Supporting Information

Pontes et al. 10.1073/pnas.1500989112

SI Materials and Methods

Digestion and Calcofluor Staining of Cellulose Fibers. After overnight growth in high-Mg²⁺ (10 mM) liquid medium, bacteria were washed three times in Mg²⁺-free medium, inoculated (1:50) into low-Mg²⁺ (10 μ M) liquid medium, and grown for 24 h. Culture supernatants were then removed, and the tubes containing cellular aggregates were rinsed three times with PBS. For cellulase treatment, the tubes were filled with 4 mL of either citrate buffer (9 mM citric acid and 41 mM sodium citrate, pH 5.0), serving as a negative control, or citrate buffer supplemented with 0.1% cellulase (Sigma-Aldrich). Tubes were incubated overnight at 37 °C. The next morning, the contents of the tubes were mixed briefly to remove any loosely attached cellulose fibers from the glasses, and then the tubes were photographed.

For calcofluor staining, tubes were filled with 5 mL of either PBS, serving as a negative control, or PBS supplemented with 200 μ g/mL calcofluor. After a 30-min incubation at 37 °C in the dark, the liquid was removed and the flasks were washed three times with PBS. Tubes were then visualized under white or UV (365 nm) light. Visualization of cellulose on solid medium was carried out as follows. Single colonies grown on LB plates were resuspended in 100 μ L of dH₂O. Then 3 μ L of the suspension was spotted on N-minimal solid medium (1) supplemented with either 10 μ g/mL calcofluor or 20 μ g/mL Congo red. Plates were then incubated at 37 °C for 1 d (high Mg²⁺) or 2 d (low Mg²⁺) and photographed.

mRNA Extraction and Quantification. Samples from macrophages infected with *Salmonella* were harvested at 9 h postinfection using TRIzol solution. Total RNA from TRIzol and *Salmonella* cell samples collected during growth in N-minimal medium were purified using the RNeasy Kit (Qiagen) according to the manufacturer's instructions. cDNA was synthesized from RNA samples using the SuperScript VILO cDNA Synthesis Kit (Life Technologies) according to the manufacturer's instructions. Quantification of transcripts was performed by quantitative PCR (qPCR) using SYBR Green PCR Master Mix (Applied Biosystems) in an ABI 7500 Sequence Detection System (Applied Biosystems). Relative amounts of cDNA were determined using a standard curve obtained from qPCR with serially diluted genomic DNA. Transcript levels of *dnaK* served as a normalizing, internal control.

Assessment of Intracellular c-di-GMP Levels in Low-Mg²⁺ Medium. Overnight cultures grown in high-Mg²⁺ (10 mM) liquid medium were washed three times in Mg²⁺-free medium and inoculated (1:50) into low-Mg²⁺ (10 μ M) liquid medium. After 8 h of growth, the optical densities of the cultures were normalized to an OD₆₀₀ of 0.5, and 3 μ L was spotted on 2.5 μ M Mg²⁺ N-minimal solid medium supplemented with 25 μ g/mL ampicillin and 80 μ g/mL X-Gal. Plates were then incubated at 37 °C for 2 d and photographed.

Construction of Strains Containing the *bcsA*_{R700D} **Allele**. A single amino acid substitution in the BcsA c-di-GMP binding site (2) was generated in the chromosomal copy of the *bcsA* gene in WT *Salmonella* (strain 14028s) as described (3) using primers listed in Table S2. An *mgtC* deletion was then introduced into this strain by transducing the $\Delta mgtC$::Km^R allele from strain EL1 using phage P22 and subsequently removing the Km^R marker with the pCP20 helper plasmid (4).

Construction of the p_{phoP} **::***adrA att***Tn7 Strain.** Primers W1110 and W1111 were used to generate a gene fusion between the *phoP*

promoter and a promoterless diguanylate cyclase adrA gene from Salmonella (p_{phoP}::adrA) by qPCR using Salmonella genomic DNA as a template. The PCR product was ligated into pCR-XL-TOPO (Life Technologies) and transformed into DH5 α cells. The plasmid insert was then digested with NotI and XhoI and subcloned into pGRG36 (5) digested with the same restriction enzymes. The resulting construct was transformed into $DH5\alpha$ cells, which were maintained at 30 °C in the presence of 10 mM glucose. The pGRG36- pphop::adrA plasmid was then extracted from the *Escherichia coli* host (strain DH5 α), and the insert was integrated into Salmonella's Tn7 attachment site as described (5). Integration of the insert into the chromosomal Tn7 attachment site was verified by qPCR and DNA sequencing using primers 9454 and 9455. A clone containing a single base pair substitution between the putative phoP ribosome-biding site and the adrA translation start site (generated during the cloning process) exhibited re-duced cellulose production at high Mg^{2+} concentrations (data not shown) and was used in our experiments.

Construction of pUHE-BcsA Plasmid. Primers W897 and W898 were used in qPCR with *Salmonella* 14028s genomic DNA as a template. The PCR product was digested with PstI and ligated into plasmid pUHE-21–2-*lacI*^q (6) digested with the same restriction enzyme. The ligation reaction was used to transform DH5 α *E. coli* cells via heat-shock. The identity of the p_{lacI-6}-bcsA insert was verified by DNA sequencing.

Estimation of Phagocytosed Bacteria. The macrophage-like cell line J774A.1 was allowed to grow in cell culture plates to a density of $\sim 1 \times 10^5$ cells/well. Macrophages were then infected with *Salmonella* strains at a multiplicity of infection of 10 as described previously (7). After 30 min of phagocytosis, monolayers were washed twice with PBS and treated with gentamycin (100 µg/mL) for 1 h. Samples were then washed three times with sterile PBS, and macrophages were lyzed as described (7). The number of internalized bacteria was estimated by spreading 100 µL of serial dilutions onto LB plates as described (7).

Immunofluorescence Techniques. The macrophage-like cell line J774A.1 was allowed to grow on microscope coverslips and was then placed in cell culture plates to a density of $\sim 1 \times 10^5$ cells/mL These cells were then infected with Salmonella strains as described previously (7). After 9 h of intracellular growth, the medium was removed from samples, and monolayers were washed twice with sterile PBS. Samples were then fixed and permeabilized using the Cytofix/Cytoperm Fixation and Permeabilization Kit (BD Biosciences), and subsequently blocked overnight at 4°C with blocking buffer (1× BD Perm/Wash Buffer, 5% BSA, and 10 µg/mL mouse IgG in PBS). After blocking, samples were incubated at room temperature for 3 h with CBM3a peptide ($10 \mu g/mL$) (8) in blocking buffer. Samples were subsequently washed three times for 15 min with blocking buffer and then incubated at room temperature for 2 h with mouse anti-His Alexa Fluor 647 conjugate antibody (Qiagen), diluted 1:500 in blocking buffer.

After binding of tagged antibody, monolayers were washed at room temperature four times for 15 min each with blocking buffer. Coverslips were then mounted on microscope glass slides using ProLong Gold antifade reagent with DAPI (Life Technologies). After the coverslips were allowed to cure overnight at room temperature, slides were stored at -20 °C before microscopy. **Microscopy.** Fluorescent microscope images were acquired with a Nikon Eclipse TE2000-S microscope using DAPI, FITC, and

- García Véscovi E, Soncini FC, Groisman EA (1996) Mg²⁺ as an extracellular signal: Environmental regulation of *Salmonella* virulence. *Cell* 84(1):165–174.
- Zorraquino V, et al. (2013) Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J Bacteriol 195(3):417–428.
- Gerlach RG, Jäckel D, Hölzer SU, Hensel M (2009) Rapid oligonucleotide-based recombineering of the chromosome of Salmonella enterica. Appl Environ Microbiol 75(6):1575–1580.
- Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645.
- McKenzie GJ, Craig NL (2006) Fast, easy and efficient: Site-specific insertion of transgenes into enterobacterial chromosomes using Tn7 without need for selection of the insertion event. *BMC Microbiol* 6:39.
- Soncini FC, Véscovi EG, Groisman EA (1995) Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol 177(15):4364–4371.
- 7. Lee EJ, Pontes MH, Groisman EA (2013) A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F_1F_o ATP synthase. Cell 154(1):146–156.

- Blake AW, et al. (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281(39):29321–29329.
- Hanahan D (1985) in DNA Cloning: A Practical Approach, ed Glover DM (IRL, Oxford, UK), Vol. 1, pp 109–135.

Far-Red channels. Images were analyzed with Slidebook 5.5 software (Intelligent Imaging Innovations).

- Fields PI, Swanson RV, Haidaris CG, Heffron F (1986) Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 83(14):5189–5193.
- Soncini FC, García Véscovi E, Solomon F, Groisman EA (1996) Molecular basis of the magnesium deprivation response in *Salmonella typhimurium*: Identification of PhoPregulated genes. J Bacteriol 178(17):5092–5099.
- Lee EJ, Choi J, Groisman EA (2014) Control of a Salmonella virulence operon by proline-charged tRNA^(Pro). Proc Natl Acad Sci USA 111(8):3140–3145.
- May JF, Groisman EA (2013) Conflicting roles for a cell surface modification in Salmonella. Mol Microbiol 88(5):970–983.
- Chamnongpol S, Groisman EA (2002) Mg²⁺ homeostasis and avoidance of metal toxicity. Mol Microbiol 44(2):561–571.
- Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002) The glycolytic flux in *Escherichia coli* is controlled by the demand for ATP. J Bacteriol 184(14): 3909–3916.
- Sudarsan N, et al. (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413.
- Valdivia RH, Falkow S (1996) Bacterial genetics by flow cytometry: Rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22(2):367–378.

Fig. S1. Inactivation of the cellulose synthase gene *bcsA*, but not of genes specifying the synthesis of other surface components, partially restores growth of the *mgtC* mutant in low-Mg²⁺ (10 μ M) media without correcting ATP levels. (A) Growth curves of WT (14028s) and *mgtC* mutant (EL4) *Salmonella* strains in low-Mg²⁺ liquid medium. The arrow indicates the time at which the MgtC protein is normally produced. (*B*) Growth yield of isogenic *mgtC⁺* and *mgtC⁻ Salmonella* strains harboring mutations in genes that disrupt the biosynthesis of extracellular polymers (MP140, MP142, MP362, MP363, MP118, MP122, EG9524, MP125, MP116, MP120, MP70, and MP72). Cellu, cellulose; ECA, enterobacterial common antigen; CA, colanic acid; OAC, O-antigen capsule; OA, O-antigen. Error bars represent SDs. ***P* < 0.01, two-tailed *t* test; N.S., not significant. (*C*) ATP levels in the strains listed in *B* after 8 h of growth in low-Mg²⁺ medium. Results are representative of at least four independent experiments.

DNAS

Fig. 52. MgtC represses cellulose production. (A) Bacterial cultures of mgtC mutant Salmonella (EL4) grown in low-Mg²⁺ (10 μ M) liquid medium after overnight incubation with cellulase (*Left*) or buffer (*Right*). (*B*) Visualization of aggregates formed by the mgtC mutant under 360-nm UV light following staining with the cellulose-binding dye calcofluor. (*C*) WT (14028s) and mgtC (EL4) *Salmonella* form similar colonies on low-Mg²⁺ solid medium. (*D*) Growth of WT (14028s), mgtC (EL4), bcsA (MP140), and bcsA mgtC (MP142) *Salmonella* strains on low-Mg²⁺ solid medium containing the cellulose-binding dye calcofluor (10 μ g/mL) or Congo red (20 μ g/mL). The mgtC mutant accumulates these dyes in a bcsA-dependent fashion. (*E*) The bcsA-expressing plasmid pUH-BcsA, but not the plasmid vector pUHE21-2-*lacl^q*, restores cellulose production to the mgtC bcsA double mutant (MP142) after growth in low-Mg²⁺ liquid medium. Arrow indicates pellicle. (*F*) Formation of cellular aggregates at the liquid-air interface in mgtC (EL4) and mgtC bcsB (MP655) following overnight growth in low-Mg²⁺ liquid medium.

Fig. S3. mRNA levels of the *bcsA* gene increase in response to elevated cytosolic ATP levels. mRNA levels of the *bcsA* gene in *mgtC* (EL4) strains harboring the plasmid expressing the F_1 subunits of the ATP synthase (pF1) or the vector control (pCP44) after 8 h in low-Mg²⁺ liquid medium. The *bcsA* gene is located within the *bcsABZC* operon, which specifies *Salmonella*'s cellulose synthase complex. Values were normalized to those of the *dnaK* gene.

Fig. S4. Growth in low-Mg²⁺ medium of Salmonella strains attenuated for virulence. Pellicle formation and culture turbidity after 24 h of growth in low-Mg²⁺ liquid medium by WT (14028s), mgtC (EL4), proC (EL605), and atpB (MP24) Salmonella strains.

Fig. S5. A strain that produces cellulose in a *phoP*-dependent fashion. (*A*) Schematic of the gene fusion between the *S. enterica* serovar Typhimurium *phoP* promoter region to a promoterless *adrA* gene. (*B*) Schematic depicting the regulatory circuit engineered to promote cellulose biosynthesis in response to the signals activating the *phoP* promoter. (*C*) Cellulose production by p_{phoP} ::*adrA att*Tn7 *Salmonella* strain (MP269) after overnight growth at the indicated Mg²⁺ concentrations. (*D*) Same as in *C*, but for an isogenic *bcsA* mutant (MP291). (*E*) CFU of phagocytosed WT (14028s), *mgtC* mutant (EL4), p_{phoP} ::*adrA att*Tn7 (MP269), and *bcsA* p_{phoP} ::*adrA att*Tn7 (MP269). *Salmonella* strains after a 1.5-h incubation with 1×10^5 J774A.1 macrophages at a multiplicity of infection of 10. Error bars represent SDs. Results are representative of three independent experiments. *P*, not significant (N.S.), two-tailed *t* test.

Fig. S6. Growth (OD₆₀₀) of WT (14028s) isogenic bcsA and mgtC Salmonella strains mgtC (EL4), bcsA (MP140), and bcsA mgtC (MP142) in low-Mg²⁺ liquid medium.

Strain	Relevant characteristics	Source
Escherichia coli		
DH5a	Host strain used for generation and propagation	(9)
	of plasmid constructs	
Salmonella enterica serovar 1	Typhimurium	
14028s	WT	(10)
EG9524	<i>ugd</i> ::MudJ, Km ^R	(11)
EL1	∆ <i>mgt</i> C::Km ^R	This study
EL4	∆mgtC	(7)
EL515	$\Delta a t p B$	(7)
EL605	∆ <i>pr</i> oC::Cm ^R	(12)
MP24	∆ <i>atpB</i> ::Km ^R	(7)
MP70	∆ <i>rfaL</i> ::Cm ^R	(13)
MP72	∆ <i>mgtC ∆rfaL</i> ::Cm ^R	This study
MP116	∆ <i>yihS</i> ::Km ^R	(13)
MP120	∆ <i>mgtC ∆yihS</i> ::Km ^R	This study
MP118	∆ <i>wecB</i> ::Cm ^R	(13)
MP122	$\Delta mgtC \ \Delta wecB$::Cm ^R	This study
MP125	∆ <i>mgtC ugd</i> ::MudJ, Km ^R	This study
MP133	$\Delta bcsA::Cm^{R}$	This study
MP140	$\Delta bcsA$	This study
MP142	$\Delta mgtC \Delta bcsA$	This study
MP269	p _{phop} ::adrA attTn7	This study
MP291	p _{phop} ::adrA attTn7 ∆bcsA::Cm ^R	This study
MP358	Δ <i>bcsA proC</i> ::Cm ^R	This study
MP362	∆ <i>csgB</i> ::Km ^R	This study
MP363	∆ <i>mgtC</i> ∆ <i>csgB</i> ::Km ^R	This study
MP518	bcsA _{R700D}	This study
MP520	∆mgtC bcsA _{R700D}	This study
MP654	$\Delta bcsB::Cm^{R}$	This study
MP655	$\Delta mgtC \ \Delta bcsB::Cm^{R}$	This study
MP715	∆ <i>bcsA</i> ::Cm ^R ∆ <i>atpB</i> :: Km ^R	This study
Plasmids		
pCP20	rep _{pSC101} ^{ts} λ cl857 FLP Amp ^R Cm ^R	(4)
pKD3	rep _{R6Kg} Amp ^R FRT Cm ^R FRT	(4)
pKD4	rep _{R6Kg} Amp ^R FRT Km ^R FRT	(4)
pKD46	rep _{pSC101} ^{ts} Amp ^R P _{araBAD} -γβexo	(4)
pGRG36	rep _{pSC101} ^{ts} Amp ^R mTn7::MCS	(5)
pCR-XL-TOPO	rep _{pUC} Kan ^R , general cloning vector	Life Technologies
pUHE-21–2- <i>lacl^q</i>	rep _{pMB1} lacl ^q Amp ^R	(6)
pUHE-MgtC	rep _{pMB1} lacl ^q Amp ^R P _{lac} -mgtC	(14)
pUHE-BcsA	rep _{pMB1} lacl ^q Amp ^R P _{lac1-6} -bcsA	This study
pCP44	rep _{pMB1} <i>lacl^q</i> Erm ^R pCP44- <i>lacLM</i> , pF ₁ vector control	(15)
pF ₁	pCP34-AtpAGD	(15)
pCP34-AtpAGD	rep _{pMB1} <i>lacl</i> ^q Erm ^R pCP34- <i>atpAGD</i> , pF ₁	(15)
Vc2-pRS414	rep _{pMB1} Amp ^R P _{Vc2} - <i>lacZY</i>	(16)
Vc2m3-pRS414 M3	rep _{pMB1} Amp ^R P _{Vc2_m3} - <i>lacZY</i>	(16)
pFPV25.1	rep _{CoIE1} Amp ^R <i>rpsM</i> :: <i>gfp</i> mut3	(17)

Table S1. Bacterial strains and plasmids used in this study

PNAS PNAS

Table S2. Oligonucleotides sequences used in this study

PNAS PNAS

Name	Sequence $(5' \rightarrow 3')$	Purpose	Source
1908	ATATAGCACGTACTTATTCTTCCAGAAAAAGTGTAGGCTGGAGCTGCTTC	mgtC inactivation	This study
1909	TGGCGTAATGTTGCAATTGAATAAAAAACTACATATGAATATCCTCCTTA	<i>mgtC</i> inactivation	This study
12241	ATGAAAAACAAATTGTTATTTATGATGTTGACAATAGTGTAGGCTGGAGCTGCTTC	csgB inactivation	This study
12242	GCGTTGGGTGACGCGAATAGCCATATGCGACTGTTTCTGCATATGAATATCCTCCTTA	csgB inactivation	This study
12244	ATTAGCACTTTGGTATGAG	∆ <i>csgB</i> ::Km ^R verification	This study
12589	ATGCTAACCACATCATTAAC	$\Delta rfaL::Cm^{R}$ verification	This study
12696	CAAAACGTCGTTAATACGAGG	∆ <i>yihS</i> ::Km ^R verification	This study
12699	AGGGGGCTGGGCCCCTACTG	$\Delta wecB::Cm^{R}$ verification	This study
12888	CCGTTTAGCGCAGCGCTCGGCTGCCTGTGGACGATTCTGCATATGAATATCCTCCTTA	bcsA inactivation	This study
12889	TCATTGTTGAGCCTGAGCCATAACCCGATCCGACGGCTGTGTAGGCTGGAGCTGCTTC	bcsA inactivation	This study
12887	ATGAGCGCCCTTTCCCGGTG	$\Delta bcsA::Cm^{R}$ verification	This study
W1509	ATTGTCCTGGATGTGTGCGGCGGTAATAGGATTAAGCGCGTGTGTAGGCTGGAGCTGCTTC	bcsB inactivation	This study
W1510	TACTCATGGTCAGGGTCGAGACGACGGCGACTGAGAATACGCATATGAATATCCTCCTTA	bcsB inactivation	This study
W1511	ATGGCTCAGGCTCAACAATG	∆ <i>bcsB</i> ::Cm ^R verification	This study
12190	TCATTGCCATACGTAATTC	Verification of insertions containing Cm ^R markers	This study
12243	GTACGTGCTCGATG	Verification of insertions containing Km ^R markers	This study
W885	ACTGGTAACCTGCAGCTTTACACTTTAAGCTTTTTATGTTATGTTGTGTGGACCGCCGGGA-	Cloning of Plac1-6-bcsA	This study
	GC CTGCGATGAGCGCCCTTTCCCGGTGGCTGC	0	
W885	ACTGGTAACCTGCAGTCATTGTTGAGCCTGAGCCATA	Cloning of Plac1-6-bcsA	This study
W1048	TTGCGGTTTCGGTAGAGAGTAAACAGGTCAGGCGCGCGCATTTAAGACCCACTTTCACATT	Generation of <i>bcsA</i> ::Tet ^R	This study
W1049	TCCATCTTCGCGGGCGATGGCCCCCGGCATGGCAATCTCGACCCCTAAGCACTTGTCTCCTG	Generation of <i>bcsA</i> ::Tet ^R	This study
W1050	TGCGGTTTCGGTAGAGAGTAAACAGGTCAGGCGCGCGCATGATGTCGAGATTGCCATGCC- GGGGGCCATCGCCCGCGAAGATG	Generation of $bcsA_{R700D}$	This study
W1051	CATCTTCGCGGGCGATGGCCCCCGGCATGGCAATCTCGACATCATGCGCGCGC	Generation of $bcsA_{R700D}$	This study
W1052	TAACGTCACGGCGAAAGGC	Verification of bcsA _{R700D}	This study
W1053	AAGCGCCCACGTATCGGCGC	Verification of bcsA _{R700D}	This study
W1110	GCTCACGCGGCCGCACTATTTGTCTGGTTTATTAACTGTTTATCCCCAAAGCACCATAATCA- ACGCTAGACTGTTCTTATTGTTAACACAAGGGAGAAGAGATGTTCCCAAAAATAATGA	p _{pho} P::adrA construction	This study
W1111	ATGCTGCTCGAGTCATGCCGCCACTTCGGTGC	pphop::adrA construction	This study
9454	GATGCTGGTGGCGAAACTGTC	Verification of Tn7 insertion	This study
9455	GAAGAGTGGAACGTCGGTAC	Verification of Tn7 insertion	This study
W890	TGTGGCGATCTTCGATTGC	bcsA mRNA quantification	This study
W891	GCCCATTGTCATTTGCAGAA	bcsA mRNA quantification	This study
W892	CGCCGCGCGGTATG	dnaK mRNA quantification	This study
W893	GATACCGTCAGCATCGATATCG	dnaK mRNA quantification	This study
W1127	TGATGGTGCTGCGTTGGA	lacZ mRNA quantification	This study
W1128	CCGCCACATATCCTGATCTTC	lacZ mRNA quantification	This study