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1 The Mean-Field Analysis of the Basic Model

1.1 The linear relation between R(¢) and ¢

Our mean-field analysis of the basic model starts from a simple and basic relation, R(¢) ~ t. In this sub
section, we present an exact proof of this relation in one dimension and an approximate estimation for

d > 1 dimensions.
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Supplementary Figure S1: Illustration of one-dimensional model. Where R(t) is the radius of the

network, the triangle at the position R(t) is the farthest node from the origin 0. If a new node is generated

at position x € [R(t), R(t) + ], it can survive.

In one-dimensional space, we can analyze only one side of the system because of the symmetry of
space around the center point. Suppose that at time ¢, the distance between the farthest node and the
center point is R(¢) as shown in Supplementary Fig. S1. We know that the distribution of existing nodes
lies in the interval [0, R(¢)], and is compact, which means that all points in [0, R(t)] are covered by the
intervals [p — r, p + r], where p is the coordinate of any existing node. Therefore, R(t) can grow only
when a new node is generated in the interval [R(t), R(t) + r]. Suppose that the increase of R(t) at ¢ is
AR(t). AR(t) is a stochastic variable that can be expressed using the following equations:

AR() x, fo<ax<r (S1a)
R(t) =
0, otherwise. (S1b)

Therefore, the probability density function of AR(t) is

1/L, if0<z<r (S2a)
fz) = .
0, otherwise. (S2b)
Thus, its expectation value is:
T 2
(AR(t)) = / rf@yde =" ($3)
0
We can therefore obtain the expectation value of R(t) because
t t 7"2
= A = A = —t. 4
(R(1)) <; R(s)) ;( R(s)) = 4t (S4)

Hence, R(t) is proportional to ¢. This conclusion is also satisfied for d > 1.
In the general case, we define R(t) as the maximum distance from the center to any existing point
at time step t. We consider its growth to be AR(t¢). Because the model is isotropic, the growth in any

one direction is similar that in a one-dimensional model. Therefore, if AR(t) > 0, any newly generated



node must fall into the volume of the d-dimensional ball of radius r centered on the farthest existing node
exclude the R(t) radius d ball centered at the center of the hypercube (the shaded area in Supplementary
Fig. S2 represents this region for d = 2).

Supplementary Figure S2: Illustration for two-dimensional model. R(¢) is the radius of the network, r
is the interaction radius. If a new generated node falls into the shaded area, it can survive as well as R(t)

will increase.

Because any newly generated nodes will be evenly distributed throughout the hypercube, the proba-
bility that one new node will fall into the shaded area is proportional to its d-dimensional volume. When
R(t) is very large, this volume is approximately equal to half of the volume of a d-dimensional ball.

Therefore, the expectation value of the increase of R(t) is

f x| <r)A(z1>0) L1 do
<AR(t)> _ (Jz[< )/\(L1d> ) _
r w/2 ™ 27
/ dp/ d@l/ déy - - - / dfg_1pcos(fy)p? L sin(fy)T 2sin(f2)?73 - - - sin(fg_1)  (S5)
0 0 0 0
_ Vaggrdt!
~ (d+1)LE

where V;_1 is the volume of the d — 1 - dimensional unit ball, x is the first Cartesian coordinate of a d
- dimensional point. Therefore, ™

(RO) = G5t (56

Equation (S6) not only proves that the radius R(¢) is proportional to ¢ but also provides the exact

form of the expression for the proportionality constant. This constant scales with r to the power of d 4 1

and L to the power of —d. Therefore, when r increases or L decreases, the rate of growth of R(t) will

increase. This equation is very important because it can be used to derive other variables. In the main

text and the following paragraphs, we use R(t) as an abbreviation for (R(t)).



1.2 Deriving the scaling constants

Here, we derive the scaling constants of V'(¢),t, and E(t). At any given position (p, ®), the expression

for the node density is
t—1,

wp,®,t) = —5 (S7)
Therefore, the node density at radius p is
Vap®d
p(p,t) = /d@,u(p, O,t)p" tsin?20,sin? 30, - - - sinhy_o = de(t —Tp) (S8)
where V is the volume of a d-dimensional ball. Thus, the total number of nodes is
R(t) Vy
N(t) = t)dp = —— - R(t)*. S9
0= [ oo = Gty - RO (59
Then, because V (t) = VyR(t)4,
V. \ TH
+ d
V(t) = Vgt <d‘1) N(t)@+T (S10)
Va
Therefore, the constant of the scaling between V' (¢) and N(¢) is Vy (%) T2, We can substitute
Eq. (S6) into Eq. (S9) to derive the following:
NG _ 1 a 1
t=(1+d) <r> V, TV, TN ()@ (S11)

Thus, the constant of the scaling between ¢ and N () is obtained.

Finally, we find the scaling constant between E(t) and N(t). First, we require the exact formula
for v(p, ©,t). We consider a sufficiently small volume do in the d-dimensional hypercube, and suppose
the size of do to be much larger than the constant r. Because nodes in do distribute evenly and only
nodes pairs separated by distance smaller than r are connected, the total number of links within this
infinitesimal volume is

1
vdo = udau/ dedy = §M2Vdrd do, (S12)

le—y|<r
where x, y are the coordinates of any two points in do. A multiplicative factor of 1/2 arises because the

network is undirected. Thus, the link density is

1 1(t—17)2
v(p,0,1) = 5 (n(p, ©,1))" Var? = 2( LM) Var? (S13)
We integrate Eq. (S12) to obtain the total number of links,
d+ 1)V}
E(t) = [+ 1)V - R(t)H2. (S14)

(d+2)V2  rd+?

By substituting the relation between R(¢) and N (t) of Eq. (S9), we obtain the following relation between
E(t)and N(t):

d

1 (Vg1 a1

By = 41 <V€l/ 1> N (S15)
d
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All of these relations were tested against numerical simulations, as shown in Fig. 2 in the main text. The

results demonstrate that the mean-field approximations can yield exact results.
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Supplementary Figure S3: The dependence of the exponent v = (d + 2)/(d + 1) on the dimension
d. The blue, purple and yellow joined points were obtained from simulations using different maximum
numbers of nodes (different running times): blue corresponds to 10° nodes, purple corresponds to 10°

nodes, and yellow corresponds to 10* nodes. The red line represents the theoretical prediction.

1.3 Simulation tests for the scaling exponent

Supplementary Fig. S3 presents comparison of the exponent between the simulations and the theoretical
predictions (Eq. (S15)) for various dimensions. The simulated exponents are always smaller than the
results of the mean-field approximation, but the discrepancy can be reduced by increasing the running
time of the simulation. The reason for this discrepancy is that the mean-field approximation requires that

nodes be very dense so that they can be treated as a continuous field.

1.4 Other network properties

Additionally, other network properties, such as the degree distribution and clustering coefficient, can also
be derived analytically.

1.4.1 Clustering coefficient

First, we derive the explicit form of the clustering coefficient. According to the definition of the average
clustering coefficient for the entire network, it can be understood as the conditional probability that 7 is

connected to both with X and Y given that X and Y are connected. In our geometric graph model, two



nodes can connect only if the distance between them is smaller than r, and all nodes are distributed evenly
throughout the hypercube. Therefore, the computation of the clustering coefficient can be converted into

a calculation of volumes.

Supplementary Figure S4: Illustration of the calculation for the clustering coefficient

As shown in Supplementary Fig. S4, if we denote the interaction region near node X as the ball
X and the interaction region near node Y as Y, then the condition that the two nodes are connected is
equivalent to the condition that the overlapped area of the two interaction regions is not empty. If the
third node Z is connected to both X and Y, then Z must fall into the overlapped area of X and Y.

Therefore, the clustering coefficient C' can be calculated using the following formula:

C=Pr{(ZoX)NZaY)|(X oY)} = ;fmsi; = fé(?%i) / sin?0dg,  (S16)

where X < Y indicates that X and Y are connected. S’y represents the d-dimensional volume of region
X. In Eq. (S16), C'is a constant and depends only on the spatial dimension. The theoretical prediction
is compared with the results of the computer simulations in Supplementary Fig. S5. It is evident that all
results coincide with the theoretical predictions for all dimensions. The results are the same as for the

classical random geometric graph.
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Supplementary Figure S5: Comparison of clustering coefficients between theoretical predictions (solid

lines) and computer simulations (points) in d = 1, 2, 3 dimensions and for networks of various sizes.

1.4.2 Degree distribution

First, we know that the average degree of one node at radius R at time ¢ is

t—1Tr
Ld

Dp = / pdy ~ pVyr? = Vyre. (S17)
leo—y|<r

According to the mean-field approximation, all nodes within the radius R possess degrees larger than
Dp; therefore, the cumulative distribution function, i.e., the probability of nodes of degree larger than a

given value z, is

2) = PriD > o LT )de (0w N x
Cp(x) = Pr{D >z} = ) dp _<1 EM(t)> <1+dEM(t)) . (SI8)

where ¢ = %, and Fj/(t) is the maximum degree of the graph at time ¢. It can be expressed

explicitly using the mean-field approximation as follows:

Eun(t) = (1+d) (V“)_d“ N(t)a. (S19)

We compare the theoretical result with the simulation result in the upper plot of Supplementary Fig. S6.
There is some deviation between the two when x is large. One possible explanation is that only a
few nodes possess degrees as large as predicted by the mean-field theory (when ¢ approaches infinity).

According to Eq. (S18), the degree distribution density function can be written in the following form:

1 x
Io(n) = N (N(t)l/(d+1)> ’ (520)

7
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Supplementary Figure S6: Re-scaled size dependent degree distributions of the basic model. The
blue circles, purple triangles, green diamonds, and black squares are the degree distribution curves for
N =10°,7.5 x10%,4 x 10%, and 2.5 x 10* respectively; the inset presents the original results. The solid
red line represents the theoretical prediction for the degree distribution (Eq. (S20)).

where 4
Cd(l+d)y (1-4)
and ,
k= (1+d) (V{“/;) " (S22)

Therefore, the degree distribution is size dependent and also can be re-scaled by the power of the system
size N (t) (see Supplementary Fig. S6 (a)). This reflects the self-similarity property of the system, and
it has also been observed in other systems [Wu and Zhang(2011)]. Furthermore, the form of the size

dependency (Eq. (S20)) also guarantees that the total number of links scales with the number of nodes.

2 Additional Empirical Evidence

2.1 Flickr

We compare the scalings of social tagging systems to the results of our model. In the main text, the
Delicious system is studied. Here, we present similar results for another online system, Flickr. The data
can be downloaded freely at http://www.tagora-project.eu/data/.

In both systems, users visit certain online resources (pictures on Flickr) and may tag them with certain

words. We can consider the semantic space of these tags as the space in which our model is established.



Then, the number of distinct tags can be regarded as the total volume occupied by users.
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Supplementary Figure S7: The scalings of the Flickr community. The horizontal axis is [V, the number
of active users. A, G, T represent the total number of activities which have been generated by the active

users, the number of tags which have been used, and the time elapsed respectively.

Supplementary Fig. S7 presents the scalings of the Flickr community. In the figure, two distinct
stages can be seen with very different growth rates. Initially, the community passed through a phase
of relatively slow growth. However, when the size of the system grew to exceed approximately 5000,
the rate of growth became very large. The scaling phenomena that we discussed here apply only to the
second stage. The delicious community also passed through two such stages, but the separation between

them is not apparent because the time window of available data is much longer than that of Flickr.

2.2 APS citation network

As another example, we explore the scaling laws of a citation network based on the APS data set
(http://journals.aps.org/datasets). The corpus of Physical Review Letters, Physical Reviews, and Re-
views of Modern Physics is comprised of over 450,000 articles and dates back to 1893. Thus, we can
construct a citation network from 1893 to 2009. The PACS numbers are used to classify papers since
1977. Therefore, we can calculate the total number of distinct PACS numbers to quantify diversity of
the papers. From the empirical data, we find that the super-linear scaling law, i.e., the number of edges
versus the number of nodes is of scaling exponent 1.46, and the exponent of the sub-linear scaling law,
i.e., time elapsed versus nodes is of scaling exponent 0.24 (see Supplementary Fig. S8). The diversity
measured by the number of distinct PACS codes increases suddenly at the beginning because the PACS

system is used after 1977. At that time, there are already 48007 nodes in the network. The exponent of



this sub-linear scaling is 0.71.
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Supplementary Figure S8: The scalings of the APS citation network. IV represents the total number of
nodes (papers) in the network. F, T and P represent the total number of links (citations) among nodes
(), the total time (years) elapsed (7"), and the total number of distinct PACS codes used by those papers
(P), respectively.

3 Model Extension

The basic model is very simple, so it can be extended in several respects. As mentioned in the main text,
we added the crowding rule to avoid the formation of over-compact graphs. Here, we provide detailed
derivation and a discussion of other effects of this extension that are not discussed in the main text.
According to the crowding rule described in the main text, a newly generated node at position (p, ©)
will survive with the following probability:
- [T if has neighbors (S23a)
T { 0 otherwise. (S23b)
Therefore, when o = 0, the new node will survive with probability 1 if the surrounding node density is
nonzero; in other words, we recover the basic model. By contrast, when e — oo, new nodes will survive
in areas of empty space, and we will obtain a random geometric graph with nodes distributed evenly
throughout the space. First, we can prove that the relation between R(¢) and ¢ does not change when this
new rule is incorporated. This is true because the probability that a node falls into the region that can
cause the radius of the graph R(t) (which is also defined as the maximum distance of any existing node
from the center node) to slightly increase (the shaded area in Supplementary Fig. S2) is the same as in

the basic model. Thus the rate of increase of R(t) is also expressed by Eq. (S6).

10



Next, we will consider the nodes. We can write down a differential equation to describe node density

L
1
Ou(p, ©,t)/0t = —u(p, ©,)""
L1 (S24)
N(p7 67 Tp) = 0
By solving this equation, we find
1
t—71)l+a
1(p, ©,t) = (Lg (525)
Therefore, the relation between N (t) and R(t) is
N(t) ~ R(t)* s, (S26)
The total number of links between E(t) and R(t) is
E(t) ~ R(t)"T4a . (S27)

Therefore, we can obtain the scalings with respect to IV (¢), as mentioned in the main text, and the relation
between v and «, as shown in Eq. (10) of the main text, is

1

S I
T T Ut

(528)

We compare these exponents to the results of the numerical experiments in Supplementary Fig. S9. From
this figure, it is clear that the mean-field approximation can yield better prediction in d = 2 space than
in d = 3 space. Moreover, as « increases, the deviation between the theoretical prediction and the
simulation becomes larger because the nodes become sparser, violating the assumption of the mean-field

approximation.

11
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Supplementary Figure S9: Comparison of Eq. (S28) between the mean-field results and the simulation
results in d = 2 and d = 3 spaces. In all simulations, the maximum total number of nodes is 10°, and

L = 10'°. The blue circles correspond to d = 2 and the purple squares correspond to d = 3.

4 Simulation of Nighttime Light Clusters

4.1 The nighttime light dataset

The global satellite image of nighttime lights used in our study is collected by the Operational Linescan
System (OLS) of the US Air Force Defense Meteorological Satellite Program (DMSP) and archived at
NOAA National Geophysical Data Center (NGDC) [NOA(2012)]. The flagship product of this dataset
(version 4) is the stable lights. It is an annual cloud-free composite of the average digital brightness values
for the detected nighttime lights, altered to remove ephemeral lights and background noise [Elvidge et al.(2011)].
The image is 30-arc-second grided and spans from -180 to 180 degrees longitude and from -65 to 75 de-
grees latitude. The digital number (DN) values of the nighttime lights range from 1 to 63, while 0
represents the identified and eliminated background noise and 255 represents an area where no cloud-
free observation has been collected. In addition, although sunlit data, moonlight, glare, observations
containing clouds and lighting features from the aurora are excluded from the DMSP nighttime stable
lights dataset, gas flares are not. Therefore, we used the global gas flare map generated by NGDC
[Elvidge et al.(2009)] to identify and remove gas flares, reducing the possibility of mistaking them for
urbanized areas.

The year 2009 was chosen because it was the latest product freely accessible when we first con-
ducted our analysis. For detailed comparison between our model simulation results and nighttime light

observations, we narrow our scope down to part of the south central contiguous United States, where the

12



saturated lightness only makes up a negligible proportion so this region suffers less from the well-known
saturation problem of DMSP nighttime lights data [Sutton et al.(2007)]. Using GIS software, the night-
time lights image was re-projected into Lambert conic conformal projection, and a 1000 pixels x 1000
pixels region was extracted from the global image. The upper left corner of the region of interest (ROI)
is 113.8 W, 42.2 N, upper right 101.7 W, 43.4 N, lower left 111.7 W, 33.5 N and lower right 100.9 W,
34.5N.

In this region, two lighted pixels were considered as connected if one of them is the Moore neigh-
borhood of the other, and all the connected pixels formed a cluster. Thus we identified 921 clusters in
Fig. 3(a) in the main text. For each cluster, we treated the total number of non-zero pixels as the area
of the cluster, and the sum of non-zero pixels’ values as the total light intensity of the cluster. Then,
the scaling behaviour between light intensity and area as well as the size distribution of the areas of all

clusters were calculated to produce Fig. 3(c) in the main text.

4.2 The model

In the main text, we introduced a parameter € to simulate cluster formation. We provide the details of its
implementation in this subsection.

In the simulation, we set a rectangular region of width 1000 and height 1000 which are equal to the
width and height of the nighttime light image, respectively, in units of pixels. Initially, there are no nodes
in the rectangle. In every time step, one node is added to the region, and the survival of that node is
determined in accordance with the crowding rule with parameter . If the node survives, it may become
a seed with a probability of e. In each time step, we identify all nodes that are connected by edges as
clusters. The nodes are continuously generated, one by one, until the number of clusters larger than 33 in
size(the starting point of the power-law tail in the empirical data) is equal to 335, the number of clusters
in the power-law tail of the empirical data. Then, we calculate the scaling behaviour between area and
light intensity and the size distribution of the clusters.

The clusters created at earlier times may have more chances to gain new nodes, and thus, they may
become very large. By contrast, some newly born clusters may be very small, and some clusters may also
encounter each other and merge. We locate each node on the lattice by means of the integer parts of its
coordinates. Then, the area of each cluster is calculated as the total number of distinct lattices occupied
by all nodes in that cluster. The total light intensity is calculated as the total degrees (number of edges)
of all the nodes in one cluster because we assume that the light intensity of a cluster is proportional to
the total number of interactions. Then, by tuning o = 1.5 and € = 0.03, we can generate exponents of
the scaling between area and light intensity and a size distribution that are similar to those determined

from the empirical data.

13
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Supplementary Figure S10: The original plots of scaling behaviour and area distribution for simulations

and nighttime light data.

The scaling behaviour plot and the cumulative distribution of areas are presented in Supplementary
Fig. S10. However, Fig. 3 in the main text shows that the cluster size distribution of the satellite data
does not follow a strict power-law. The power-law tail starts at a size of 33. However, our model can
generate a power law distribution because of the underlying Yule-Simon mechanism. Therefore, in the
main text, we plot only clusters with areas larger than 33. The entire plot with all clusters included is
presented in Supplementary Fig. S10. We are aware that the scaling law for small clusters is not very
clear because of large fluctuations. We believe that with some small changes to its implementation, our
model will be able to generate better statistics that will be comparable to the empirical data. This task
will be left for future studies.

In the main text, we mention that the dynamics of the change in cluster sizes with the number of
nodes can be approximated as a Yule-Simon process with an exponent smaller than 1 because the area of
the region is very large. We present the analysis that supports this statement in detail here.

If L — oo, then the clusters may be isolated from each other. Therefore, the dynamics of each cluster
can be viewed as an independent random process.

Suppose that at time ¢, there are s existing nodes and N¢(t) clusters. We let My (t) be the total
number of clusters with N nodes, and Py(t) = Mny(t)/N¢(t) is then the fraction of such clusters
among all clusters. We use s as the time index such that in a single step, only one node is added to either

join one of the existing N¢ clusters or, with probability ¢, form a new cluster. Therefore, we can express

14



the dynamical equation of My (s) as follows:
OMn(s) 1—e€
0Os bZ
where Z = Y %_; N"Mn(s), bis the scaling behaviour constant between the area V' (¢) and the number
of nodes N(t), and n = (2 + 2a)) /(3 + 2a) < 1. According to

[b(N — 1)77MN,1(S) — anMN(S)} +€-On=1, (529)

Mp(s) = No(s) - Py(s). (S30)
we find that
ON¢ (s 0Ppn(s 1—¢
) pyy(s) + M) ) No () 10— 1P (5) — NP (s)] + e,
(S31)
and because,
Nc(s) = es, (S32)
we find that
oP 1-—
ePn(s) +es g(s) =es— ‘ [(N —1)"Py_1(s) — N"Pn(s)] + €dn=1. (S33)
s
Thus, we can derive Eq. (12) in the main text. We are interested in the stable state, so we let s — o0;
then, 8Pé\; (5) — 0, and we obtain
1—c¢
Pn(s) =s 7 [(N —1)"Py_1(s) — N"Pn(s)] + €dn=1- (S34)

When s — oo, we can set Z ~ s because we know that NO < N” < N1 and thus, s =
SN NOMn(s) < Sy NT™Mp(s) < S n N'Mp(s) = N¢ = es ~ s. Therefore, Yy N"Mp(s) ~ s.

We introduce an undetermined parameter ¢, and let

Z=(1-¢€)-C-s, (S35)
and insert it into Eq. (S34):
1
Py = Z [(N — 1)77PN,1 — NnPN] + edn=1. (S36)
We can solve Py using this equation,
N ¢\
— NT Rl
Py =¢N )] (1 + jn) (S37)
j=1
This quantity can be approximated as
Ni=n —2l=n
Py = (N "exp [—C <1)] ; (538)
-1
where,  can be obtained using the following equation
1—e > N ¢
= 14+ >)h
— =21 5 (S39)
N=1j=1

15



And we insert V' = bNN" into Eq. (S38) to obtain the probability density function of areas as,

1-m
)

1 —9l-n
Py = ;;7(‘;>"2 exp [—g <(V/b)1 — 2 )] . (S40)

It is hard to obtain the explicit form of this distribution because ( is difficult to calculate. Therefore,

we show the numerical result of Eq. (S40). A power law function with exponent dependent on € is
obtained (see Fig. S11).

o
o
| . -
{ ]
15 j ° —
[ ]
g ®
s | . ,
§ 10- .
= i °
2
. °
05 _
0.0, | | ! ! 1]
0.00 0.02 0.04 0.06 0.08 0.10

€

Supplementary Figure S11: The exponent of the cumulative size distribution as a function of ¢ in the

numeric results of Eq. (S40) by setting o = 1.5.

4.3 Finite size effect

In real situations, L is finite, leading to possible collision of some clusters. If this occurs, the analytical
results based on the assumption of isolated clusters may be violated. Therefore, we explore the influence
of the crossover of clusters on the scaling exponents by carrying out simulations with continuous gener-
ation of new nodes for L = 200, 300, 500, respectively. Without loss of generality, we set ¢ = 0.03 and
a = 1.5. The results are shown in Supplementary Fig. S12, S14, and S13.
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Supplementary Figure S13: The scaling exponent y as a function of the total number of nodes s (Blue

circles for L = 200, pink squares for L = 300, and yellow diamonds for L = 500).
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Supplementary Figure S14: The power-law exponent of the cumulative size distribution as a function
of the total number of nodes s (Blue circles for L = 200, pink squares for L = 300, and yellow diamonds

for L = 500).

We find that for finite L, as the number of nodes s increases, crossovers take place more frequently
(Supplementary Fig. S12) until only one super cluster remains for L. = 200. We see that the scal-
ing exponent almost remains unchanged for a wide range of s. For very large s, the scaling exponent
slowly decreases, resulting from crossovers (Supplementary Fig. S13). This phenomenon becomes more
obvious for small L. Supplementary Fig. S14 shows that the power-law exponent of cumulative size
distribution also remains stable until the finite size effect works. Take together, these results indicate
that the scaling exponents are insensitive to the variation of the number of nodes and crossovers when L
is large, accounting for the validity of the approximation of isolated clusters for theoretically predicting
the scaling exponents with respect to finite size of the space and a large number of nodes. In addi-
tion, our simulation results indicate that the scaling exponents of real cities may decrease as the sizes
of cities increase, because of the finite geographical space, in which cities are embedded, as shown in

Supplementary Fig. S13 and Supplementary Fig. S14.
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