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Appendix A: Materials and Methods

Materials:

All citrate stabilized gold nanoparticles (AuNPs) were purchased from BB international via Tedpella inc.
Oligo nucleotides were obtained from IDT DNA Inc. and used after denaturing PAGE purification.

Methods:

DNA conjugation of AuNPs: The disulfide bond in the thiol-modified oligonucleotides was reduced
to monothiol using TCEP (1:200 molar ratio of DNA: TCEP, overnight) in water. The oligonucleotides
were purified using G-25 size exclusion columns (GE Healthcare) to remove the excess TCEP and small
molecules. The purified monothiol-modified oligonucleotides were incubated AuNPs in a 30:1 ratio for the 5
nm, 100:1 ratio for the 10 nm and 200:1 for 15 nm AuNPs, in 10 mM Phosphate buffer (pH 7.4). The NaCl
concentration was gradually increased to 500 mM over 24 hours at room temperature to ensure full coverage
of the AuNPs by the thiolated DNA. The AuNP-DNA conjugates were washed 5 times using Microcon
centrifugal devices (100 kD MWCO membrane filters, Millipore, Bedford, MA) in 10 mM Phosphate buffer
(pH 7.4) to remove excess oligonucleotides and were finally resuspended in 10 mM Phosphate buffer with 500
mM NaCl. The concentration of these AuNP-DNA conjugates was estimated from the optical absorbance
at the absorbance maxima 520 nm. To this purified particles, required amount of linker strands were added
in order to fabricate particles of different sizes. Two types of AuNPs (A and B), which types are determined
by two different DNA sequences grafted to AuNP surface, have been used in the current study.

Assembly of Nanoparticle Superlattices: The particles A and B were cross-linked via following the
recently described protocol for the formation of crystalline assemblies [1]. Briefly, particle assembly was
performed at temperature higher than the melting temperature (Tm) of 33oC, by combining equimolar
amounts of A and B in 200 µL solution of 10 mM phosphate buffer, 500 mM NaCl at pH = 7.1. The mixture
was cycled between 36 and 25oC in order to make sure that the system has reached the thermodynamic
equilibrium. These aggregations were subjected to SAXS measurements.

DNA Linker Design and Sequences: In brief, the linker design is same as described elsewhere [1].
Particle A and B are functionalized with single-stranded thiolated DNA, A-SH and B-SH respectively (see
Table 1). The sequences consists of a A10 region at the 3 end, which binds to the particle and a 15-base
pair long binding sites for A and B DNA. A-spacer or B-spacers domains depicted in Fig. 1 can be variable
in length and the inter-NP distance can be tuned by changing the length of the spacer. The complimentary
sticky end contains 6 bases for the hybridization of A and B particles.

Figure 1: Schematic description of the DNA linker design.
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Table 1. CCM Inputs

Name of Sequence Sequence (5’ to 3’)
A-SH AAC AAT TAT ACT CAG CAA AAA AAA AAA A /3ThioMC3-D/

B-SH AAG AAT TTA TAA GCA GAA AAA AAA AAA A /3ThioMC3-D/

A1 TTG CTG AGT ATA ATT GTT AAC TGA GCA GCA CTG AAT
TCC TT

A1C TCA GTG CTG CTC AGT

A3 TTG CTG AGT ATA ATT GTT ATT CCT T

A4 TTG CTG AGT ATA ATT GTT AAA AAA AAC TGA GCA GCA
CTG AAA AAA AAT TCC TT

A4C TTT TTT TCA GTG CTG CTC AGT TTT TTT

A5 TTG CTG AGT ATA ATT GTT AGC GGC GGC GAA AAA AAC
TGA GCA GCA CTG AAA AAA AGC GGC GGC GAT TCC TT

A5C CGC CGC CGC TTT TTT TCA GTG CTG CTC AGT TTT TTT
CGC CGC CGC

B1 TTC TGC TTA TAA ATT CTT AAC TGA GCA GCA CTG AAA
AGG AA

B1C TCA GTG CTG CTC AGT

B3 TTC TGC TTA TAA ATT CTT AAA GGA A
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Appendix B: SAXS Measurements

SAXS experiments were performed at the National Synchrotron Light Sources (NSLS) X-9A beam line.
The scattering data were collected with a PILATUS CCD area detector and converted to 1D scattering
intensity vs. wave vector transfer, q = (4/λ)sin(θ/2), where λ= 0.918 Å and θ are the wavelength of incident
X-rays and the scattering angle respectively. The scattering angle was calibrated using silver behenate as
a standard. The structure factor, S(q) was obtained as I(q)/F(q), where I(q) and F(q) are background
corrected 1D scattering intensities obtained by azimuthal integration of CCD images for assembled particle
superlattices and un-aggregated free particles, respectively. The peak positions in S(q) are determined by
fitting with a Lorentzian form. The nearest particle distance between A and B AuNPs was estimated as
dA−B=A/q1 in nm, where q1 is the initial diffraction peak. A is a variable which depends on different crystal
symmetries. For BCC (CsCl with same hardcore size) A=

√
6π/10, CsCl A=

√
3π/10, AlB2 A=2π/10, Cr3Si

A=4π/50.

Calculation of Interparticle Distances from SAXS Data: The simulated data pattern was generated
using PowderCell software [2]. The original software was developed for atomic crystals. However, SAXS
patterns nanoparticle superlattices have shown to be predicted reliably. The simulated data for same (hard
core) sized particle systems, we used same atoms in the atomic model and for different (hard core) particle
size systems, the atomic size was intuitively varied so that the relative intensity of the peaks matches with
the experimental data.

SAXS Results:

Figure 2: Structure factor S(q) for Ra/Rb= 1, Lb/La= 0.5 and na/nb= 1.0 (red), 2.0 (blue), 3.0 (cyan).
Plots are shifted in Y axis for clarity.
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Figure 3: Structure factor S(q) for Ra/Rb= 0.75, Lb/La= 2.0 and na/nb= 1.0 (blue), 2.0 (cyan), 3.0
(magenta). Plots are shifted in Y axis for clarity.

Figure 4: Structure factor S(q) for Ra/Rb= 0.85, Lb/La= 2.0 and na/nb= 1.0 (red), 2.0 (blue), 4.0 (cyan).
Plots are shifted in Y axis for clarity.
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Figure 5: Structure factor S(q) for Ra/Rb= 0.85, Lb/La= 1.0 and na/nb= 1.0 (red), 2.0 (blue), 4.0 (cyan).
Plots are shifted in Y axis for clarity.

Figure 6: Structure factor S(q) for Ra/Rb= 0.61, Lb/La= 2.0 and na/nb= 1.0 (red), 2.0 (blue), 4.0 (cyan).
Plots are shifted in Y axis for clarity.
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Figure 7: Structure factor S(q) for Ra/Rb= 0.53, Lb/La= 1.0 and na/nb= 1.0 (red), 2.0 (blue), 4.0 (cyan).
Plots are shifted in Y axis for clarity.

Figure 8: Structure factor S(q) for Ra/Rb= 0.75, Lb/La= 2.0 and na/nb= 0.33 (red), 0.5 (blue), 1.0 (cyan),
2.0 (magenta), 3.0 (olive), 4.0 (deep blue). Plots are shifted in Y axis for clarity.
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Figure 9: Structure factor S(q) for Ra/Rb= 0.64, Lb/La= 0.37 and na/nb= 0.5 (blue), 1.0 (cyan), 2.0
(magenta), 3.0 (olive). Plots are shifted in Y axis for clarity.

Figure 10: Structure factor S(q) for Ra/Rb= 0.64, Lb/La= 0.5 and na/nb= 0.5 (blue), 1.0 (cyan), 2.0
(magenta), 3.0 (olive). Plots are shifted in Y axis for clarity.
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Figure 11: Structure factor S(q) for Ra/Rb= 0.52, Lb/La= 1.0 and na/nb= 0.5 (blue), 1.0 (cyan), 2.0
(magenta), 3.0 (olive). Plots are shifted in Y axis for clarity.

Sample
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Appendix C: Complementary Contact Model

Fig. 12 provides a schematic of the basic assumption of behind the Complimentary Contact Model. This is
a modified version of the CCM proposed by Macfarlane et al. [1].

Figure 12: Complementary Contact Model. Ri and Rj are the hydrodynamic radii. dij is the interparticle
distance. roverlap is the radius of the overlapping plane between the two spheres. The interacting area is the
surface area of the sphere that lies within the other sphere.

The overlap area between two DNA-NPs are determined based on the overlap region between two spheres

x2 + y2 + z2 = R2
i (1)

(x− dij)2 + y2 + z2 = R2
j (2)

where Ri and Rj indicates the maximum radius of particle i and j, respectively and dij indicates the distance
between the NP cores of the two particles and is defined as

dij = rNP,i + rNP,j + 0.255DNAij (3)

with rNP,i is the radius of the core nanoparticle (with thiol bond), 0.255 is the equilibrium length per base
pair of DNA, and DNAij is the number of DNA bases between the two particles. Subtracting Eq. (2) from
(1) will give an expression for x, which can then be plugged back into Eq. (1) to give the radius of the
overlap region

roverlap =
1

2dij

√
4d2ijR

2
i − (d2ij +R2

i −R2
j )2 (4)

Based on geometry, the height of the overlap region is determined to be

hij = Ri −
√
R2

i − r2overlap (5)

The area of the overlap region can then be calculated

Aij = π(r2overlap + h2ij) (6)

The total area of each DNA-NP can also be calculated

Ai,total = 4πR2
i (7)

Knowing the areas, the percent duplexed can be calculated based on the following equation

duplexi =
∑
j

AijNNij

Ai,total
ri,arearij,linker (8)
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where, NNij indicates the number of nearest neighbors of type j to particle i and ri,area and rij,linker
indicates the restriction parameters for the interaction area and the DNA linker interactions, respectively.

The area restriction parameter ri,area is determined based on the total required area for complete interactions
with all the nearest neighbors. We define the total required area as

Ai,required =
∑
j

AijNNij (9)

Relative to the total area of the DNA-NP, the restriction parameter is then

ri,area =

{
1 Ai,total > Ai,required

Ai,total

Ai,required
Ai,total < Ai,required

(10)

To determine the DNA linker interaction restriction parameter rij,linker, we must first define the particle
interaction restriction parameter rij,interaction. This is based on the idea that, given N nearest neighbor
particles surrounding the reference particle, the DNA linkers on the core particle that can hybridize with
linkers on the nearest neighbor are the ones that lies within the region of overlap to that neighbor. Thus,
the restriction parameter takes the following form

rij,interaction =
AijNNij

Ai,required
(11)

The complementary linkers on each particle that are available for hybridization then becomes

Lii,total = LiiNPirij,interaction (12)

Ljj,total = LjjNPjrij,interaction (13)

where Lii,total and Ljj,total are the number total number of DNA linker on particle i of type i complementary
to the DNA linkers of type j on particle j within the overlap area and the total DNA linker on particle j of
type j complementary to the DNA linkers of type i on particle i within the overlap area, respectively. NP
indicates the number of particle of each type within the lattice. Lii and Ljj are the total number of DNA
linker of type i on particle i and the total number of DNA linker of type j on particle j, respectively. Before
we define the DNA linker interaction restriction, recall that we are dealing with a two particle, two DNA
linker type system so ρij = 1− ρii. Utilizing these notations, the DNA linker interaction restriction is

rij,linker =

{
ρjj Lii,total < Ljj,total

ρii
Ljj,total∑
j LijNPi

Lii,total > Ljj,total
(14)

This restriction is based on the idea that the DNA linkers are uniformly distributed so the probability of
finding a linker of type i on particle i within the overlap region is the same as the grafting density of DNA
linker i on particle i. A similar procedure can be performed for all other DNA linker interactions – rij,linker,
rji, linker, and rjj,linker. For a binary system we should have the following
• 4 rinteraction terms
• 8 rlinker terms
• 2 rarea terms

The above derivation takes care of all attractive interactions within the system. To consider repulsion, we
must first determine the number of non-complemetnary DNA linkers available within each overlap region.
This can be done using the values of Lii,total and Ljj,total defined earlier. The number of free linkers become

Lii,xj ,free =

{
Lii,total − Ljj,total Lii,total > Ljj,total

0 Lii,total < Ljj,total

(15)

Ljj,xi,free =

{
0 Lii,total > Ljj,total

Ljj,total − Lii,total Lii,total < Ljj,total

(16)
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where Lii,xj ,free and Ljj,xi,free represent the number of free DNA linkers after the linkers on particle i has
hybridized with the number of linkers on particle j. For a binary system, we will get a total of 8 Lfree. The
minimum of the number of free linker of each type within the overlap regions will then get summed together
to give the total number of free DNA linker Lfree,total.

Lastly, we will calculate the free energy of the structure per particle (chemical potential). To reduce the
inputs, we will introduce a parameter σ which is defined as the ratio to the attractive energy for each pair
Ea,pair to the repulsive energy for each pair Er,pair: σ = Ea

Er
. This then makes Lfree,total = Er, where Er is

the total repulsive energy per particle within the system.

µi = −duplexiLi,totalσ + Er (17)

where Li,total is the total number of linkers on particle i.

12



Appendix D: Effective Nearest Neighbor Parameter Derivation

As previously noted, the CCM developed by Mirkin et. al makes the simplification that DNA hybridization
provides the major driving force for crystal lattice formation [1]. Consequently, the definition of the nearest
neighbors takes the first shell to be the shortest distance to the complementary atom and ignores all possible
shorter non-complementary interactions that could be present. Consider the case of the AlB2 structure (Fig.
13). If we take the Mirkin formulation of the CCM, then the first nearest neighbor shell for the B atoms
would be the shell containing the 6 Al atoms. However, there exists an inner shell containing 3 B atoms.
For our DNA-NPs system, this excess overlap could provide enough repulsive force to make the AlB2 lattice
less favorable – especially near phase boundaries. In order to correct for this effect, we propose extending
the CCM to consider interactions with both complementary and non-complementary neighbors.

Figure 13: AlB2 unit cell. The right hand side indicates the distance of each particle type away from a core
B atom (in nm). There exists 3 B atoms that are in closer to the central B atom relative to the 6 Al atoms
shell. [3]

We first define the CCM distances in term of the crystallographic distances (denoted by subscript “o”)

Ri = αRi,o

dij = αdij,o
(18)

where α is the scaling factor defined as the ratio of the from the particle’s original shell to its new shell. We
can introduce Eq. (5) into Eq. (6) to give

Aij = 2π
(
R2

i −Ri

(
R2

i − r2overlap
)1/2)

(19)

For mathematical simplicity, we take the squared of the radius of overlap

r2overlap =
4d2ijR

2
i −

(
d2ij +R2

i −R2
j

)2
4d2ij

(20)

Introduce Eq. (18) into Eq. (20)

r2overlap =
4α4d2ij,oR

2
i,o − α4

(
d2ij,o +R2

i,o −R2
j,o

)2
4α2d2ij,o

Rearrangement gives

r2overlap = α2

[
4d2ij,oR

2
i,o −

(
d2ij,o +R2

i,o −R2
j,o

)2
4d2ij,o

]
The bracketed term is the squared of the overlap radius in terms of crystallographic distances, thus we get

r2overlap = α2r2ij,o (21)

Plugging Eq. (21) into (19) and introducing all relevant crystallographic distances yield
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Aij = 2π
(
α2R2

i,o − α2Ri,o

(
R2

i,o − r2overlap,o
)1/2)

Scaling parameter α can be factored out

Aij = α2
[
2π
(
R2

i,o −Ri,o

(
R2

i,o − r2overlap,o
)1/2)]

Again, the term in bracket is the overlap area in terms of the crystallographic distances, giving

Aij = α2Aij,o (22)

Directly introducing Eq. (22) into (8)

duplexi =
∑
j

α2Aij,oNNij

Ai,total
ri,arearij,linker

Aij,o is a lattice defined value. We can group α and NN together to an effective nearest neighbor parameter

duplexi =
∑
j

Aij,oNNij,eff

Ai,total
ri,arearij,linker (23)

NNij,eff = α2NNij (24)
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Appendix E: Stoichiometry Model Derivation

Consider a parallel system of independent reactions of the form

a1A+B ⇀↽ C1

a2A+B ⇀↽ C2

...
...

...

anA+B ⇀↽ Cn

(25)

For each separate set of equations the free energy takes the form

F =
∑
i

Niµi (26)

where i indicate the species, N is the number of moles, and µ is the chemical potential.

At equilibrium, dFi = 0, thus

Fi =
∑
i

µidνi + νidµi = 0

where ν is the stoichiometric coefficient.

The self-assembly process is completely reversible, making all the dµi = 0

Fi =
∑
i

µidνi = 0

In terms of the above reactions

a1µA + µB = µC1

a2µA + µB = µC2

...
...

...

anµA + µB = µCn

(27)

This gives a total of n equations for n+2 unknowns. The remaining two necessary relations needed to define
an independent set of equations comes from stoichiometry. We define the stoichiometric mix between the
reactants A and B as RN : 1 for A : B. Consequently, a simple mole balance gives

RN = NA +
∑
i

aiNCi

1 = NB +
∑
i

NCi

(28)

Each µi in Eq. (27) is taken as the ideal solution limit

µi = µo
i + kT ln

(
Ni

Ntotal

)
(29)

We take the reference “standard” state condition for free particles A and B to be where µo
A and µo

B are 0.
Combining Eq. (27) – (29) gives the complete system of equations for the stoichiometry model.
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Appendix F: Kinetics Analysis

The linear dependence of the equilibrium mole fraction on the stoichiometric ratio is of particular interest.
Here we provide two different approaches to proving the relationship – infinite approximation and scaling.

Equilibrium Constant

No Reaction Coupling

Consider a single reaction of the form

aA+B ⇀↽ C

We can perform an analysis to arrive at a relation for the equilibrium constant as follows

A B C Total
Initial RN 1 0 RN + 1
Change -aξ -ξ ξ -aξ
Equilibrium RN - aξ 1 - ξ ξ RN + 1 - aξ

where ξ is the extent of reaction. Since we are assuming an ideal solution, the equilibrium constant is

K =
∏
i

χvi
i (30)

Plugging in our relation for the mole fraction gives

K =
ξ (RN + 1− aξ)a

(RN − aξ)a (1− ξ)
(31)

Reaction Coupling

Consider a parallel reactions

a1A+B ⇀↽ C1

a2A+B ⇀↽ C2

...
...

...

anA+B ⇀↽ Cn

(32)

The equilibrium table now becomes

A B C1 Cn Total
Initial RN 1 0 0 RN + 1
Change −a1ξ1− a2ξ2−. . . anξn −ξ1 − ξ2 . . . ξn ξ1 ξn −a1ξ1− a2ξ2−. . . anξn
Equilibrium RN -a1ξ1 - a2ξ2 - . . . anξn 1− ξ1 − ξ2 . . . ξn ξ1 ξn RN + 1− a1ξ1− a2ξ2−. . . anξn

For each reaction, the equilibrium constant is

Ki =
ξi (RN + 1−

∑
i aiξi)

ai

(RN −
∑

i aiξi)
ai (1−

∑
i ξi)

(33)

Eq. (31) and (33) completely describe equilibrium behavior for the non-coupled and coupled reaction systems
for DNA-NP self-assembly, respectively. We will now provide the proof for a linear dependence on the
stoichiometric factor using these two relations.
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Linear Proof

Infinite Approximation

From thermodynamics, the equilibrium constant is directly related to the standard chemical potential as

Ki = exp
(
− µi

kT

)
(34)

The CCM assumes that any linker present within the overlap area between two DNA-NPs automatically
hybridize with any available complementary linker. From an energetics perspectives, this casts self-assembly
as an enthalpically dominant process and ignores all entropic contributions. Consequently, µi can be taken
as approaching −∞. This makes Ki →∞.

For an uncoupled system, this creates two asymptotic limits for K.

RN − aξ = 0

1− ξ = 0
(35)

As Eq. (35) suggests, the extent of reaction formed for such a system is

ξ =
RN

a
ξ = 1

(36)

The unitary result is trivial since it represents the ideal solution limit where the correct stoichiometric ratio
is mixed into the system. The remaining solution shows that, at deficit stoichiometry, the extent of reaction
has a linear relationship with stoichiometry (scaled by the crystallographic ratio), thus proving the desired
linear behavior.

For a coupled system, the asymptotic limits for each Ki are

RN −
∑
i

aiξi = 0

1−
∑
i

ξi = 0
(37)

We can cast the following results in terms of two set of dependent relationship – trivial solution and deficit
stoichiometry.

ξi =
1

ai

RN −
∑
j 6=i

ajξj


ξi = 1−

∑
j 6=i

ξj

(38)

There will be n of such sets of equations that can be solved self consistently (using the appropriate scaling
as defined by each Ki) to obtain the final solution. Regardless of the results, as Eq. (38) shows, there is a
directly linear dependence between each ξi and the stoichiometric factor, as desired.
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Scaling Analysis

Rather than following the enthalpy driven self-assembly assumption, we can perform a simple scaling analysis
on the solutions of the resulting polynomial obtained by expanding Eq. (31) and (33).

For the uncoupled system, we start with the simple case where a = 1, corresponding to CsCl formation.

(RN − ξ) (1− ξ)K = ξ (RN + 1− ξ)

Expanding and grouping like terms gives a quadratic equation

(K + 1) ξ2 − (RN + 1) (K + 1) ξ +KRN = 0 (39)

The exact solution for this equation is

ξ =
(RN + 1) (K + 1)±

√
[(RN + 1) (K + 1)]

2 − 4KRN (RN + 1)

2 (K + 1)

Looking at the only the determinant, expanding and combining terms gives√
(K2 + 1) (RN + 1)

2 − 2K (R2
N + 1)

(RN + 1)

√
(K2 + 1)− 2K

(R2
N + 1)

(RN + 1)
2

Plugging the resulting form of the determinant into the solution for ξ gives

ξ = (RN + 1)

 (K + 1)±
√

(K2 + 1)− 2K
(R2

N+1)
(RN+1)2

2 (K + 1)

 (40)

By a scaling analysis, the term in bracket is of zeroth order in RN . This leaves only the front RN as the
major contributor to ξ. Since (RN + 1) is to the first order in RN , we obtain the linear dependence for ξ, as
desired.

Consider the case where a = 2, corresponding to AlB2 formation. We can factor out a to give

K

(
RN

a
− ξ
)a

(1− ξ) = ξ

(
RN + 1

a
− ξ
)a

Perform the substitution N = RN

a

K (N − ξ)a (1− ξ) = ξ

(
N +

1

a
− ξ
)a

Expanding and grouping like terms

(K + 1) ξ3 + (2KN − 2N −K − 1) ξ2 +

(
KN2 +N2 +N − 2KN +

1

4

)
ξ −KN2 = 0 (41)

By substitution, we can cast the above cubic equation as a quadratic and utilize the same approach to obtain
an analytical solution for ξ. Since ξ ∈ [0, 1], only one of the resulting 3 solutions will be within the range
of physical significance.

For a representative cubic equation ax3 + bx2 + cx+ d = 0, the desired solution for x is

x = α− b

3a
− β

α
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where α and β are defined as

α =


[(

d

2a
+

b3

27a3
− bc

6a2

)2

+ β2

]1/2
− b3

27a3
− d

2a
+

bc

6a2


1/3

β = − b2

9a2
+

c

3a

Using a scaling analysis and ignoring all constants and prefactors, we note the following from Eq. (41)

a : O
(
N0
)

b : O
(
N1
)

c : O
(
N2
)

d : O
(
N2
)

Thus, plugging in for β

β :
O
(
N1
)2

O (N0)
2 +

O
(
N2
)

O (N0)

For β we obtain

β : O
(
N2
)

Similarly for α,

α :


(O (N2

)
O (N0)

+
O
(
N1
)3

O (N0)
3 −

O
(
N2
)
O
(
N1
)

O (N0)
2

)2

+O
(
N2
)21/2

−
O
(
N1
)3

O (N0)
3 −

O
(
N2
)

O (N0)
+
O
(
N2
)
O
(
N1
)

O (N0)
2


1/3

Combining all terms shows that the overall order for α is

α : O
(
N1
)

Finally, we plug everything in for ξ

ξ : O
(
N1
)
−
O
(
N1
)

O (N0)
−
O
(
N2
)

O (N1)

Ultimately, we arrive at

ξ : O
(
N1
)

= O

(
RN

2

)
(42)

Eq. (42) shows that for the formation of any binary structure with crystallographic ratio of 2:1 behaves
linearly with the initial stoichiometric mix. For all higher order polynomial equations, the same substitution
can be performed (albeit tediously) to obtain an analytical solution for ξ based off of the quadratic formula.
By formulation, all solutions are based off of the the same formula and therefore will exhibit the same linear
dependence of the form RN

a .

The previous derivation was done for uncoupled reactions of order ath. The general result can be applied to
a system of coupled equations of varying orders as follows. For each Ki, we can rewrite Eq. (33) as

Ki =
ξi

(
RN + 1− aiξi −

∑
j 6=i ajξj

)ai(
RN − aiξi −

∑
j 6=i ajξj

)ai
(

1− ξi −
∑

j 6=i ξj

) (43)
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Let δi =
∑

j 6=i ajξj and εi =
∑

j 6=i ξj . Plugging into Eq. (43) gives

Ki =
ξi (RN + 1− aiξi − δi)ai

(RN − aiξi − δi)ai (1− ξi − εi)
(44)

By the same factoring and substitution for the uncoupled case

Ki

(
N − δi

ai
− ξi

)ai

(1− ξi − εi) = ξi

(
N +

1− δi
ai

− ξi
)ai

We can expand all terms using the binomial theorem

Ki

[
ai∑

k=0

(
ai
k

)(
N − δi

ai

)k

(−ξi)ai−k

]
(1− εi − ξi) = ξi

[
ai∑

k=0

(
ai
k

)(
N +

1− δi
ai

)k

(−ξi)ai−k

]

ai∑
k=0

(
ai
k

)
(−ξi)ai−k

{[
Ki

(
N − δi

ai

)k

−Kiεi

(
N − δi

ai

)k
]
− ξi

[
Ki

(
N − δi

ai

)k

+

(
N +

1− δi
ai

)k
]}

= 0

(45)
Eq. (45) becomes a polynomial of order a + 1. For a coupled system of n equations, we can solve them

self consistently to obtain the set of ~ξ of the form {ξ1, ξ2, . . . , ξn}. Previously, we showed that each ξi scales
as RN

ai
. Contributions from each of the j 6= i ξj comes into Eq. (45) as a linear sum to N and thus scales

similarly as N . As a result, each ξi from the set {ξ1, ξ2, . . . , ξn} will also scale as RN

ai
.
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Appendix G: Corresponding States Derivation

Here the goal will be to introduce the linker, size, and stoich ratios directly into the relation for the chemical
potential. The chemical potential has the form

µi = −

∑
j

AijNNij

Ai, total
ri,arearij,linker

 RN

ai
σLtotal (46)

The term of interest are Ltotal, Aij , and RN . From our derivation of the stoichiometry factor, we already
see how µi depends on RN . We can re-express Ltotal in terms of the linker ratio as Ltotal = RLLref

µi = −

∑
j

AijNNij

Ai, total
ri,arearij,linker

 RN

ai
σRLLref (47)

The dependence on the size ratio RS is more complex since it affects the interaction area Aij . We know
from Eq. (19)

Aij = 2π
(
R2

i −Ri

(
R2

i − r2overlap
)1/2)

where r2overlap is

r2overlap =
4d2ijR

2
i −

(
d2ij +R2

i −R2
j

)2
4d2ij

By formulation, the size ratio is always less than 1 and uses the equilibrium radius rref as opposed to the
maximum stretched radius Rref . Consequently, we define

Ri = α
rref
RS

dij = rref

(
1 +

1

RS

)
where α is a scaling factor that converts the stretched radius to an equilibrium radius. Plugging into r2overlap
gives

r2overlap = r2ref

4α2
(

1
RS

)2 (
1 + 1

RS

)2
−
[(

1 + 1
RS

)2
+
(

1− 1
RS

)2]2
4

(
1 +

(
1

RS

)2)
Plugging into the relation for Aij

Aij = 2π
(
R2

i −Ri

(
R2

i − r2overlap
)1/2)

Aij = 2πr2ref

α
2

(
1

RS

)2

−
(

1

RS

)
(

1

RS

)2

−
4α2

(
1

RS

)2 (
1 + 1

RS

)2
−
[(

1 + 1
RS

)2
+
(

1− 1
RS

)2]2
4

(
1 +

(
1

RS

)2)

1/2

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There are two limits for RS – 0 and 1. RS = 1 is the trivial case, thus we consider the RS → 0 case. Within
that limit, we make the approximation (

1 +
1

RS

)
≈ 1

RS

This simplifies the complex equation to

Aij = 2πr2ref

α2

(
1

RS

)2

−
(

1

RS

)( 1

RS

)2

−
4α2

(
1

RS

)4
− 4

(
1

RS

)4
4
(

1
RS

)2

1/2


Subsequent factoring gives

Aij = 2πr2ref

(
1

RS

)2 {
α2 −

[
2− α2

]1/2}
Plugging Aij back into the equation for µi

µi = −


∑
j

2πr2ref

(
1

RS

)2 (
α2 −

[
2− α2

]1/2)
NNij

Ai, total
ri,arearij,linker

 RN

ai
σRLLref

Combining all non-ratio factors into a constant reveaals the dependence of µi on the experimental ratios

µi = Ωi
RNRL

R2
Sai

(48)

where Ωi is

Ωi =
∑
j

2πr2refLrefσri,area

(
α2 −

[
2− α2

]1/2)
NNijrij,linker

Ai,total
(49)

From the derived relation, we see that the chemical potential scales linearly with the linker ratio, RL, and
the stoich ratio, RN and inversely with the squared of the size ratio, RS , as discusses in the main paper.

As a final note, the definition of the RL, RN , and RS can be flipped. In such cases, a similar set of derivations
can be performed to show the dependency of µi. The result indicate the dependence on the experimental
ratios are related in the same way, where RN and RL are coupled together and are inverse to R2

S .

µi = Θi
R2

Sai
RNRL

(50)
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