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Abstract
Recent progresses in data-driven analysis methods, including network-based approaches,

are revolutionizing many classical disciplines. These techniques can also be applied to food

and nutrition, which must be studied to design healthy diets. Using nutritional information

from over 1,000 raw foods, we systematically evaluated the nutrient composition of each

food in regards to satisfying daily nutritional requirements. The nutrient balance of a food

was quantified and termed nutritional fitness; this measure was based on the food’s fre-

quency of occurrence in nutritionally adequate food combinations. Nutritional fitness offers

a way to prioritize recommendable foods within a global network of foods, in which foods

are connected based on the similarities of their nutrient compositions. We identified a num-

ber of key nutrients, such as choline and α-linolenic acid, whose levels in foods can critically

affect the nutritional fitness of the foods. Analogously, pairs of nutrients can have the same

effect. In fact, two nutrients can synergistically affect the nutritional fitness, although the indi-

vidual nutrients alone may not have an impact. This result, involving the tendency among

nutrients to exhibit correlations in their abundances across foods, implies a hidden layer of

complexity when exploring for foods whose balance of nutrients within pairs holistically

helps meet nutritional requirements. Interestingly, foods with high nutritional fitness suc-

cessfully maintain this nutrient balance. This effect expands our scope to a diverse reper-

toire of nutrient-nutrient correlations, which are integrated under a common network

framework that yields unexpected yet coherent associations between nutrients. Our nutri-

ent-profiling approach combined with a network-based analysis provides a more unbiased,

global view of the relationships between foods and nutrients, and can be extended towards

nutritional policies, food marketing, and personalized nutrition.

Introduction
Among the many factors that influence our choice of food for consumption, such as palatabili-
ty, financial costs, and cultural background [1]–[4], nutritional sufficiency is given the highest
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priority for the maintenance of human health [5]. Therefore, in response to public concerns re-
garding wellness, considerable efforts have been made to accumulate nutritional knowledge,
e.g., the nutritional composition of foods, the health consequences regarding the intake of par-
ticular nutrients, and the recommended levels of nutrient consumption [6], [7]. The nutritional
data accumulated from these efforts have been applied to various practical purposes, such as
the design of dietary recommendations [8], the formulation of optimal livestock feed [9], [10],
and the ranking of foods based on their nutrient content [11], [12]. These studies have certainly
served a significant role in addressing many practical concerns regarding nutrition and diet.
Nevertheless, prominent systematic and comprehensive analyses of foods and their nutrients
remain lacking, which provides a clear opportunity to elicit new scientific insight and thereby
broaden the impact of previously accumulated nutritional data.

Data-driven analysis methods, including network-based approaches, are now widely used
for fundamental quantitative inquiries regarding various complex biological, technological,
and social systems [13]–[16]. Such techniques have also been applied to foods: a recent analysis
of a network that connects various food ingredients to flavor compounds revealed unforeseen
regional variations in culinary cultures [17]. Despite this study on the global connections be-
tween food ingredients and flavor compounds, to the best of our knowledge, there has not been
any work that utilizes comprehensive network-related approaches on only raw foods and their
nutrients. Herein, we present an unprecedented global view of the relationships between foods
and nutrients through a systematic analysis of a publicly available food and nutritional dataset.
We develop a unique quantification system to measure the nutritional adequacies of various
foods and identify the key elements, which can then be interpreted in the context of network
patterns among foods and nutrients. The results from this analysis not only help improve our
basic understanding of the nutritional structure of the human diet, but also have a wide range
of implications for nutritional policies, the food industry, and personalized nutrition.

Results and Discussion

Hierarchical Organization of the Food-Food Network
We started by constructing a food-food network composed of various raw foods connected by
weighted links. In this study, “raw foods” indicate raw foods, as well as other foods with mini-
mally-modified nutrient contents, e.g., frozen and dried foods (Materials and Methods sec-
tion). The number of raw foods was initially 1,068 and we systematically unified foods
redundant in their nutrient contents, giving rise to a total of 654 foods in the network (S1 Data-
set; see S1 Appendix, Section 1.3). The weight of each link that connects the two foods repre-
sents the similarity of the foods’ nutritional compositions (Materials and Methods section). For
example, in this network, persimmon and strawberry have very similar nutritional composi-
tions, especially in their relative amounts of calcium, potassium, vitamin C, phosphorus, amino
acids, and fat (P = 1.1×10-12). Fig. 1A–1C shows a global architecture of the food-food network,
clearly revealing its multi-scale organization wherein nutritionally similar foods are recursively
grouped into a hierarchical structure. At the highest level of the organization, the network can
be largely divided into two parts, the animal-derived part and the plant-derived part (Fig. 1A).
The animal-derived part consists of foods that mostly have large amounts of proteins and/or
fats relative to the amounts of carbohydrates, such as fish, meat, and eggs. In contrast, the
plant-derived part contains foods that generally have small amounts of proteins, such as fruits,
grains, mushrooms, and vegetables (with the exception of a few foods such as alfalfa seeds, in
which protein constitutes 55.6% of the dry weight). Within the animal-derived part, we identi-
fied several foods whose nutrients were similar to those within the plant-derived part (and vice
versa); these foods thus serve as interesting bridges across the two large clusters. One example
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of pairs of ‘bridge’ foods is northern pike liver and sprouted radish seeds, which have similar
nutritional compositions, especially in their relative amounts of fat, iron, and niacin (P = 0.009;
see S1 Appendix, Section 3.4).

At a deeper level of the hierarchical structure of the food-food network (i.e., within either
the animal- or plant-derived cluster), we found that foods can be grouped amongst each other,

Fig 1. The food-food network. (A–C) Large-scale to small-scale overviews of the network. Each node represents a food, and nodes are connected through
links that reflect the similarities between the nutrient contents of foods. The network in (A) is composed of animal-derived (left) and plant-derived (right) foods.
A part of the animal-derived foods is magnified in (B), which shows seven different clusters of foods. The members of one of these clusters, the cluster ‘Finfish
(with some shellfish and poultry)’, are shown in (C). In (A–C), each node is colored according to the food category. The size of each node corresponds to the
nutritional fitness (NF) of the food (Fig. 2A and 2B). For visual clarity, we only show the topologically-informative connections between the foods (represented
by links with the same thickness), and we omit six foods that have loose connections to the network (see S1 Appendix, Section 3.3 for details).

doi:10.1371/journal.pone.0118697.g001
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again according to their relative levels of macronutrients, i.e., proteins, fats, and carbohydrates
(S1 Appendix, Section 3.2). From this observation, we identified two categories within the ani-
mal-derived foods: the protein-rich category (209 foods, such as fish, meat, and poultry) and
the fat-rich category (7 different animal fats from pork, lamb, beef, and veal). In addition, the
plant-derived foods were primarily divided into three large categories: the fat-rich category
(34 nuts, seeds, avocados, and rice bran), the carbohydrate-rich category (208 fruits, grains,
root vegetables, seaweeds, and others), and the low-calorie category (186 vegetables, spices,
herbs, mushrooms, and others). A fat-rich category is found in both animal-derived and plant-
derived foods; however, the foods that belong to one of the fat-rich categories are largely distin-
guishable from the foods of the other category by their abundance of saturated fatty acids (ani-
mal fats typically contain much more saturated fatty acids than plant fats. See S1 Appendix,
Section 3.2).

Finally, to attain the finest level of the organization, we continued our hierarchical clustering
approach (grouping foods with similar nutrient contents) for all foods. We discovered that the
global network structure is predominantly composed of 41 distinct food clusters, which en-
compass 76.9% of the total foods (S1 Dataset). Among those food clusters, more than half of
the clusters (22 clusters) include less than six foods each, but there are also a significant number
of clusters (11 clusters) that include more than ten foods each. Fig. 1B shows several clusters
that primarily include finfish, shellfish, beef, pork, and poultry. In general, the organismal
sources of the foods in each cluster were homogenous or similar based on their phylogenetic
lineage. However, we faced a few cases without this trend. Finfish and poultry belonged to the
same two clusters, as illustrated in Fig. 1C wherein turkey does exist in the finfish-majority
cluster. This unexpected result is accounted for by the fact that turkey and tilapia share similar
relative proportions of various amino acids, minerals, cholesterol, and niacin (P = 1.3×10-10).
Overall, from the coarse to fine scales, the global structure of our food-food network not only
exhibits hierarchical patterns consistent with common nutritional knowledge, but also dis-
closes unexpected relationships between foods clearly portrayed by our unbiased methodology.

Characterization of Nutritional Fitness
The food-food network provides a global view of the nutritional connections between foods;
however, we desire more direct information on which foods can lead to good health outcomes.
Specifying food quality based on nutrient contents will help consumers meet the nutrient in-
takes necessary for good health.

Suppose a hypothetical scenario wherein an ideal food contains all necessary nutrients to
meet, but not exceed, our daily nutrient demands. In this case, consuming only this food, with-
out any other food, will provide the optimal nutritional balance for our body. In the absence of
such a prime, ideal food, a realistic alternative would be to consume a set of foods, small in
number, that still satisfies nutritional recommendations (in fact, we find that the minimum set
consists of four different raw foods. See S1 Appendix, Section 4.2). Using this concept, we exam-
ined all potential food combinations and identified sets that have the smallest numbers of differ-
ent foods and meet our daily nutrient demands in each entirety. We henceforth call these food
sets the irreducible food sets. Foods with a frequent occurrence across these combinations are
likely to provide very balanced nutrients (the number of different foods that comprise an irre-
ducible food set was limited to a small value. Otherwise, it is hard to estimate the true nutrition-
al adequacy of the foods, solely examining the frequency of the food occurrence across the food
sets. For example, a nutritionally-poor food in a certain set, without any proper limitation on
the set size, might be easily complemented by many other foods in the same set, to meet our
daily nutrient demands). To characterize the nutritional adequacy of foods, we introduce the
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nutritional fitness (NFi) measure; this value monotonically increases with the number of irre-
ducible food sets that include food i, and the value of NFi ranges from zero to one (Fig. 2A). A
large NFi suggests that food i is nutritionally favorable. In this work, we considered the nutri-
tional requirement of a physically active 20-year-old male and constrained the total weight of
daily food consumed, when the NFi of each food was calculated (Materials and Methods sec-
tion). Although profiling and scoring foods based on the nutrient contents have been attempted
in many previous studies [11], [12], in general, their methods involve rather arbitrarily-
structured mathematical formulas and explicit weighting factors, which may lead to possibly bi-
ased results. In contrast, our study takes a conceptually different, clearly defined approach to
prioritize foods that are nutritionally adequate based on the outputs of optimization problems
in which all nutrient levels are simultaneously constrained within the ranges recommended for
daily intake.

From our calculations, then, which foods have the highest NFs? The three foods with the
highest NFs were almond, cherimoya, and ocean perch, which had NF values of 0.97, 0.96, and
0.89, respectively (Fig. 2B; NF = 0.30 ± 0.19 for all foods). Almond, which is the food with the
highest NF, belongs to a fat-rich category in the food-food network, whereas cherimoya and
ocean perch belong to the carbohydrate-rich and protein-rich categories, respectively. An in-
teresting question is whether foods with high NFs tend to be more expensive to purchase than
foods with low NFs. Fig. 2C shows essentially no correlation between a food’s NF and price per
weight (r = −0.02, P = 0.65; see also Fig. E in S1 Appendix).

One important issue here is whether the categories to which the foods belong (delineated in
our food-food network) play any role in the NF-driven prioritization of foods. An equivalent
viewpoint of this issue is to ask whether the comparison of NFs should be made across all foods
included in our study or rather in a category-specific manner. Regarding this issue, we found
that most irreducible food sets are composed of foods that cover all four major categories (i.e.,
protein-rich, fat-rich, carbohydrate-rich, and low-calorie categories) most likely because foods
from different categories independently contribute to satisfying the overall nutritional require-
ments of our diet. In this sense, a food found in an irreducible food set and belonging to a partic-
ular category cannot be easily replaced by a food from another category without compromising
the food set’s entire nutritional adequacy. However, a different food from the same category is
allowed to serve as a replacement. Therefore, using NFs to prioritize foods for nutritionally-
balanced diets should only be done for foods that belong to the same category.

As previously discussed, the four major categories in the food-food network were further di-
vided into many finer-scale food clusters. Between foods from different clusters of the same
category, we found that their NFs provide a moderately distinguishing characteristic: in the
protein-rich category, foods that belong to the finfish, animal liver, and milk clusters had
higher NFs, on average, than foods in the pork, beef, and poultry clusters (Fig. 2D; one excep-
tion is a finfish cluster with a relatively low NF, but this cluster only contains approximately
6% of all finfish). In the fat-rich category, nuts and seeds tend to have higher NFs than animal
fats (Fig. C in S1 Appendix). In the carbohydrate-rich category, fruits tend to have higher NFs
than grains and legumes (Fig. C in S1 Appendix). In the low-calorie category, vegetables and
peppers have higher NFs than herbs and spices (Fig. C in S1 Appendix). Thus, our systematic
analysis using NFs offers a prioritized list of foods from each of the major food categories.

Bottleneck Nutrients: Key Contributors to High Nutritional Fitness
The NFs of foods in our study were found to be widely dispersed. An interesting avenue to pur-
sue moving forward would be to more deeply examine the identities of the individual nutrients;
specifically, what particular nutrients significantly influence the NF of the food? For example,
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Fig 2. Characteristics of nutritional fitness (NF). (A) Flow chart for calculating NF. See S1 Appendix, Section 4.1 for the detailed procedures of the flow
chart. At the end, we assign NF = log(f+1)/log(N+1) to each food, where f is the number of irreducible food sets that include the food, andN is the number of
all irreducible food sets. An irreducible food set is defined as a set of different foods that satisfies the following two conditions: it meets our daily nutrient
demands in its entirety, and no set is a superset of another set. We limit the number of different foods in each irreducible food set and the total weight of foods
therein (Materials and Methods section). A large NF suggests that the food is nutritionally favorable. (B) NFs of foods, sorted in descending order. (C) NF
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in the case of the almond, what nutrients were responsible for this food having the highest NF
in the fat-rich category? In order to identify these key nutrients, we initially substituted high-
NF foods from irreducible food sets with low-to-moderate-NF foods from the same major cate-
gory. Next, we inspected which nutrient levels in the whole irreducible food set were signifi-
cantly altered to dissatisfy daily requirements. We interpreted these sets of nutrients as the
main contributors to the foods’ high NF values; thus we refer to these nutrients as the bottle-
neck nutrients for high NF (Materials and Methods section).

Table 1 presents examples of bottleneck nutrients, which can be classified into two types.
The first type is nutrients that are not sufficiently found in many low-to-moderate-NF foods.
The presence of these nutrients can thus be considered a favorable condition for foods to have
high NF values. Linoleic acid is one of such favorable nutrients for foods from the fat-rich cate-
gory. The daily recommendation for this fatty acid is approximately 5–10% of the total calorie
intake. However, surprisingly, 90.2% of all fat-rich foods do not contain this important nutri-
ent. A notable exception is almond (the food with the highest NF in the fat-rich category),
which had as much as 12.1 g/100 g of linoleic acid. The second type of bottleneck nutrients is
found much more abundantly in many low-to-moderate-NF foods; thus, this type is unfavor-
able for increasing a food’s NF. In the protein-rich category, cholesterol is one of such unfavor-
able bottleneck nutrients. We found that dried nonfat milk, which is ranked in the top 12% of
foods with the highest NFs in this category, has 20 mg/100 g of cholesterol. This amount is 5.1
times less than the average cholesterol content (102 mg/100 g) in other protein-rich foods. In
the carbohydrate-rich food category, α-linolenic acid and manganese are favorable and unfa-
vorable bottleneck nutrients, respectively. Cherimoya, the food with the highest NF in this cate-
gory, has 28.3 times more α-linolenic acid (159 mg/100 g) and 10.6 times less manganese
(93 μg/100 g) than all other carbohydrate-rich foods on average. Furthermore, in this category,
folate was identified as an unfavorable bottleneck nutrient, despite being a well-known essential
vitamin. This occurs because most carbohydrate-rich foods (91.8% of all foods in this category)

versus price (per weight) for each food (gray). The blue line indicates the average prices along NFs. (D) NFs of foods (average and standard deviation) in
each food cluster of the protein-rich category. Clusters are abbreviated as follows. F1: Finfish (with some shellfish and poultry); L: Animal liver; M: Milk; S:
Shellfish (with somemollusks); E: Eggs; FP: Finfish and poultry (with some veal); PR: Pork (with some veal); B: Beef (with some lamb and poultry); F2:
Finfish (mixed); PL: Poultry (with some beef and lamb).

doi:10.1371/journal.pone.0118697.g002

Table 1. Examples of bottleneck nutrients for high nutritional fitness (NF).

Food category Nutrient name Remark

Protein-rich Choline Favorable for NF

Vitamin D Favorable for NF

Total lipid Unfavorable for NF

Cholesterol Unfavorable for NF

Fat-rich Linoleic acid Favorable for NF

Choline Favorable for NF

Manganese Unfavorable for NF

Carbohydrate-rich Carbohydrate Favorable for NF

α-Linolenic acid Favorable for NF

Manganese Unfavorable for NF

Folate Unfavorable for NF

Low-calorie Choline Favorable for NF

α-Linolenic acid Favorable for NF

doi:10.1371/journal.pone.0118697.t001
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contain a rather large amount of this nutrient (101.6 ± 157.4 μg DFE/100 g); therefore, con-
sumption of these foods can cause the total folate intake to easily exceed the daily recom-
mended levels when consumed with foods of other categories. Some foods in our analysis may
have been fortified with folate; however, we could not identify the clear evidence solely from
our dataset (S1 Dataset).

For each food category, we list the two most favorable and two most unfavorable bottleneck
nutrients based on the regression coefficients (Materials and Methods section). If the total
number of favorable or unfavorable bottleneck nutrients for a given food category was less
than two, we listed all. The full list of bottleneck nutrients is available in Table C in S1 Appen-
dix, which indicates choline is a favorable bottleneck nutrient in every food category.

An interesting question to raise here is why certain types of foods in the same category have
noticeably different NF values. For example, in the protein-rich category, finfish tend to have a
higher NF than poultry (Fig. 2D), despite similarities in their overall nutrient compositions
(P< 2.0×10-5). We found that choline, a favorable bottleneck nutrient essential for normal
body functioning [18], was substantially more abundant in finfish (S1 Appendix, Section 5.3).
Other bottleneck nutrients that happen to separate foods, especially those from different clus-
ters within the same food category, are shown in S1 Appendix, Section 5.3. Our results there-
fore imply that specific bottleneck nutrients can play a critical role in the discrepancy between
the high- and low-NF foods of a given food category.

Among all bottleneck nutrients from each of the four major food categories, we found cho-
line to be a favorable bottleneck nutrient in every category. This nutrient is an important factor
for a wide range of physiological processes, from cell membrane synthesis to neurotransmitter
metabolism, and its deficiency is now thought to have an impact on a number of diseases [18],
[19]. Among all foods in our study, 61.2% of them provide choline to varying degrees. Howev-
er, the choline contents of these foods are generally insufficient to satisfy the daily recom-
mended level (minimum intake of 550 mg); for half of these foods, the choline content is less
than 30.9 mg/100 g. For this reason, we believe that choline was noticeable in a collection of
foods with high NFs across all major food categories. Considering a degree of the uncertainty
in the dietary requirement for choline, which may be related to genetic polymorphisms [18], it
will be valuable to further examine the effects of the altered requirement for choline in our
analysis. Finally, we suggest that deeper analyses into these distinguishing bottleneck nutrients
may be warranted when the prioritization of foods is of interest.

Synergistic Bottleneck Effects of Nutrient Pairs
The fact that specific nutrients can either enhance or diminish the NF of foods encourages us
to examine beyond the effect of a single nutrient and to determine whether multiple nutrients,
when considered together, can exert such characteristics. In this regard, consider the strategy
for how we discovered bottleneck nutrients. Briefly, within irreducible food sets, a high-NF
food was systematically replaced with low-to-moderate-NF foods; the nutrients for which the
daily requirement was no longer met, as a direct result of these replacements, were subsequent-
ly identified. Analogously, one can investigate this same attribute from pairs of nutrients. Spe-
cifically, when a high-NF food is replaced, the resulting quantity of either of two nutrients in a
pair (the quantity from the whole irreducible food set) may no longer meet their respective rec-
ommended intake levels. In our collection of irreducible food sets, we found that not only in-
deed do these pairs of nutrients exist but also can occur more frequently than expected by
chance when each of the two nutrients is considered separately. Thus, this result serves as direct
evidence of the synergistic bottleneck effect, which is simultaneously produced by pairs of nu-
trients and contributes to a high NF of foods.

Nutritional Landscape of Food

PLOS ONE | DOI:10.1371/journal.pone.0118697 March 13, 2015 8 / 17



We now introduceFij
k, which is a measure of the degree of such synergism between two nu-

trients i and j for the high NF of food k (see the Materials and Methods section). Table D in S1
Appendix presents the list of synergistic nutrient pairs with largeFij

ks. In the case of choline and
cholesterol, this nutrient pair exhibits strong synergism in ocean perch (Fij

k = 22.0, P< 10-16),
the highest-NF food among all foods in the protein-rich category. Previously, we found that cho-
line and cholesterol are favorable and unfavorable bottleneck nutrients, respectively, in the foods
of this category. Our analysis demonstrates that, when favorable and unfavorable nutrients were
found in highly synergistic bottleneck pairs, in general, their quantities tended to be positively
correlated across the foods in each of the four major categories (Fig. 3; P< 2.0×10-4 to P = 0.04).
This positive correlation, which was identified among nutrients that have contradicting roles in
influencing NF, contributes to the previously discussed difficulty in maintaining nutrient bal-
ance, i.e. simultaneously meeting the respective daily nutritional requirements, in irreducible
food sets.

Intriguingly, the individual nutrients in a pair that exhibits a synergistic bottleneck effect are
not necessarily bottleneck nutrients themselves that can separately impact the NFs of foods.
For example, vitamin E and folate constitute a synergistic nutrient pair that contributes to the
high NF in almond among fat-rich foods (Fij

k = 10.5, P< 10-16). These two nutrients are not
bottleneck nutrients in the fat-rich category; however, vitamin E and folate are moderately fa-
vorable and unfavorable for high NF, respectively, and they do share a positive correlation in
their abundances across fat-rich foods. Almond, the highest-NF food in the fat-rich category,
has 7.6 times more vitamin E (26.2 mg/100 g) and 3.1 times less folate (50 μg DFE/100 g) than
expected from the overall trend of the fat-rich foods that have positively-correlated quantities
(r = 0.34) of the two nutrients. Furthermore, in the case of flatfish (which has the second high-
est NF among protein-rich foods), vitamin B12 (1.1 μg/100 g) and folate (5.0 μg DFE/100 g)
comprise a synergistic bottleneck pair (Fij

k = 10.3, P< 10-16), although neither of the two

Fig 3. Correlations between the abundances of two nutrients (one nutrient is favorable and the other nutrient is unfavorable for NF) across the
foods in each food category. For highly synergistic nutrient pairs (Φij> 2.0; blue) and the other pairs (Φij � 2.0; grey), we present the respective averages
and standard deviations of the correlations (see the Materials and Methods section and S1 Appendix, Section 6.2).

doi:10.1371/journal.pone.0118697.g003
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nutrients are bottleneck nutrients themselves in the protein-rich foods. Table 2 shows the full
list of synergistic pairs that have non-bottleneck nutrients. These results evince the fact that
balancing multiple nutrients simultaneously cannot be as simple as expected from balancing
individual nutrients. Therefore, the study raises the importance of nutrient-to-nutrient connec-
tions in the context of balancing multiple nutrients simultaneously, which adds another layer
of complexity when understanding the nutritional adequacy of foods.

For each food category, we list synergistic bottleneck pairs (Fij > 2.0) composed of nutrients
(in the second and third columns) that are not bottleneck nutrients themselves for high NF in
that food category. Only food in which a given pair of nutrients exhibits the strongest syner-
gism (among multiple foods) for high NF is shown in the fourth column. In the fifth column,
‘F’ (‘U’) denotes that the nutrient is ‘favorable’ (‘unfavorable’) for a high NF of the food in the
fourth column (see the Materials and Methods section). For example, ‘F, U’ indicates that a nu-
trient in the second column is favorable, whereas the nutrient in the third column is unfavor-
able. This table shows only the cases with a definite ‘F’ or ‘U’ (Materials and Methods section).
Foods in the low-calorie category do not have synergistic pairs of non-bottleneck nutrients.

The Nutrient-Nutrient Network
In light of the synergistic bottleneck effects, the previously discussed nutrient-nutrient correla-
tions across foods extend our interest to a comprehensive picture of the associations between
nutrients. In this aspect, we performed an extensive, unbiased survey of these nutrient-nutrient
correlations by constructing a nutrient-nutrient network, in which nodes are nutrients, and nu-
trients are connected to each other through correlations in their abundances across foods. For
illustration, Fig. 4 presents the nutrient-nutrient network based on the correlations across all
foods (we also consider correlations measured in a food-group-specific manner for subsequent
analyses). In our network, glucose and fructose are examples of nutrients that are connected
through a large correlation (r = 0.85, P = 7.4×10-23). Both nutrients are very abundant in honey
(35.8 g/100 g of glucose and 40.9 g/100 g of fructose), and have low abundance in spinach
(0.11 g/100 g of glucose and 0.15 g/100 g of fructose). In contrast, protein and fiber have a
strongly negative correlation in their amounts across foods (r = −0.58, P = 5.6×10-31). In the
network, we also observed synergistic bottleneck nutrients that are linked to each other, such

Table 2. Synergistic bottleneck pairs for high NF, which are composed of non-bottleneck nutrients.

Food category Nutrient 1 Nutrient 2 Food Remark

Protein-rich Vitamin B12 Folate Flatfish F, U

Vitamin B12 Linoleic acid Flatfish F, F

Fat-rich Carbohydrate Folate Almond F, U

Vitamin E Niacin Almond F, U

Vitamin E Folate Almond F, U

Vitamin E Iron Almond F, U

Carbohydrate Niacin Almond F, U

Vitamin E Sodium Almond F, U

Folate Total lipid Almond U, U

Folate Saturated fat Almond U, U

Niacin Total lipid Almond U, U

Carbohydrate-rich Vitamin E Total lipid Tangerine F, U

Calcium Iron Kumquat F, U

doi:10.1371/journal.pone.0118697.t002
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as choline and cholesterol (previously discussed, r = 0.65 and P = 1.1×10-25) or choline and lin-
oleic acid (both favorable for the high NF in scallop, r = −0.54 and P = 1.9×10-6).

The existence of notably positive correlations in the network invites a closer examination
of the connections between nutrients. Vitamins A and K have a highly positive correlation in
their abundances across all foods (r = 0.634, P = 3.2×10-13). When correlations are measured
within plant-derived and animal-derived foods separately, only plant-derived foods exhibit
this positive correlation between vitamins A and K (r = 0.632 and −0.13 for plant- and
animal-derived foods, respectively). Indeed, vitamins A and K are known to be synthesized in
plants from a common molecular precursor, geranylgeranyl diphosphate [20]. Additionally,
in our network, protein is one of the strongest hubs associated with many micronutrients, in-
cluding choline and niacin. Protein and choline have a positive correlation not only across all
foods (r = 0.77, P = 4.0×10-30) but also for plant-derived and animal-derived foods separately.
The examination of each subgroup within animal-derived foods still reveals positive correla-
tions between protein and choline (S1 Appendix, Section 7.4). This connection between
protein and choline remains valid, even when we remove the potential indirect causes of
their correlation, such as the effects of phosphorus and cholesterol (compounds that have pos-
itive correlations with both protein and choline. See S1 Appendix, Section 7.4). All of these
results consistently support the robust association between protein and choline, although the
detailed biological origins need to be elucidated. Similarly, protein and niacin have a highly
positive correlation across all foods (r = 0.59, P = 6.3×10-26), and this correlation remains
valid when measured within individual subgroups of foods separately (S1 Appendix,

Fig 4. The nutrient-nutrient network. Each node represents a nutrient, and the nodes are connected through correlations between the abundances of
nutrients across all foods. The network is composed of three major groups of nutrients that are densely connected to one another through positive
correlations. Between groups, nutrients have only sparsely positive or frequently negative correlations (S1 Appendix, Section 7.3): the top and left side is for
the first group, the right side is for the second group, and the bottom side is for the third group. Each node is colored according to the nutrient type. The shape
of each node indicates the hierarchical or ‘taxonomic’ level of a nutrient, from ‘Highest’ (a general class of nutrients) to ‘Lowest’ (a specific nutrient). The color
and thickness of each link correspond to the sign and magnitude of the correlation, respectively. Here, we only show the significant nutrients and correlations
described in S1 Appendix, Section 7.2, and we omit seven nutrients which don’t have significant correlations with any others. We also omit amino acids
because their correlations with other nutrients are very similar to the correlations of the total protein with others (thus, these correlations are redundant for
visualization).

doi:10.1371/journal.pone.0118697.g004
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Section 7.4). Tryptophan can be converted to niacin in animal livers [21], and this fact may
contribute, at least in part, to such robust connection between protein and niacin. Interesting-
ly, trans-fatty acids, which are famous for their associated risk of coronary heart disease [22],
were found to have a highly positive correlation with zinc across all foods (r = 0.62,
P = 9.1×10-9). Because trans-fatty acids also have a very positive correlation with saturated
fatty acids (r = 0.59, P = 1.4×10-6), we considered the possibility that zinc may be indirectly
correlated with trans-fatty acids through saturated fatty acids. By controlling for such an
indirect effect, we found that, as long as the saturated fatty acid content of foods is at least
5.8 g/100 g (dry weight), zinc and trans-fatty acids still exhibit a highly positive correlation in
their amounts without an indirect effect from the saturated fatty acids. Considering the effects
from other than saturated fatty acids also did not impair the correlation between zinc and
trans-fatty acids (S1 Appendix, Section 7.4). This robust association between zinc and trans-
fatty acids allows us to envision a potential biochemical mechanism that connects the two
compounds. To the best of our knowledge, studies that mechanistically connect zinc and
trans-fatty acids are not yet available, although other metal catalysts, such as copper and
nickel, are known to facilitate the synthesis of trans-fatty acids [23].

The diversity of these pair-wise nutrient connections, previously discussed, raises the ques-
tion of whether particular nutrients are bound coherently as underlying patterns for nutrient
combinations in foods. Through the global examination of the nutrient-nutrient network, we
identified three major groups of nutrients densely connected to each other through positive
correlations, whereas between groups, the nutrients have only sparsely positive or frequently
negative correlations (Fig. 4). The first group contains components of protein and lipid, which
are seamlessly connected with a number of micronutrients such as phosphorus, selenium,
zinc, choline, and niacin. The second group comprises digestible carbohydrates such as glu-
cose and fructose. The third group consists of fiber, α-linolenic acid, and various micronutri-
ents including vitamins A and K, folate, iron, and calcium. We observe that each of these
three nutrient groups largely captures the nutrient characteristics of a specific food partition
or category. Nutrients of animal-derived foods are highly enriched in the first group of nutri-
ents, whereas those of plant-derived, low-calorie foods are enriched in the third nutrient
group. The nutrient contents of the fat- and protein-rich foods within the plant-derived food
partition are based on both the first and third nutrient groups. Furthermore, the nutrients of
the carbohydrate-rich foods were found to primarily belong to the second and third nutrient
groups. One may suppose that these results can be readily expected from the definitions of the
food categories themselves, e.g., carbohydrate-rich foods, by definition, harbor large propor-
tions of total carbohydrates. Our results, however, did not substantially change after control-
ling for such trivial or redundant factors related to macronutrients (S1 Appendix, Section 7.3).
This finding suggests that the network substructures themselves are the fundamental units of
the underlying patterns for nutrient combinations in foods. Therefore, the global network of
nutrients harbors a diverse repertoire of nutrient-to-nutrient connections that serve as build-
ing blocks for emerging characteristics, such as the characteristics that can distinguish differ-
ent food partitions or categories.

Conclusions
In this study, we have developed a unique computational framework for the systematic analysis
of large-scale food and nutritional data. The networks of foods and nutrients offer a global and
unbiased view of the organization of nutritional connections, as well as enable the discovery of
unexpected knowledge regarding associations between foods and nutrients. Nutritional fitness,
which gauges the quality of a raw food according to its nutritional balance, appears to be widely
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dispersed over different foods, raising questions on the origins of such variations between
foods. Remarkably, this nutritional balance of food does not solely depend on the characteris-
tics of individual nutrients but is also structured by intimate correlations among multiple nutri-
ents in their amounts across foods. This underscores the importance of nutrient-nutrient
connections, which constitute the network structures embodying multiple levels of the nutri-
tional compositions of foods. Extending our analysis beyond raw foods to cooked foods is nec-
essary to truly understand the nutritional landscape of the foods we consume daily (and is left
for further study); however, considering only raw foods was sufficient to draw primary insights
from a relatively simple system.

A number of applications would become achievable if the concepts presented here are judi-
ciously combined with other practical approaches. The incorporation of region-specific infor-
mation in our analysis may help design strategies for international food aid [24]. To develop
such strategies, one can consider the prioritization of regional foods based on nutritional fit-
ness, suggestions for locally-available dietary substitutes from a food-food network, the fortifi-
cation of foods using bottleneck nutrients, and so forth. Our study also has implications for
personalized nutrition [25]. People of different ages, genders, body compositions, health states,
and physical activity levels can obtain their condition-specific information through our meth-
od, by simply adjusting the required calorie and nutrient intakes when generating irreducible
food sets (S1 Appendix, Section 4.1). The resulting irreducible food sets allow one to compute
the nutritional fitness and bottleneck nutrients. This information can be of particular interest
to individuals with certain dietary requirements, such as pregnant women, who are recom-
mended to take more nutrients, e.g., essential amino acids and vitamins, than non-pregnant
women [26]. On the other hand, it would be interesting to check how different farming meth-
ods for each food affect the food’s nutritional composition and thereby its nutritional fitness.
Currently, our data source does not provide such information about farming methods (S1
Dataset). Furthermore, considerations of food taste and financial, seasonal, and cultural factors
in our analysis may improve the applicability of our methods towards nutritional policy mak-
ing, nutrition education, and food marketing [1], [27], [28], as well as the aforementioned food
aid and personalized nutrition. Finally, our systematic approach sets the foundation for future
endeavors to enhance the understanding of food and nutrition.

Materials and Methods

Food and Nutritional Data
We accessed the United States Department of Agriculture (USDA) National Nutrient Database
for Standard Reference, Release 24, which provides information regarding the nutrient con-
tents and energy (calorie) densities of foods (quantities per 100 g for each food) [29]. From
these foods, we considered only raw foods and other foods whose nutrient contents have been
minimally modified. Specifically, we selected foods in their natural forms without any explicitly
added or fortified ingredients (e.g., added salt, sugar, and vitamins). In addition, we chose simi-
lar foods altered to ground, frozen, dried, low-fat, or nonfat products. In total, 1,068 foods were
selected, and we refer to them as raw foods. A systematic unification of the raw foods redun-
dant in their nutrient contents yielded a total of 654 foods (S1 Dataset. See S1 Appendix, Sec-
tion 1.3). For the recommended daily levels of nutrient intake, we primarily referred to the
Dietary Reference Intakes from the Institute of Medicine of the U.S. National Academies [26].
The resulting data describe the adequate energy levels for daily activity, the lower bounds of
the recommended daily intake of 38 nutrients, and the upper bounds of the recommended
daily intake of 24 nutrients (S1 Appendix, Section 1.2).
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Construction of the Food-Food Network
To construct a food-food network that connects foods of similar nutrient contents,
we calculated the quantity, Fij, for each food pair. For a pair of foods i and j,

Fij ¼ 1
nij
minK�0

Pnij
m¼1 ðKaim � ajmÞ2=ðKaim þ ajmÞ2, where ai(j)m is the density of nutrientm in

food i (j), nij is the total number of different nutrients we consider in foods i and j, and K is a
positive real number selected to minimize Fij given {aim} and {ajm}. Consequently, Fij ranges
from zero to one. A small Fij indicates that the relative amounts of nutrients are similar in
foods i and j. The calculation of Fij works well even with nutrients on very different scales or
with different units for the quantities (e.g., μg RAE for vitamin A, and μg DFE for folate). Ac-
cordingly, the nutritional similarity, wij, is defined as wij = 1 − Fij/Λij if Fij < Λij, otherwise,
wij = 0. Λij is the value of Fij that corresponds to P = 1 (two-sided), which is generated from the
null distribution (S1 Appendix, Section 3.1). The quantity wij ranges from zero to one, and a
large wij suggests that the foods i and j have similar nutritional compositions. The food-food
network consists of foods connected through weight wij’s between foods. A modular structure
of the food-food network was identified through a hierarchical clustering approach (S1 Appen-
dix, Section 3.2).

Calculation of Nutritional Fitness
To calculate the nutritional fitness (NF) of each food, we generated irreducible food sets by solv-
ing optimization problems with mixed-integer linear programming (S1 Appendix, Section 4.1):
each irreducible food set is a set of a small number of different foods that meet our daily nutri-
ent demands in their entirety, and no irreducible food set is a superset of another set. In this
study, we consider the nutrient demands for a physically active 20-year-old male with standard
height and weight (S1 Appendix, Section 1.2). We only consider irreducible food sets that have
less than six different foods each. The total weight of the foods in each irreducible food set is
limited to 4 kg, which reflects the practical limit of daily food consumption. To obtain a collec-
tion of irreducible food sets, we followed the procedures described in Fig. 2A. In this study, the
NF of each food is provided by NF = log(f+1)/log(N+1), where f is the number of irreducible
food sets that include the food and N is the total number of irreducible food sets (N = 20,476).
NF ranges from zero to one, and a large NF indicates that a food is nutritionally favorable. For
the generalized definition of NF, any functional form that monotonically increases with f is ac-
ceptable as long as only the ordinal information of NF is relevant. Note that f is capable of quan-
tifying NF under the condition that the number of different foods comprising an irreducible
food set is limited to a small value as in this study. Otherwise, it may be hard to estimate the
true nutritional adequacy of foods solely from their f values. For example, a nutritionally-poor
food in an irreducible food set will be easily complemented by many other foods in the same
set, if the size of the set is not sufficiently small.

Identification of Bottleneck Nutrients
In each food category, we identify bottleneck nutrients for high NF as the following. For nutri-
ent i and food j, we calculateMij

L = hnjkiL/Njkik. Here, Njk is the number of irreducible food
sets; each of these sets includes food j and maintains the total weight of foods� 4 kg if food k
substitutes for food j while conserving the total energy of the food set. Among Njk irreducible
food sets, njk

iL denotes the number of sets that no longer provide the minimally recommended
level of nutrient i when food k substitutes for food j without altering the energies of the food
sets. Food j is selected from the top-20%-NF foods in a given food category (an exception exists
for the fat-rich category, in which we consider the top-5-NF foods that exhibit distinctively
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higher NFs than the other foods), and food k is selected from the same category, but from
those that are not in the top NF foods. h���ik denotes the average over food k’s. Similarly, we
also calculateMij

U = hnjkiU/Njkik, where njkiU is the number of irreducible food sets that exceed
the recommended level of nutrient i when food k substitutes for food j. For nutrient i, if at least
one food j exists withMij

L(U) > 0.5, we put nutrient i in a tentative list of bottleneck nutrients
that may be favorable (unfavorable) for a high NF in the food category of food j. Given a food
category, we perform a linear regression for the NF of the foods in that category using the
quantities of the tentative bottleneck nutrients in the food as independent variables (scaled by
the averages over the foods in the category. See S1 Appendix, Section 5.1). If the resultant coef-
ficient of a tentatively favorable (unfavorable) nutrient is> 0.01 (< −0.01), then the nutrient is
considered to be a bottleneck nutrient for high NF in that food category.

Quantification of Synergistic Bottleneck Effects
Following similar steps for the identification of individual bottleneck nutrients, we searched for
nutrient pairs that have synergistic bottleneck effects in NF. For a pair of nutrients i and j and
high-NF food k in a given food category, we define εi

k =Mik
L +Mik

U, εj
k =Mjk

L +Mjk
U, and

εij
k. Here, εi(j)

k corresponds to the fraction of irreducible food sets (with food k) that no longer
meet the recommended level of nutrient i (j) when food k is replaced by non-high-NF foods in
that category (Mi(j)k

L(U) was previously defined in the identification methods for individual
bottleneck nutrients). Similarly, εij

k corresponds to the fraction of irreducible food sets (with
food k) that do not meet the recommended level of either nutrient i or j when a replacement
for food k is used (S1 Appendix, Section 6.1). Given εi

k and εj
k, we calculated the null distribu-

tion of εij
k using the assumption that nutrients i and j are independently distributed over

foods. Finally, Fij
k is defined as the Z score of the actual εij

k based on this null distribution. Fij
k

measures the degree of synergism between two nutrients, i and j, for high NF in food k. Al-
though nutrient i or j itself can be a non-bottleneck nutrient, it is referred to as a favorable nu-
trient ifMi(j)k

L/εi(j)
k � 0.8. IfMi(j)k

U/εi(j)
k� 0.8, it is referred to as an unfavorable nutrient.

Given nutrients i and j and a food category, we use Fij = maxk Fij
k as a representative value of

Fij
k over the high-NF food k’s in the food category.

Construction of the Nutrient-Nutrient Network
We calculated the Pearson correlations between the densities of nutrients across the foods, and
we used the values as the weights of the links to construct a network of nutrients. The nutrient
density was measured using the quantity per dry weight. Given a pair of nutrients, only foods
that have explicit records of both nutrient quantities (and at least one nutrient with non-zero
quantity) were considered for the correlation calculation. For complete details, see S1 Appen-
dix, Section 7.1.
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