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1. PROOF OF LEMMA 1
We denote the true survival function for T̃ and the true survival function forC by S∗

T̃
(t | A,X)

and S∗C(t | A,X) respectively. If the model for the survival time is correct, then Em
T̃

[t | A,X] is
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the true mean E∗
T̃

[t | A,X]. Therefore,25

E

[
∆Y

SmC (Y | A,X)

−
∫
0≤t<τ

Em
T̃

(T | T > t,A,X)

{
dNC(t)

SmC (t | A,X)
+ I(Y ≥ t)

dSmC (t | A,X)

SmC (t | A,X)2

}
| A,X

]
= E

[
S∗C(t | A,X)T

SmC (t | A,X)
−
∫
0≤t<τ

E∗
T̃

(T | T > t,A,X)S∗
T̃

(t | A,X)d

{
S∗C(t | A,X)

SmC (t | A,X)

}
| A,X

]
= E

[
S∗C(t | A,X)T

SmC (t | A,X)

−
∫
0<t<τ

{∫
t<u<τ

uf∗
T̃

(u | A,X)du+ τS∗
T̃

(τ | A,X)
}
d

{
S∗C(t | A,X)

SmC (t | A,X)

}
| A,X

]
=

∫
0<u<τ

uf∗
T̃

(u | A,X)du+ τS∗
T̃

(τ | A,X)

= E(T | A,X),

and V m(D) = E[E(T | A,X)I{A = D(X)}/π(A;X)] = V (D). On the other hand, if the
model for the censoring time is correct, then SmC (t | A,X) is the true S∗C(t | A,X). We obtain

E

[
∆Y

SmC (Y |A,X)

−
∫
Em
T̃

(T | T > t,A,X)

{
dNC(t)

SmC (t | A,X)
+ I(Y ≥ t)

dSmC (t | A,X)

SmC (t | A,X)2

}
| A,X

]
= E

[
∆Y

S∗C(Y |A,X)

−
∫
Em
T̃

(T | T > t,A,X)

{
dNC(t)

S∗C(t | A,X)
+ I(Y ≥ t)

dS∗C(t | A,X)

S∗C(t | A,X)2

}
| A,X

]
= E

{
∆Y

S∗C(Y |A,X)
| A,X

}
= E(T | A,X).

Thus V m(D) = V (D).
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2. PROOF OF THEOREM 1
First, it can be established that 30

V (f∗)− V (f̂) = V (f∗)− sup
f∈F

VR(f, SmC , E
m

T̃
) + sup

f∈F
VR(f, SmC , E

m

T̃
)− VR(f̂ , SmC , E

m

T̃
)

+VR(f̂ , SmC , E
m

T̃
)− V (f̂)

≤ V (f∗)− VR(f∗, SmC , E
m

T̃
) + {sup

f∈F
VR(f, SmC , E

m

T̃
)− VR(f̂ , SmC , E

m

T̃
)}

+VR(f̂ , SmC , E
m

T̃
)− V (f̂)

≤ sup
f∈F

VR(f, SmC , E
m

T̃
)− VR(f̂ , SmC , E

m

T̃
)

+2 sup
f∈F
|VR(f, S∗C , E

∗
T̃

)− VR(f, SmC , E
m

T̃
)|.

The first inequality follows since VR(f∗, SmC , E
m

T̃
) ≤ supf∈F VR(f, SmC , E

m

T̃
). Ac-

cording to Lemma 2(a), VR(fm, SmC , E
m

T̃
) = supf∈F VR(f, SmC , E

m

T̃
), where fm =

argminf∈FE{Lφ(f, SmC , E
m
T )}. Hence, it suffices to derive the convergence rate of

VR(fm, SmC , E
m

T̃
)− VR(f̂ , SmC , E

m

T̃
).

Let fmλn = argminf∈Hk
[E{R(Y,∆, SmC , E

m

T̃
)φ{Af(X)}/π(A;X)}+ λn‖f‖2k]. Then, 35

n−1
n∑
i=1

R(Yi,∆i, ŜC , ÊT̃ )φ{Aif̂(Xi)}
π(Ai;Xi)

+ λn‖f̂‖2k ≤ n−1
n∑
i=1

R(Yi,∆i, ŜC , ÊT̃ )φ{Aifmλn(Xi)}
π(Ai;Xi)

+λn‖fmλn‖
2
k.

Equivalently,

VR(fm, SmC , E
m

T̃
)− VR(f̂ , SmC , E

m

T̃
)

≤ a(λn) +

(
n−1

n∑
i=1

[
λn‖f̂‖2k

+
R(Yi,∆i, ŜC , ÊT̃ )φ{Aif̂(Xi)}

π(Ai;Xi)
− λn‖fmλn‖

2
k −

R(Yi,∆i, ŜC , ÊT̃ )φ{Aifmλn(Xi)}
π(Ai;Xi)

]
− E

[
λn‖f̂‖2k +

R(Y,∆, ŜC , ÊT̃ )φ{Af̂(X)}
π(A;X)

− λn‖fmλn‖
2
k −

R(Y,∆, ŜC , ÊT̃ )φ{Afmλn(X)}
π(A;X)

])

+E

R(Y,∆, SmC , E
m

T̃
)φ{Af̂(X)}

π(A;X)
−
R(Y,∆, ŜC , ÊT̃ )φ{Af̂(X)}

π(A;X)


+E

[
R(Y,∆, ŜC , ÊT̃ )φ{Afmλn(X)}

π(A;X)
−
R(Y,∆, SmC , E

m

T̃
)φ{Afmλn(X)}

π(A;X)

]
= a(λn) + (I) + (II) + (III).
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To bound (II) and (III), we consider the class of functions

B = {R{Y,∆, SC(βC ,ΛC0), ET̃ (βT ,ΛT0)} : βC ∈ Rd, ‖βC − βmC ‖ < δ0, βT ∈ Rd,
‖βT − βmT ‖ < δ0,ΛC0,ΛT0 are bounded monotone functions in [0, τ ],

sup
t
|ΛC0(t)− ΛmC0(t)| < δ0, sup

t
|ΛT0(t)− ΛmT0(t)| < δ0},

where δ0 is a small constant, and βmT , β
m
C ,Λ

m
C0(t),Λ

m
T0(t) are the limits of β̂T , β̂C , Λ̂C0 and

Λ̂T0 based on the Cox models. Then |R{Y,∆, SC(βC ,ΛC0), ET̃ (βC ,ΛC0)}|/π(A,X) can be
bounded from above by a constant, say M .40

Since

n−1
n∑
i=1

R(Yi,∆i, ŜC , ÊT̃ )φ{Aif̂(Xi)}
π(Ai;Xi)

+ λn‖f̂‖2k ≤ n−1
n∑
i=1

R(Yi,∆i, ŜC , ÊT̃ )φ(0)

π(Ai;Xi)
,

it follows that

‖f̂‖k ≤
[
λ−1n n−1

n∑
i=1

R(Yi,∆i, ŜC , ÊT̃ )

π(Ai;Xi)

]1/2
≤Mλ−1/2n ,

where M2 is a constant bounding the empirical average given that the outcomes are bounded.
Similarly, ‖fmλn‖k ≤Mλ

−1/2
n , given that

λn‖fmλn‖
2
k ≤ inf

f∈Hk

λn‖f‖2k + E

[
R(Y,∆, SmC , E

m

T̃
)φ{Af(X)}

π(A;X)

]
≤ E

{
R(Y,∆, SmC , E

m

T̃
)φ(0)

π(A;X)

}
.

For every f ∈Mλ
−1/2
n BHk

, |(1−Af)+| ≤ 1 +Mλ
−1/2
n = B. Thus,∣∣∣∣∣E

[
R(Y,∆, SmC , E

m

T̃
)φ{Af(X)}

π(A;X)
−
R(Y,∆, ŜC , ÊT̃ )φ{Af(X)}

π(A;X)

]∣∣∣∣∣
≤ E

[∣∣∣{1−Af(X)}+

π(A;X)

∣∣∣|R(Y,∆, SmC , E
m

T̃
)−R(Y,∆, ŜC , ÊT̃ )|

]
≤ BE{|R(Y,∆, SmC , E

m

T̃
)−R(Y,∆, ŜC , ÊT̃ )|}

= Op(n
−γλ−1/2n ).

We use empirical process theory to bound (I). Define the functional class

L =
{
λn‖f‖2k +

R(Y,∆, SC , ET̃ )φ{Af(X)}
π(A;X)

−
R(Y,∆, SC , ET̃ )φ{Afmλn(X)}

π(A;X)
− λn‖fmλn‖

2
k,

f ∈Mλ−1/2n BHk
, R(Y,∆, SC , ET̃ ) ∈ B

}
,

and

G = {E(l)− l : E(l) = ε, l ∈ L}.

Let Z = supg∈G n
−1∑n

i=1 g(Xi). Since E(g) = 0, g ∈ G, it follows from Lemma S.1, by set-
ting ρ = 1, that45

pr{Z ≥ 2E(Z) + σ(Kb)1/2n−1/2 + 2KBbn−1} ≤ e−b,
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where B = O(λ
−1/2
n ). Furthermore, σ2 ≤ c′nε following the arguments for proving Theorem

3.4 in Zhao et al. (2012), given that E(l2) ≤ c′nE(l), where c′n = O(λ−1n ). In addition, for f ∈
Mλ

−1/2
n BHk

,

E(Z) = E
{

sup
g∈G

n−1
n∑
i=1

g(Xi)
}

= E
[

sup
E(l2)≤c′nε

∣∣∣E{l(X)} − n−1
n∑
i=1

l(Xi)
∣∣∣].

Since |βC − βmC | and |βT − βmT | are bounded by δ0, they lie in a hypercube of R2d. More-
over, {ΛC0 : supt |ΛC0(t)− ΛmC0(t)| < δ0} is a class of monotone functions, so is {ΛT0 :
supt |ΛT0(t)− ΛmT0(t)| < δ0}. The function in B is Lipschitz continuous with respect to all
these parameters and the Lipschitz constant is less than a constant W . There exists a con-
stant K, depending on d, such that the bracketing number for B satisfies N[ · ]{B, εW,L2(P )} ≤
K(δ0/ε)

2d+2.According to (10) in the main text, supPn
logN{G, ε, L2(Pn)} ≤ cnε−p, and thre-

fore

E(Z) ≤ cpMλ
− 1

2
n max

{
(M2λnc

′
nε)

(2−p)/4cn
1/2n−1/2, cn

2/(2+p)n−2/(2+p)
}
,

where cp is a constant depending on p. See Proposition 5.5 in Steinwart & Scovel (2007) and
references therein. Consequently, 50

pr
(∣∣∣ n1/2 [n−1 n∑

i=1

l(Xi)− E{l(X)}
]∣∣∣ > (c′nεKb)

1/2n−1/2 + 2KBbn−1

+ 2cpMλ−1/2n max
{

(M2λnc
′
nε)

(2−p)/4cn
1/2n−1/2, cn

2/(2+p)n−2/(2+p)
})
≤ e−b.

Let ε∗ > 0 be the largest number that satisfies

ε = 2cpMλ−1/2n (M2λnc
′
nε)

(2−p)/4cn
1/2n−1/2 + (c′nεKb)

1/2n−1/2.

If 2cpMλ
−1/2
n (M2λnc

′
nε
∗)

(2−p)/4
cn

1/2n−1/2 ≥ (c′nε
∗Kb)1/2n−1/2, then ε∗ ≤

4cpMλ
−1/2
n (M2λnc

′
nε
∗)

(2−p)/4
cn

1/2n−1/2, and thus

ε∗ ≤
{

4cpMλ−1/2n (M2λnc
′
n)

(2−p)/4
cn

1/2n−1/2
}4/(p+2)

.

Conversely, if 2cpMλ
−1/2
n (M2λnc

′
nε
∗)

(2−p)/4
cn

1/2n−1/2 ≤ (c′nε
∗Kb)1/2n−1/2, then ε∗ ≤

c′nKbn
−1.

Given thatL is convex, if l ∈ L satisfies n−1
∑n

i=1 l(Xi) ≤ αε andE{l(X)} ≥ ε, there exists
l′ ∈ L such that n−1

∑n
i=1 l

′(Xi) ≤ αε and E{l′(X)} = ε. Thus, with probability at least 1−
e−b, every l ∈ L with n−1

∑n
i=1 l(Xi) ≤ αε satisfies El ≤ ε (Bartlett et al., 2006; Steinwart & 55

Scovel, 2007). Since

n−1
n∑
i=1

[
λn‖f̂‖2k +

R(Yi,∆i, ŜC , ÊT̃ )φ{Aif̂(Xi)}
π(Ai;Xi)

− λn‖fmλn‖
2
k −

R(Yi,∆i, ŜC , ÊT̃ )φ{Aifmλn(Xi)}
π(Ai;Xi)

]
≤ 0 < αε,

with probability at least 1− e−b,

E
[
λn‖f̂‖2k +

R(Y,∆, ŜC , ÊT̃ )φ{Af̂(X)}
π(A;X)

− λn‖fmλn‖
2
k −

R(Y,∆, ŜC , ÊT̃ )φ{Afmλn(X)}
π(A;X)

]
≤ ε.
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It follows that,

pr
[
|(I)| >

{
4cpMλ−1/2n (M2λnc

′
n)

(2−p)/4
cn

1/2n−1/2
}4/(p+2)

+cpMλ−1/2n cn
2/(2+p)n−2/2+p + c′nKbn

−1 + 2KBbn−1
]
≤ 2e−b,

with c′n = O(λ−1n ) and B = O(λ
−1/2
n ). Using Mp as a new constant depending on p, we subse-

quently obtain the desired results.

LEMMA S.1 {LEMMA A.1 FROM BARTLETT ET AL. (2006)}. There is an absolute constant
K for which the following holds. Let G be a class of functions defined on X with supg∈G ‖g‖∞ ≤
b. Suppose that P is a probability distribution such that for every g ∈ G, Eg = 0. Let X1, ..., Xn

be independent random variables distributed according to P and set σ2 = supg∈G var(g). De-
fine

Z = sup
g∈G

n−1
n∑
i=1

g(Xi).

Then, for every x > 0 and every ρ > 0,60

pr
{
Z ≥ (1 + ρ)E(Z) + σ(Kx)1/2n−1/2 +K(1 + ρ−1)bxn−1

}
≤ e−x.

3. CALCULATION OF PSEUDO-OUTCOME USING COX PROPORTIONAL HAZARDS MODELS

Estimates β̂T and β̂C are obtained by fitting a Cox model using basis ZT for survival time T̃ ,
and basis ZC for censoring time. Subsequently, for 0 < t < τ ,

Ê
T̃

(T | T > t,Ai, Xi)

= −
∫
t<u<τ udŜT̃ (u | Ai, Xi)

Ŝ
T̃

(t | Ai, Xi)
+
τ Ŝ

T̃
(τ | Ai, Xi)

Ŝ
T̃

(t | Ai, Xi)

=

∫
t<u<τ uŜT̃ (u | Ai, Xi)dΛ̂

T̃
(u | Ai, Xi)

Ŝ
T̃

(t | Ai, Xi)
+
τ Ŝ

T̃
(τ | Ai, Xi)

Ŝ
T̃

(t | Ai, Xi)

=
1

Ŝ
T̃

(t | Ai, Xi)

n∑
k=1

∫
t<u<τ

uŜ
T̃

(u | Ai, Xi)e
β̂′
TZTidN

T̃ k
(u)∑n

j=1 I(Yj ≥ u)eβ̂
′
TZTj

+
τ Ŝ

T̃
(τ | Ai, Xi)

Ŝ
T̃

(t | Ai, Xi)

=
eβ̂

′
TZTi

Ŝ
T̃

(t | Ai, Xi)

n∑
k=1

YkŜT̃ (Yk|Ai, Xi)I(t < Yk < τ)∆k∑n
j=1 I(Yj ≥ Yk)eβ̂

′
TZTj

+
τ Ŝ

T̃
(τ | Ai, Xi)

Ŝ
T̃

(t | Ai, Xi)
.

The Breslow estimator for baseline hazard function Λ
T̃0

(t) is

Λ̂
T̃0

(t) =

∫ t

0

∑n
k=1 dNT̃ k

(u)∑n
j=1 I(Yj ≥ u)eβ̂

′
TZTj

,

and Λ̂
T̃

(t | Ai, Xi) = exp(β̂′TZT i)Λ̂T̃0(t). Estimates for S
T̃

(t | Ai, Xi) are obtained via

Ŝ
T̃

(t | Ai, Xi) = exp{−Λ̂
T̃0

(t)}exp(β̂′
TZTi).
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The pseudo outcome R̂i using doubly robust methods is calculated as

R̂i =
∆iYi

ŜC(Yi | Ai, Xi)

−
∫
Ê
T̃

(T | T > t,Ai, Xi)

{
dNCi(t)

ŜC(t | Ai, Xi)
− I(Yi ≥ t)

dΛ̂C(t | Ai, Xi)

ŜC(t | Ai, Xi)

}

=
∆iYi

ŜC(Yi | Ai, Xi)
−
Ê
T̃

(T | T > Yi, Ai, Xi)(1−∆i)I(Yi < τ)

ŜC(Yi | Ai, Xi)

+
n∑
k=1

∫
Ê
T̃

(T | T > t,Ai, Xi)I(Yi ≥ t)eβ̂
′
CZCidNCk(t)

ŜC(t | Ai, Xi)
∑n

j=1 I(Yj ≥ t)eβ̂
′
CZCj

=
∆iYi

ŜC(Yi | Ai, Xi)
−
Ê
T̃

(T | T > Yi, ZT i)I(Yi < τ)(1−∆i)

ŜC(Yi | Ai, Xi)

+
n∑
k=1

Ê
T̃

(T | T > Yk, ZT i)I(Yi ≥ Yk)I(Yk < τ)eβ̂
′
CZCi(1−∆k)

ŜC(Yk | Ai, Xi)
∑n

j=1 I(Yj ≥ Yk)eβ̂
′
CZCj

.

4. ADDITIONAL SIMULATION RESULTS 65

Figures 1 and 2 are the boxplots of values of estimated rules for the simulation study in the
main text, when n = 200 and n = 400. Similarly as the results under n = 100, they show favor-
able performances of inverse censoring weighted and doubly robust outcome weighted learning.

We present an additional simulation example. In this example, 30 independent covariates are
generated from the uniform distribution between [0, 1]. We generate both survival time and 70

censoring time from Cox models with nonlinear effects. The survival time T is the minimum of
τ = 2 and T̃ , where

λ
T̃

(t | A,X) = λ
T̃0

(t) exp[−0·5 sin(πX2) + 0·5 sin(πX3)

+{0·5− 0·5 sin(πX1)− 0·5 sin(πX2)}A],

and λ
T̃0

(t) = 2t. The hazard rate function of C is

λC(t | A,X) = λC0(t) exp[0·3 cos(2πX1) + 0·5 cos(2πX2) + 0·5 cos(2πX3)− cos(2πX4)

+{1− 1·5 cos(2πX1)− 1·5 cos(2πX2) + cos(2πX3)}A],

where λC0(t) = 2t. The censoring percentage is around 58%. The optimal decision boundary
is nonlinear with D∗(X) = −{0·5−0·5sin(πX1)−0·5sin(πX2)}. We implement the proposed 75

methods using both linear and Gaussian kernels.
We use Cox regression to estimate survival and censoring probability, but with different work-

ing models. Specifically, a correctly specified model requires that we use the true sets of covari-
ates in model fitting. If the model is incorrectly specified for survival time or censoring time,
we use (X1, . . . , X20, A,X1A, . . . ,X20A) as the basis. We plot the boxplots for the estimated 80

values produced from different methods using 1000 replicates in Fig. 3. Since the underlying
generative model is the same for different working models, we present all results in one figure
for a better comparison in Fig. 3 instead of four subfigures as we did in the main text. As an-
ticipated, the Cox regression model with correct basis leads to the highest value. However, the
truth is usually unknown in reality. Indeed, there is severe bias in the values using the rules con- 85
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(c) Incorrect T, correct C, n=200
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Fig. 1. Boxplots of values of estimated rules using different
methods, representing the logarithm of the survival time
with higher values being more preferable, n = 200. Cox:
Cox model; Q: inverse censoring weighted Q-learning;
L2Q: inverse censoring weighted L2 Q-learning; ICO:
inverse censoring weighted outcome weighted learning
with linear kernel; DRO: doubly robust outcome weighted

learning with linear kernel.

structed from the Cox model with incorrect basis. All methods with linear basis do not perform
well, and the performances do not improve over increasing sample sizes. However, the gain from
using the Gaussian kernel is pronounced, since the induced reproducing kernel Hilbert space is
flexible enough to approximate the nonlinear treatment decision rule. When the censoring model
is correctly specified, inverse censoring weighted outcome weighted learning with a Gaussian90

kernel yields a competitive performance. Doubly robust outcome weighted learning can further
reduce variabilities of the decision rules with a correct survival model. Although variance tends
to be larger in the values due to the estimated rules using the Gaussian kernel, the performances
are satisfactory compared with the linear kernel.
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(b) Correct T, incorrect C, n=400
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(c) Incorrect T, correct C, n=400
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Fig. 2. Boxplots of values of estimated rules using different
methods, representing the logarithm of the survival time
with higher values being more preferable, n = 400. Cox:
Cox model; Q: inverse censoring weighted Q-learning;
L2Q: inverse censoring weighted L2 Q-learning; ICO:
inverse censoring weighted outcome weighted learning
with linear kernel; DRO: doubly robust outcome weighted

learning with linear kernel.
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Fig. 3. Boxplots of values of estimated rules using differ-
ent methods. Cox1(0): Cox model with correct (incorrect)
basis; Q1(0), L2Q1(0): Q-learning or L2 Q-learning with
correct (incorrect) censoring weights; O1(0) {OG1(0)}:
inverse censoring weighted outcome weighted learning
with linear (Gaussian) kernel, correct (incorrect) censor-
ing weights; D11(10) {DG11(10)}: doubly robust outcome
weighted learning with linear (Gaussian) kernel, correct
survival model and correct (incorrect) censoring model,

and D01(00) {DG01(00)} follows similarly.


