-likelihood units of the maximum-likelihood solution (corresponding 
to a 95% confidence interval around the placement of the shift point). Time in millions of years. 
Data from Miogypsina sp. (16). (A) Diameter of protoconch, best-fit model is a random walk. 
(B) Orientation of nepiont, best-fit model is stasis followed by directional evolution. (C) Degree 
of symmetry of the protocochial spirals, best-fit model is stasis followed by a random walk.
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Figure S6.  Results of simulations from the temperature-tracking model, calibrated by 
Poseidonamics major (left) and Neotoma cinerea (right).  Vertical axis is magnitude of 
evolutionary variation measured as the standard deviation of samples in a sequence, with 
the contribution from measurement error removed (see Methods).  Horizontal axis is 
sequence duration, in years and on a log10 scale (a value of 6 is 1 Myr).  Points are 
semi-transparent and lines represent locally weighted (lowess) regressions with a 
smoother span = 0.5.  
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Figure S7.  Results of simulations suggesting complex models can be 
unduly favored by AICc when simple models are true.  Shown is the 
distribution of best-supported models for 200 simulated random walks 
under three sequence lengths: ns = 20, ns = 40, and ns = 60 (in 
yellow, orange, and red, respectively).   Mode-shift models are 
increasingly favored as the number of samples in a sequence 
increase.  
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Figure S8.  Illustration of two calibrations of the temperature-tracking model based on instances 
of Bergmann’s rule, an inverse relationship between body size and temperature.  In blue is the 
deep-sea ostracode Poseidonamics major and in red is the packrat Neotoma cinerea.  The lines 
capture the slopes of the temperature-size relationships (intercepts do not matter and are 
arbitrary here). Points illustrate the magnitude of residual variance (generated from 1,000 
uniformly distributed temperatures).  
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Figure S9. Boxplots summarizing the effects of age model error caused by undetected variation
 in sedimentation rate.  The quantity plotted is the difference in the aggregate support for complex
evolutionary models (summed Akaike weights for punctuation and mode-shift models).  Median 
is horizontal bar; box is interquartile range, thick vertical lines delimit 90% probability region and 
thin bars give total range over 500 simulated replicates.  Null models are random walk (RW), 
directional evolution (Dir), and stasis, with the number of samples (ns) in the sequence enclosed 
in brackets.  Positive values indicate that statistical support for complex models is increased by 
the presence of undetected variation in sedimentation rate.  


