Supplement to

Tulip Mahaseth and Andrei Kuzminov

Cyanide enhances hydrogen peroxide toxicity by recruiting endogenous iron to trigger catastrophic chromosomal fragmentation

Strain	Relevant Genotype	Source/ CGSC# or
name		Construction
CP909	nuoG::Tn10 purF	(Prüss et al., 1994)
BW25113	F-, $\Delta(araD-araB)$ 567, $\Delta lacZ4787(::rrnB-3)$, λ^{-} , <i>rph-1</i> ,	7636, (Baba et al.,
	Δ (rhaD-rhaB)568, hsdR514	2006)
JW1721-1	$\Delta katE731::kan$	9453
JW3914-1	$\Delta katG729::kan$	10827
TM10	$\Delta katE732$	JW1721-1 -> pCP20,
		42°C, screen for Kn ^S
TM12	$\Delta katG729$::kan $\Delta katE732$	TM10 x P1 JW3914-1
JW3820-1	$\Delta fre-784::kan$	10763
JW0598-2	$\Delta ahpC744::kan$	8713
JW1095-1	Δndh -771::kan	11791
TM17	nuoG::Tn10 purF	BW2113 x P1 CP909
JW0960-1	$\Delta appC721::kan$	8956
JW0421-1	$\Delta cyoB788::kan$	8585
JW0723-2	$\Delta cydB782::kan$	8790
JW0669-2	Δ <i>fur-731::kan</i>	8758
JW3879-1	$\Delta sodA768::kan$	10798
JW1648-1	$\Delta sod B734::kan$	9402
TM11	$\Delta sod B735$	JW1648-1-> pCP20,
		42°C, screen for Kn ^S
TM13	$\Delta sodA768::kan \Delta sodB735$	TM11 x P1 JW3879-1
JW0797-1	Δdps -784::kan	8844
JW1893-1	ΔftnA-755::kan	9575
JW3298-1	Δbfr -746::kan	10467
TM12	$\Delta ftnA-756$	JW1893-1-> pCP20,
		42°C, screen for Kn ^S
TM14	$\Delta ftnA-756 \Delta bfr-746::kan$	TM12 x P1 JW3298-1
TM15	$\Delta ftnA$ -756 Δfre -784::kan	TM12 x P1 JW3820-1
TM16	$\Delta ftnA-756 \Delta dps-784::kan$	TM12 x P1 JW0797-1

E. coli strains and plasmids (all strains except CP909 are in the BW25113 background).

Plasmids		
pCP20	Flp recombinase gene on a temperature-sensitive	(Datsenko & Wanner,
_	replicon	2000)
pMTL20	Cloning vector	(Chambers et al., 1988)
pES1	<i>fre</i> overproducer	(Woodmansee &
		Imlay, 2002)

References

- Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita, B. L. Wanner & H. Mori, (2006) Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol. Syst. Biol.* 2: 2006.0008.
- Chambers, S. P., S. E. Prior, D. A. Barstow & N. P. Minton, (1988) The pMTL nic cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. *Gene* 68: 139-149.
- Datsenko, K. A. & B. L. Wanner, (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. USA* 97: 6640-6645.
- Prüss, B. M., J. M. Nelms, C. Park & A. J. Wolfe, (1994) Mutations in NADH:ubiquinone oxidoreductase of *Escherichia coli* affect growth on mixed amino acids. *J. Bacteriol.* **176**: 2143-2150.
- Woodmansee, A. N. & J. A. Imlay, (2002) Reduced flavins promote oxidative DNA damage in non-respiring *Escherichia coli* by delivering electrons to intracellular free iron. *J. Biol. Chem.* 277: 34055-34066.

Supplemental Figures

Fig. S1. Concentration-dependence of the CN+HP toxicity.

Concentration of one of the ingredient was kept constant (either 2 mM HP or 3 mM CN), while concentration of the other ingredient was decreased step-wise, and the survival was measured after 45 minutes of shaking at 30°C.

Fig. S2. Starved cell survival. Cultures growing in LB till $OD_{600} \sim 0.3$ were pelleted, resuspended in M9 salts and shaken at 37°C for 2 hours before the indicated treatments.

Fig. S3. OD_{600} -dependence of fragmentation in Δdps mutants — quantification of several gels like in Fig. 5G. The cultures were *not* diluted before the treatment. The corresponding wild type curves from Fig. 5C are shown for comparison.

Fig. S4. Deferoxamine blocks chromosomal fragmentation in *dps* mutants. WT or *dps* mutant cultures were treated with CN+HP in the presence of iron chelator deferoxamine (DF) for the indicated amount of time. DF, deferoxamine added to 20 mM five minutes before the CN+HP treatment. The values for the corresponding growing cultures without DF-pretreatment from Fig. 5I are also shown for comparison.

Fig. S5. Kinetics of chromosome fragmentation in stationary cultures. WT or Δdps mutant stationary cultures were treated with CN+HP for the indicated time either undiluted or 10x diluted into "conditioned" medium from fully stationary cultures, and chromosome fragmentation was measured by PFGE. The values for the corresponding growing cultures without DF-pretreatment from Fig. 51 are also shown for comparison.

Fig. S6. Bacterioferritin mutants show WT or close to WT sensitivities to both HP-alone and CN+HP. A. The single *bfr* mutant. B. The double *bfr ftnA* mutant.