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Norma Fàbregas1,†, Pau Formosa-Jordan2,†,#1, Ana Confraria1,†,#2, Riccardo Siligato3,4, Jose M.
Alonso5, Ranjan Swarup6, Malcolm J. Bennett6, Ari Pekka Mähönen3,4, Ana I. Caño-Delgado1,&,∗ and
Marta Ibañes2,&,∗.

1 Department of Molecular Genetics. Centre for Research in Agricultural Genomics
(CRAG) CSIC-IRTA-UAB-UB. Barcelona E-08193, Spain.
2 Department of Structure and Constituents of Matter, Faculty of Physics, University of
Barcelona, Barcelona E-08028, Spain.
3 Institute of Biotechnology, University of Helsinki, Helsinki, FIN-00014, Finland.
4 Department of Biosciences, University of Helsinki, Helsinki, FIN-00014, Finland.
5 Department of Plant and Microbial Biology, North Carolina State University, Raleigh,
North Carolina 27695, USA.
6 School of Biosciences and Centre for Plant Integrative Biology, University of
Nottingham, LE12 5RD Nottingham, United Kingdom.
#1 Current Address: Sainsbury Laboratory, University of Cambridge, Bateman Street,
Cambridge, CB2 1LR, United Kingdom.
#2 Current Address: Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
∗ E-mails: Corresponding authors marta.ibanes@ub.edu (MI) and
ana.cano@cragenomica.es (AICD).
† These authors contributed equally to this work.
& These authors also contributed equally to this work.

Model formulation

In this section, we derive the model equations for auxin transport we used in this work. Auxin transport
involves three parts: the transport along the apoplast, the transport across the cell membrane and the
transport within a cell. For the transport along the apoplast, we considered passive diffusion and modeled
it as in [1] by using their same tissue geometry and by setting cells and apoplasts as single space points
(see cell and apoplast array layout in S2B Fig). For the auxin transport across the cell membrane we
adopted the model by [2] (originally by [3–6]). One advantage of this model is that it provides a quite
realistic approach of the chemiosmotic model of auxin transport, while being still analytically treatable.
Regarding the transport inside cells, we simplified it by considering it to be instantaneous. This is a
simplification that takes passive diffusion inside cells to be much faster than in the apoplast [7]. Therefore,
in our simplified model, once auxin has entered into the cell it can immediately exit to the apoplast by
any cell side. The model parameters are related to physicochemical magnitudes that have been measured
or can generally be estimated (see S1 Table for parameter estimations, extracted from [3–11]). The chosen
1D layout also facilitates the analytical treatment, and enables a more direct focus on understanding the
role of influx in the auxin maxima formation.

As pointed out in Materials and Methods, the dimensional dynamical equations in time τ for the auxin
concentration in cell i and in apoplast i, which we denote as Ai and ai respectively, read
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dAi
dτ

= −
∑
j∈n(i)

WijJij − νcAi + σc (S1)

dai
dτ

=
∑

j∈N(i)

Wji
Vcell
Vap

Jji +Dw∇2
i ai , (S2)

respectively, where Jij is the auxin flux from the cell i to the apoplast j, σc and νc are the pro-
duction and degradation rates of auxin within the cell i and Dw is the effective diffusion coeffi-
cient of auxin at the apoplast. ∇2

i is the discrete Laplacian in a one-dimensional lattice such that
∇2
i ai = (ai+1 + ai−1 − 2ai) /(∆L)2, being ∆L the distance between two apoplast units. This Laplacian is

the approximated form arising for the simplified tissue array we used in which apoplasts and cells are
modeled as single space points adjacent to each other (S2B Fig). The summations in Eqs S1 and S2 are
referred to the apoplasts neighboring cell i (n(i) = i− 1, i) and to the cells neighboring the apoplast i
(N(i) = i, i+ 1) (S2B Fig). As defined in [2], Wij is the ratio between the area of the cell membrane i
facing apoplast j and the volume of the cell i, while Vcell and Vap refer to the cell and apoplast volume,
which we assumed to be the same for all cells and apoplasts. Lc is the length of cells and La is that
of the apoplast in between two cells (S2B Fig). As a result, we have Wij = 1/Lc, Wji

Vcell

Vap
= 1/La and

∆L = La + Lc.
The flux Jij term takes into account the chemiosmotic model. According to it, the protonated auxin

(aH) can passively cross the cell membrane, either from the cytoplasm to the apoplast or viceversa. In
contrast, the anionic auxin (a−) can only cross the cell membrane by active transport mediated by influx
and efflux carriers. Jij reads [2]

Jij = paH(f caHAi − fwaHaj) + ppinWijPijN(φ)y(f ca−Ai)− pauxWijIijN(φ)y(fwa−aj) , (S3)

which is fully described in [2]. For completeness, we detail and describe herein each term. The first term
corresponds to the passive transport of protonated auxin across the cell membrane, whereas the second
and third terms model the active transport of anionic auxin across the cell membrane through efflux and
influx carriers respectively. Accordingly, paH , ppin and paux are the permeabilities for protonated auxin
passive transport, and for anionic active efflux and influx transport respectively. Pij and Iij are the efflux
and influx carriers density in the i cell membrane facing the j apoplast. Since the active transport occurs
across a membrane potential V , N(φ = z|V |/RT ) = φeφ/(eφ − 1) sets the electrochemical factor [3],
being z the valence of the ion (herein z=1), R the gas constant, F is Faraday’s constant and T is the
temperature (herein we take standard temperature conditions, T=298.15 K). y(x) is a function that
accounts for the active transport of auxin given a certain amount of carriers. Notice that the active
transport in Jij is simplified, based on the standard membrane potential values assigned to plant cells (S1
Table). Specifically, we considered that the active transport from the cytoplasm to the apoplast is only
mediated by efflux carriers, whereas the inverse active transport, from the apoplast to the cytoplasm, is
only mediated by influx carriers.

The above flux Jij assumes as well that the fraction of anionic and protonated auxin over total auxin
concentration inside cells and in the apoplast is constant over time, but distinct in these two compartments:
f caH , fwaH , f ca− and fwa− are the ratios over total auxin of protonated auxin (aH) and anionic auxin (a−),
respectively, at the apoplast (w, or cell wall) and cytosol (c) (S1 Table). These differences rely on the
distinct pH condition at the cytoplasm and at the apoplast. Since f caH << f ca− (S1 Table), auxin exits
the cytoplasm mainly through active transport, whereas it can enter into cells either passively or actively
(fwaH ≈ fwa−/2, S1 Table).

Notice that in Eq S3, passive transport across the cell membrane is considered to be linear, non-
saturated, whereas an arbitrary auxin-dependent non-dimensional function y(x) for the active transport,
the same for both active and influx transport for simplicity, is considered. Despite several results presented
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below are obtained for such an arbitrary function y, all our results in figures correspond to the case of
linear non-saturated active transport with y(x) = ka−x, being ka− a constant having units of µM−1. We
used linear fluxes for active influx and efflux transport y(x) = ka−x for simplicity and because our focus
of attention is the dynamics at early times during which the linear non-saturated regime dominates. In
addition, linear fluxes y(x) = ka−x have been previously shown to be sufficient to drive periodic patterning
if proper nonlinearities in the polarization of efflux carriers (f(xi) = xhi ) are taken into account [1, 3].

The active transport across the cell membrane depends on the densities of efflux and influx carriers,
Pij and Iij . Following [2], we considered them to be in equilibrium. These equilibrium values result
from carriers production and degradation at the cytosol and from cycling between the cytosol and the
cell membrane. Based on experimental evidences [12–14], the production of both efflux and influx is
dependent on cytoplasmic auxin concentration in the cell. In addition, the cycling of efflux carriers is
also considered to be dependent on cytoplasmic auxin concentrations in adjacent cells [2, 3, 15]. This last
condition defines how efflux carriers become polarized and is crucial for periodic patterning to arise in
this model. Taking into account all these dynamics and imposing the equilibrium condition, Sahlin et al.
have shown that the efflux and influx densities read [2]

Pii =
P0PT (Ai)

Wii

f(Ai+1)

1 + f(Ai+1) + f(Ai−1)
(S4)

Pii−1 =
P0PT (Ai)

Wii−1

f(Ai−1)

1 + f(Ai+1) + f(Ai−1)
(S5)

and

Iij =
I0IT (Ai)

Wij

kexo/kendo
1 + dkexo/kendo

, (S6)

being P0PT (Ai) and I0IT (Ai) the total concentration of efflux and influx carriers in cell i, which depend
on auxin concentration in such cell; P0 and I0 are dimensional characteristic concentrations of efflux
and influx carriers, whereas PT (Ai) and IT (Ai) are the total non-dimensional, normalized to P0 and I0,
concentrations; d is the number of adjacent cells (d = 2 in this circular, one-dimensional with periodic
boundary conditions, array of cells and apoplasts) and f(xi) stands for the ratio between the auxin-

dependent exocytosis (fexo(xi)) and endocytosis (fendo(xi)) rates of the efflux carriers, f(xi) = fexo(xi)
fendo(xi)

which depend on auxin; kexo and kendo are the constant, auxin-independent, rates for influx carriers

exocytosis and endocytosis. Hereafter we define Ka ≡ kexo/kendo

1+2kexo/kendo
. All cells were assumed to have the

same identical rates and auxin-dependent functions.
We defined the non-dimensional time t = νcτ . The dynamics in this non-dimensional time read:

dAi
dt

= −εD̃ca

zf caHAi − fwaH ∑
j∈n(i)

aj

− εẼ y(f ca−Ai)PT (Ai)
∑
k∈nn(i) f(Ak)

1 +
∑
k∈nn(i) f(Ak)

+

+εĨIT (Ai)
∑
j∈n(i)

y(fwa−aj) + σ −Ai (S7)

dai
dt

= D̃ca

 ∑
j∈N(i)

f caHAj

− zfwaHai
+ Ẽ

∑
j∈N(i)

PT (Aj)y(f ca−Aj)f(Aj†)

1 +
∑
k∈nn(j) f(Ak)

−

−Ĩy(fwa−ai)
∑

j∈N(i)

IT (Aj) + D̃∇̃2
iai , (S8)

where ∇̃2
iai =

∑
k∈nn(j)(ak − ai), k ∈ nn(i) refers to cells that are nearest neighbors from cell i, and j†

refers to the other cell that neighbors the apoplast (when j = i then j† = i+ 1 and when j = i+ 1 then
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j† = i). The parameters in these dynamics are defined as σ = σc/νc, ε = La/Lc, D̃ = Dw/νc∆L
2 with

∆L = (La + Lc), D̃ca = Dca/νc with Dca = paH/La, Ẽ = E/νc with E = ppinP0N(φ)/La, and Ĩ = I/νc
with I = pauxI0KaN(φ)/La. While during the analytic derivations we are using parameters Ẽ, Ĩ, D̃ca

and D̃ for simplicity, note that for referring to results and in the different figures we will use parameters
E, I and Dca and D, being D = Dw/∆L

2.
We numerically integrated these dynamics in non-dimensional units of time with active linear auxin

fluxes y(xi) = ka−xi, non-linear auxin-dependent polarization of efflux carriers f(xi) = xhi , and auxin-
induced saturating synthesis of carriers PT (x) = x

x+θP
and IT (x) = 1

2
x

x+θI
. In these simulations,

we have considered that all the efflux carriers are in the membrane and not in the cytosol, so that
1 +

∑
k∈nn(j) f(Ak) ≈

∑
k∈nn(j) f(Ak) (see below). Parameter values used are shown in S1 Table.

Additional parameter values used, unless otherwise stated, are θP = θI = 10 µM , ka− = 1 µM−1, h = 2,
E = 105 µM s−1, Dca = 15 s−1, D = 2 s−1 and ε = 0.05.

Linear stability analysis (LSA)

In this section we study the pattern formation capabilities of our system through a linear stability analysis
(LSA) over the homogeneous precursor state of the dynamical system described by Eqs S7 and S8. Details
about this method can be found elsewhere (see for instance [2, 3, 16]). Our analysis is generic for any
functions f , y, PT and IT .

We set A0 and a0 as the concentrations of auxin at the cytosol and at the apoplast respectively in the
homogeneous precursor fixed point, which is defined by dAi

dt =
dAj

dt = dA0

dt = 0, dai
dt =

daj
dt = da0

dt ∀ i, j.
For Eqs S7 and S8, the homogeneous fixed point verifies:

A0 =
σc
νc

(S9)

0 = D̃ca (f caHA0 − fwaHa0) + Ẽ
PT (A0)y(f ca−A0)f(A0)

1 + df(A0)
− Ĩy(fwa−a0)IT (A0) . (S10)

LSA evaluates the dynamics of small perturbations Âi and âi applied on the homogeneous state
(|Âi| << A0 and |âi| << a0). By introducing Ai = A0 + Âi and ai = a0 + âi into Eqs S7 and S8 and
doing a Taylor development until first order around the homogeneous fixed point, we obtain the linearized
system for the dynamics of these perturbations, which reads (′ stands for the first derivative with respect
to the auxin variable):

dÂi
dt

= −(εC1 + 1)Âi − εC2

∑
k∈nn(i)

Âk + εC3

∑
j∈n(i)

âj (S11)

dâi
dt

= C4

∑
j∈N(i)

Âj − C5

∑
j∈N(i)

∑
k∈nn(j)

Âk − C6âi + D̃
∑

j∈nn(i)

âj . (S12)
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where

C1 = dẼb0 + df caHD̃ca − dĨI ′T (A0)y(fwa−a0) (S13)

C2 = Ẽb1(b2 − db3) (S14)

C3 = ĨIT (A0)fwa−y
′(fwa−a0) + fwaHD̃ca (S15)

C4 = f caHD̃ca + Ẽ(b0 + b1b2)− y(fwa−a0)ĨI ′T (A0) (S16)

C5 = Ẽb1b3 (S17)

C6 = d(fwa−y
′(fwa−a0)ĨIT (A0) + D̃caf

w
aH + D̃) , (S18)

and

b0 =
f(A0)

1 + df(A0)
((f ca−y

′(f ca−A0)PT (A0) + y(f ca−A0)P ′T (A0)) (S19)

b1 =
y(f ca−A0)PT (A0)

(1 + df(A0))2
(S20)

b2 = f ′(A0)(1 + df(A0)) (S21)

b3 = f(A0)f ′(A0) . (S22)

The small perturbations Âj and âj in a system of N cells can be written in Fourier series as

Âj =
∑
q̄

µq̄e
2πiq̄j , âj =

∑
q̄

ρq̄e
2πiq̄j , (S23)

being q̄ = q/N for the wavenumber q = {1, ..., N − 1, N} and then q̄ ∈ [1/N, 1]. The inverse transforms
read

µp̄ =
1

N

N∑
j=1

Âje
−2πip̄j , ρp̄ =

1

N

N∑
j=1

âje
−2πip̄j , (S24)

and µp̄ and ρp̄ correspond to the amplitudes of perturbations with spatial periodicity p̄ in the cytosol and
the apoplast, respectively.

By introducing the transforms set by Eqs S23 into the linearized system (Eqs S11 and S12) we get

d

dt

(
µq̄
ρq̄

)
= M

(
µq̄
ρq̄

)
,

where M is a matrix that reads (
−ψ0 ψ1

ψ2 ψ3

)
,

being

ψ0 = ε(C1 + 2C2 cos(2πq̄)) + 1 (S25)

ψ1 = εC3(1 + e−i2πq̄) (S26)

ψ2 = C4(1 + ei2πq̄)− C5(1 + 2 cos(2πq̄) + ei4πq̄) (S27)

ψ3 = 2D̃ cos(2πq̄)− C6 . (S28)

Accordingly, by finding the eigenvalues of matrix M , the dynamics of the perturbations Âi and âi
become readily solved. The eigenvalues of the M matrix are

αq̄ =
1

2

(
Trq̄ ±

√
Tr2

q̄ − 4 detq̄

)
, (S29)
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where subscript q̄ has been included to stress that there are two eigenvalues for each period q̄, being Trq̄
and detq̄ the trace and the determinant of the M matrix respectively, which read

Trq̄ = ψ3 − ψ0 (S30)

detq̄ = −(ψ0ψ3 + ψ1ψ2) . (S31)

The homogeneous state is linearly unstable when αq̄ > 0 for at least one wavenumber mode q̄. This
sets the condition for pattern formation. By calculating the fastest growing mode (hereafter named κ),
i.e. the q̄ value (κ) that maximizes αq̄, the condition for pattern formation (i.e. having the homogeneous
state linearly destabilized) becomes ακ > 0. The boundary between regions where the homogeneous state
is linearly stable and where it is not is computed by setting ακ = 0.

Linear stability analysis results presented in the manuscript correspond to the computation of the
pattern formation condition numerically (i.e. αq̄ > 0) for at least one q̄ value) for linear active auxin carriers-
mediated transport y(x) = ka−x, nonlinear auxin-dependent polarization of efflux carriers f(x) = xh,
auxin-dependent saturating functions of carriers synthesis PT (x) = x

x+θP
and IT (x) = 1

2
x

x+θI
, and all

efflux carriers being at the membrane and not in the cytosol (i.e. 1 << df(A0)). The condition of all efflux
carriers being located at the membrane makes, for instance, C2 = 0, which simplifies the computations
(for more details about this simplification see for instance [1, 3]). The value of the fastest growing mode
κ was also computed numerically and shown in the phase diagrams and in together with simulation
results shown in boxplots. The exact boundary for pattern formation condition (ακ = 0) is plotted with a
continuous line in parameter space shown in Figs 1C, S4C and S12B, and as a vertical solid line in the
boxplots shown in Figs 5F, S14F and S15A.

We also analyzed numerically the simplified case in which the total amount of efflux and influx carriers
is constant over time and the same for all cells and thus they do not depend on the amount of auxin
(PT = 1 and IT = 1/2, by setting θP = θI = 0). Results are shown in S4 Fig. The same qualitative results
as for auxin-dependent synthesis of carriers were obtained.

Analytical expressions for pattern formation

Analytical expressions for pattern formation can be obtained from the above Eqs S25-S31 when efflux
carriers are just in the membrane (i.e. so that 1 + df(A0) ≈ df(A0)) and efflux and influx carriers
concentrations are constant in the cell (PT = 1 and IT = 1/2, by setting θP = θI = 0). In this case, it can
be shown that the trace Trq̄ is negative for all parameter values (Trq̄ < 0). Since αq̄ is given by Eq S29,
and taking into account that Trq̄ < 0, the condition for pattern formation, i.e. αq̄ > 0 for at least one q̄
value, simplifies to the condition detq̄ < 0. Note that this is fulfilled for any monotonically increasing
auxin flux set by y(x) and any auxin-dependent polarization of efflux carriers function f(x). We can
then obtain an analytical expression for the fastest growing mode κ by imposing the condition of extreme
∂αq̄

∂q̄ = 0. When developed, this condition of extreme results into a very large expression of little practical
use for analytical studies. Accordingly, we chose to write down an approximate expression for κ that was
analytically treatable. The approximation was done as follows.

The approximation we performed is to focus on the wavenumber that minimizes detq̄ < 0 (hereinafter
named κ∗ ≡ q̄∗), instead of focusing on the fastest growing mode κ (which is the one one maximizing αq̄).
It was assumed that κ∗ ≈ κ. This approximation is justified when Trq̄ < 0, since in this case the condition
αq̄ is satisfied if and only if detq̄ < 0 as indicated above. The results obtained by this approximation can
be compared to the exact, numerically computed, ones. This was done for y(x) = ka−x and f(x) = xh

and is presented in S4 Fig. For y(x) = ka−x and f(x) = xh, the derivation of
∂detq̄
∂q̄ = 0 to obtain the

analytical expression of κ∗ yields

κ∗ =
1

2π
arccos(Ω∗) , (S32)
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being

Ω∗ =
4D(νc + εg0) + εg0g1

2Eεf ca−ka−hg1
, (S33)

where g0 =
(
f ca−ka−E + 2f caHDca

)
and g1 =

(
fwa−ka−I + 2fwaHDca

)
. This analytical expression is rep-

resented as a dashed line in S4B Fig, and shows a very good agreement with the exact, numerically
computed, fastest growing mode κ (solid lines). This shows that the assumption κ∗ ≈ κ is correct and
hence the analytical expressions set by Eqs S32-S33 can be used to extract information about the exact
fastest growing mode κ.

By using that κ∗ ≈ κ, we can define an approximate condition for pattern formation being detκ̄∗ < 0.
Notice that the exact condition for pattern formation is detκ̄ < 0. By introducing Eqs S32 and S33 into
detκ̄∗ < 0, we obtained the following approximate analytical condition for pattern formation:

D <
1

4g2

(
εg1 (Ef ca−ka−(2h− 1)− 2Dcaf

c
aH) + g1

√
23νcEεf ca−ka−h

)
, (S34)

where g2 = (νc + εg0). The boundary of this condition (i.e. the equality) is plotted by a dashed line in
S4 Fig. Comparison with the exact numerically computed condition (solid line) indicates it is a good
approximate condition.

These analytical expressions are also plotted in Fig 1B,C. They are in qualitative agreement with the
exacts results, numerically computed, of LSA corresponding to the same situation but with auxin-induced
synthesis of carriers (i.e. PT (x) = x

x+θP
, IT (x) = 1

2
x

x+θI
, y(x) = ka−x, f(x) = xh and 1+df(A0) ≈ df(A0)).

Therefore, the analytical approximations obtained here are also useful expressions to understand the
results arising in the model when the concentration of influx and efflux carriers is not constant but depends
on auxin.

Dependence of the periodicity of the pattern and the average concentration
of auxin on the amount of influx carriers

Numerical analysis of the dynamics shows that the average concentration of auxin at the cytoplasm and
at the apoplast in a periodic pattern depends on influx carriers in a similar way as the homogeneous state
of auxin at the cytoplasm and at the apoplast, respectively, does (Figs 5, S13, S14 and S15). This average
concentration corresponds to the spatial mean of auxin concentration over all cells (for cytosolic auxin) and
over all apoplasts (for apoplastic auxin). In addition, the concentration of apoplastic (but not cytosolic)
auxin at minima and at maxima of the pattern depends similarly on the amount of influx carriers as the
average apoplastic auxin concentration does (Figs 5, S13 and S14). To have a first approximation of how
average auxin concentrations change with the amount of influx carriers, we analyzed the homogeneous
steady state of the dynamics, which is given by Eqs S9 and S10. From Eq S9 we see that cytoplasmic auxin
on the homogenous state does not depend on the influx carriers Ĩ nor on efflux carriers Ẽ. From Eq S10
we calculated the auxin concentration at the apoplast when the active fluxes are linear, i.e. y(x) = ka−x.
This yields:

a0 = A0

(
Dcaf

c
aH + E

PT (A0)fc
a−ka−f(A0)

1+df(A0)

)
(
DcafwaH + Ifwa−ka−IT (A0)

) . (S35)

By using the values of S1 Table (and d = 2 and k−a = 1), we can obtain a0 ≈ 3A0
EPT (A0)f(A0)/(1+2f(A0))

Dca+2IIT (A0) .

These expressions show that the apoplastic auxin concentration in the homogeneous state depends
oppositely on influx and efflux carriers. In particular, the concentration of auxin at the apoplast in the
homogeneous state increases with efflux carriers or when the amount of influx carriers decreases.
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According to Eqs S32 and S33, the wavenumber and therefore the periodicity of the pattern depends
on the amount of influx carriers, changing when I ≈ Dca. These analytical expressions and their
representation predict that influx carriers promote more auxin maxima, specially at low Dca rates and at
high apoplastic diffusion coefficient D. By using the values in S1 Table (and h = 2 and k−a = 1), Eq S33

becomes Ω∗ ≈ 3D(1+ E
2 )

E(I+Dca) + 1
4 . Therefore, by comparing this expression with the approximate expression

for homogeneous apoplastic auxin a0 ≈ 3A0
EPT (A0)f(A0)/(1+2f(A0))

Dca+2IIT (A0) , we see that the wavenumber is less

sensitive to the influx carriers than the homogenous, and thereby average, apoplastic concentration (i.e.,
Ω∗ has a term 1/4 that is independent of influx carriers). In other words, the effect of influx carriers on
the average apoplastic auxin concentration is more pervasive than on the periodicity of the pattern. The
periodicity of the pattern becomes almost insensitive to the effect of influx carriers (i.e., Ω∗ and therefore
κ∗ become independent of I) when the apoplastic diffusion is strongly diminished (D << (I + Dca),
yielding Ω∗ ≈ 1

4 when having E ≈ 105 µM s−1) or when the passive transport across the cell membrane
increases (Dca >> I, yielding Ω∗ ≈ 3D(1 +E/2)/EDca + 1/4, which is Ω∗ ≈ 1/4 for D = 2 s−1, E = 105
µM s−1 and Dca = 50 s−1). These two situations are consistent with the exact results of the model, as
shown in Figs 1 and 5, respectively. In addition, we see that, in these regimes, the periodicity of the
pattern is little sensitive to efflux carriers, which is a good approximation of the exact results of the model
as shown in S12 Fig.
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