SUPPLEMENTARY MATERIALS AND METHODS

LNCRNA EXPRESSION MICROARRAY DETECTION AND DATA ANALYSIS

Agilent Feature Extraction software (version 11.0.1.1) was used to analyse acquired array images. Quantile normalization and subsequent data processing were performed using the GeneSpring GX v12.0 software package (Agilent Technologies). After quantile normalization of the raw data, LncRNAs that at least 3 out of 9 samples have flags in present or marginal ("All Targets Value") were chosen for further data analysis. Differentially expressed LncRNAs with statistical significance between the two groups were identified through Volcano Plot filtering. Finally, Hierarchical Clustering was performed to show the distinguishable LncRNAs expression pattern among samples.

Risk score analysis

Risk score analysis was performed to evaluate the associations between the concentrations of the plasma lncRNA expression levels. The upper 95% reference

interval of each lncRNA value in controls or nonmetastasis group was set as the threshold to code the expression level of the corresponding lncRNA for each sample as 0 and 1 in the training set. A risk score function (RSF) to predict HCC or metastasis group was defined according to a linear combination of the expression level for each lncRNA. For example, the RSF for sample i using information from three lncRNAs was: $rsfi = \Sigma 3j-1Wj.sij$. In the above equation, sij is the risk score for lncRNA j on sample i, and Wi is the weight of the risk score of lncRNA j. The risk score of three lncRNAs was calculated using the weight by the regression coefficient that was derived from the univariate logistic regression analysis of each IncRNAs. Samples were ranked according to their RSF and then divided into a high-risk group, representing the predicted HCC cases or metastasis patients, and a lowrisk group, representing the predicted control individuals or non-metastasis patients. Frequency tables and ROC curves were then used to evaluate the diagnostic effects of the profiling and to find the appropriate cutoff point, and to validate the procedure and cutoffs in the next validation sample set.

SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure S1: Overview of the work design in biomarker screen for the diagnosis of HCC.

Common elements in "Post/Pre	and "Control/HCC":
------------------------------	--------------------

		Raw Intensity					
seqname	ProbeName	[A1] (raw) [A2] (raw) [A3] (raw) [B1] (raw) [B2] (raw) [B3] (raw) [C1] (raw) [C2] (raw) [C3] (raw)					
ENST00000545254	ASHGA5P026619	106.4653 93.01934 112.5689 7.213182 19.15113 110.9648 25.08888 29.54317 33.42484					
NR_033905	ASHGA5P019437	33. 54419 22. 43648 33. 78111 5. 058322 6. 500741 22. 3771 6. 425284 5. 915247 10. 50696					
ENST00000435996	ASHGA5P053326	506.2274 212.9809 493.5091 19.39055 51.77796 352.7547 86.27879 98.49406 95.37294					
TCONS_00001047	ASHGA5P045206	56.576355 21.261923 50.13768 4.9999995 7.6225123 18.58892 9.825793 6.4726553 7.0313096					
HMlincRNA1314-	ASHGA5P023657	73.07117 34.859196 68.43905 4.9999995 6.678862 47.018753 16.094 18.96585 7.27399					
ENST00000528139	ASHGA5P044802	68.0651 36.29069 65.81077 5.144844 7.853405 43.11955 13.08881 6.488891 9.173887					
ENST00000450503	ASHGA5P038133	37. 588642 12. 818281 26. 113565 4. 9999995 6. 8232074 19. 28161 4. 9999995 4. 9999995 7. 226889					
uc003jsd. 1	ASHGA5P040455	56, 197895 20, 980192 47, 20057 5, 227181 7, 92679 32, 7777 4, 9999995 6, 364204 8, 764888					
ENST00000422108	ASHGA5P015632	36, 376976 23, 034508 35, 935856 5, 442384 7, 5423336 22, 12846 4, 9999995 7, 739988 5, 292424					
ENST00000561181	ASHGA5P022705	35.93189 11.123838 29.168228 4.9999995 6.500975 24.49001 4.9999995 7.114365 4.9999995					
TCONS_00020616	ASHGA5P057673	31.094194 21.716866 33.5137 5.098104 7.1547365 24.013329 7.756229 4.9999995 6.8607106					
TCONS_00026233	ASHGA5P036830	62, 90411 27, 259851 82, 44051 5, 2578597 8, 009199 30, 408567 7, 717275 4, 9999995 10, 090679					
ENST00000419983	ASHGA5P015406	118.8226 37.92808 118.5329 5.087275 17.32147 49.08662 5.473594 17.43008 7.382277					
TCONS_00027298	ASHGA5P036155	35.63867 33.013535 40.53198 5.407441 7.534977 26.332687 4.9999995 5.524394 4.9999995					
TCONS_00020424	ASHGA5P041842	62. 37462 25. 69455 61. 97341 5. 019105 7. 42607 44. 29219 7. 480561 9. 26018 6. 427513					
uc003anf.2	ASHGA5P018420	51.5182 33.28681 41.26122 5.038707 7.482239 36.69275 11.59338 8.871861 6.282064					
TCONS_00029527	ASHGA5P032219	76. 37541 29. 08278 76. 52879 8. 259609 12. 46773 39. 33324 16. 02031 15. 72527 7. 654149					
ENST00000544557	ASHGA5P021921	37. 50307 29. 3238 34. 81741 5. 097444 7. 723309 34. 22229 12. 32377 7. 623465 6. 551936					
ENST00000413791	ASHGA5P035101	73. 53163 36. 66718 81. 30029 5. 772625 9. 253573 39. 00427 13. 5352 12. 43956 16. 25209					
uc001bbe.1	ASHGA5P030061	37.96878 13.395019 31.007874 4.9999995 7.764559 23.230122 8.393821 4.9999995 4.9999995					
ENST00000525992	ASHGA5P055170	59,80021 26,052486 83,028244 4,9999995 7,265597 28,117723 7,300884 10,73325 15,48507					
NR_047694	ASHGA5P025988	47.92929 41.85647 41.793377 5.1225405 7.071056 28.660076 8.729898 4.9999995 14.05652					
NR_038205	ASHGA5P025808	40, 126987 41, 55738 35, 960415 5, 0579114 8, 286993 28, 841452 10, 82943 9, 843657 4, 9999995					
ENST00000521139	ASHGA5P052699	58.902077 39.132324 53.509373 6.351606 7.23032 23.44439 4.9999995 4.9999995 7.417493					
ENST00000532280	ASHGA5P053657	44. 424694 28. 646126 42. 542652 4. 9999995 7. 1277194 37. 461826 7. 7106357 14. 52451 4. 9999995					
ENST00000560760	ASHGA5P030182	24.916319 14.392083 25.181978 4.9999995 6.168501 25.364439 5.8404217 4.9999995 4.9999995					
ENST00000453795	ASHGA5P018460	44.10294 23.878788 51.609226 4.9999995 7.8330164 36.83131 8.711324 14.193188 5.388711					
ENST00000559600	ASHGA5P022611	34.09443 20.415264 30.724691 4.9999995 5.801441 31.433392 4.9999995 5.973521 8.586274					
TCONS_00029855	ASHGA5P055559	101.54649 54.17835 104.6779 4.9999995 8.525135 53.35846 5.658084 6.2729287 4.9999995					
TCONS_00025722	ASHGA5P058046	60.7939 15.171118 61.126774 4.9999995 5.1577597 22.378363 5.0315285 4.9999995 6.837971					
uc001bsw.2	ASHGA5P058327	55.80721 31.75638 50.895 5.012855 7.862521 37.15664 13.43567 6.269689 11.5174					
ENST00000421637	ASHGA5P038049	37, 194016 11, 58832 36, 603825 4, 9999995 6, 3718905 22, 848969 7, 2154493 4, 9999995 4, 9999995					
ENST00000566418	ASHGA5P028028	44.97146 28.943048 42.48475 4.9999995 6.2795234 38.4791 7.8044415 9.729777 5.557211					
uc003fza.3	ASHGA5P058419	25.01944 28.634766 27.510908 4.9999995 5.7956004 18.684792 4.9999995 9.433593 4.9999995					
NR_024594	ASHGA5P037084	158. 75319 24. 513187 138. 7779 4. 9999995 6. 843428 42. 357914 8. 838197 14. 206752 16. 04173					
NR_024594	ASHGA5P037084	158. 75319 24. 513187 138. 7779 4. 9999995 6. 843428 42. 357914 8. 838197 14. 206752 16. 04173					
NR_024594	ASHGA5P037084	158, 75319 24, 513187 138, 7779 4, 9999995 6, 843428 42, 357914 8, 838197 14, 206752 16, 04173					
ENST00000431981	ASHGA5P045701	75. 21143 21. 697845 72. 6581 5. 119525 6. 17952 25. 081114 4. 9999995 4. 9999995 4. 9999995					
NR_038429	ASHGA5P017167	71.72874 15.613947 62.682415 4.9999995 6.731358 22.131159 4.9999995 4.9999995 4.9999995					
uc002ain. 1	ASHGA5P030082	68. 36105 42. 883743 74. 693504 4. 9999995 8. 834697 22. 509003 4. 9999995 16. 259861 8. 317313					
ENST00000493521	ASHGA5P018917	103. 25588 19. 038046 88. 98173 5. 1491146 6. 2427444 18. 51409 11. 94445 8. 239752 4. 9999995					
chr7:149967450-150001750+	ASHGA5P000496	166.7526 57.5431 104.5749 6.042436 18.17793 32.29109 16.44231 12.56438 16.3757					
NR 046358	#SHC#5P014779	74 97426 72 00106 67 33324 5 013899 8 606903 64 83798 16 8646 19 87151 12 11475					

Supplementary Figure S2: Schematic representation of the lncRNA microarray assay. Samples were obtained from three patients with HCC before operation and the corresponding plasma after operation as well as three cancer-free controls. (A) Hierarchical clustering analysis was applied for analysis the different expressed lncRNA in patients' plasma before and after operation (left panel). A case-control study was also conducted (right panel). (B) Volcano plot distribution was used to sort the aberrantly expressed lncRNAs between the pre-operation and post-operation group as well as the HCC group and the control group. (C) The up-regulated lncRNA transcripts in HCC patients with the decreased lncRNA transcripts in HCC patients post-operation were merged, and finally obtained 43 lncRNA transcripts. (D) All the 43 deregulated transcripts were filtered by high signal intensity (\geq 5) and at least 2-fold deregulation which yielded 13 lncRNA candidates highlighted.

Supplementary Figure S3: Overview of the work design in potential biomarker screening for the metastasis of HCC.

Supplementary Figure S4: Relative expression level of three lncRNAs in subgroup of HCC. (A) HCC patients were divided into two groups accoding to the size of the tumor (3 cm as cutoff). **(B)** Patients were groups by the differentiation of tumor according to the pathological diagnosis. **(C)** The sectionalization was based on the virus infection of patients detected clinically including HBV, HCV and no virus infection. Data was presented as mean \pm SEM and was analyzed with student *t* test. No significant difference was obtained in subgroup.

Supplementary Figure S5: Stability detection of endogenous lncRNAs in human plasma. (A) The products of the amplification fragment were detected by agarose electrophoresis. (B) RT -qPCR was applied for detecting the expression level of the three lncRNAs. Human plasmas obtained from three healthy controls were incubated at room temperature for 12 h, 24 h or subjecting it to up to 3 cycles of freezing and thawing. Data was presented as mean \pm SEM. No significant difference was observed in each group.

lncRNA	Training set			Validation set		
	НСС	Control	P^b	НСС	Control	P^b
Ν	20	20		147	180	
RP11-160H22.5	0.014 (0.0089– 0.028)	0.0025 (0.0019– 0.0045)	3.18×10^{-7}	0.0082 (0.0043– 0.019)	0.0033 (0.0011- 0.012)	8.90×10^{-8}
XLOC_014172	0.047 (0.1305– 0.183)	0.0072 (0.0040– 0.020)	4.87×10^{-7}	0.088 (0.076– 0.13)	0.0013 (0.00012–0.012)	< 1 × 10 ⁻¹⁰
LOC149086	0.052 (0.016– 1.00)	0.0049 (0.0031– 0.010)	4.22×10^{-7}	0.021 (0.013– 0.049)	0.0046 (0.0019– 0.018)	$< 1 \times 10^{-10}$

Supplementary Table S1: LncRNA expression levels in hepa	atocellular carcinoma HCC and cancer-
free control plasma samples in the training and validation s	sets

^aData are expressed as the median (interquartile range). ^bWilcoxon rank sum test. Supplementary Table S2: LncRNA expression levels in hepatocellular carcinoma(HCC) metastasis and non-metastasis patients' plasma samples in the training and validation sets

IncRNA	Т	Training set Validation set				
	Metastasis	Non-metastasis	P ^b	Metastasis	Non-metastasis	P ^b
Ν	20	20		79	78	
XLOC_014172	0.13 (0.10–0.96)	0.082 (0.076–0.089)	0.0006	0.27 (0.12–0.70)	0.017 (0.012–0.037)	$< 1 \times 10^{-10}$
LOC149086	0.04589 (0.028–0.18)	0.020 (0.013–0.035)	0.03	0.019 (0.014–0.039)	0.016 (0.011–0.037)	0.006

^aData are expressed as the median (interquartile range). ^bWilcoxon rank sum test.

Supplementary Table S3: LncRNA expression levels during perioperation period in hepatocellular carcinoma HCC patients' plasma samples

	Pre-operation ^a ($N = 217$)	Post-operation ^a ($N = 217$)	Fold change	<i>P</i> value ^b
RP11-160H22.5	0.011(0.0061-0.023)	0.0023(0.00083-0.0072)	4.78	$< 1 \times 10^{-10}$
XLOC_014172	0.092(0.076-0.15)	0.011(0.00029–0.022)	8.36	$< 1 \times 10^{-10}$
LOC149086	0.020 (0.014–0.054)	0.0025 (0.00077–0.0099)	8.00	$< 1 \times 10^{-10}$

^aData are expressed as the median (interquartile range). ^bWilcoxon rank sum test.

Supplementary Table S4: Correlation analysis between lncRNAs expression level variation and the metastasis

		Incerased (N)	Decreased (N)	P value ^a
RP11-160H22.5	Metastasis	57	52	< 0.001
	Non-metastasis	2	106	
XLOC_014172	Metastasis	3	106	0.041
	Non-metastasis	0	108	
LOC149086	Metastasis	31	78	< 0.001
	Non-metastasis	5	103	

^aChi-square test.