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I. CODE AVAILABILITY AND EXAMPLES

All code described in this manuscript is available at https://github.com/OpenMS/

OpenMS. A sample application as well as all code implemented in the manuscript

to perform benchmarking can be downloaded from https://github.com/hroest/

OpenMS/tree/feature/measureMemoryConsumption (for the sample Application, see

https://github.com/hroest/OpenMS/blob/feature/measureMemoryConsumption/src/

utils/ExampleApp.cpp).

For the algorithm used to produce the performance values for ProteoWizard, please see

https://github.com/hroest/pwiz_readspeed. For the code used to compare the Python

implementations, see the supplementary TICCalculator.py file.
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A. C++ code

See Listing 1 for example C++ code used to calculate the TIC using the in-memory API.

See Listing 2 for example C++ code used to calculate the TIC using the indexed mzML

API.

See Listing 3 for example C++ code used to calculate the TIC using the indexed mzML

API and multiple threads for faster execution.

See Listing 4 for example C++ code used to calculate the TIC using the cached API.

See Listing 5 for example C++ code used to calculate the TIC using the “event-based”

streaming API.
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Listing 1 TIC calculation using in-memory access. The following code describes our

C++ implementation in OpenMS which calculates the TIC using the “in memory”

algorithm.

1 String in = "input.mzML";

2 MzMLFile mzml;

3 MSExperiment<> map;

4 // load data from a regular MzML file

5 mzml.load(in, map);

6 double TIC = 0.0;

7 long int nr peaks = 0;

8 for (int i =0; i < map.size(); i++)

9 {

10 nr peaks += map[i].size();

11 for (int j = 0; j < map[i].size(); j++)

12 {

13 TIC += map[i][j].getIntensity();

14 }

15 }
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Listing 2 TIC calculation using indexed access. The following code describes our

C++ implementation in OpenMS which calculates the TIC using the “random access”

algorithm using an indexed mzML file.

1 String in = "input.mzML";

2 IndexedMzMLFileLoader imzml;

3 // load data from an indexed MzML file

4 OnDiscMSExperiment<> map;

5 imzml.load(in, map);

6 double TIC = 0.0;

7 long int nr peaks = 0;

8 for (int i =0; i < map.getNrSpectra(); i++)

9 {

10 OpenMS::Interfaces::SpectrumPtr sptr = map.getSpectrumById(i);

11 nr peaks += sptr−>getIntensityArray()−>data.size();

12 TIC += std::accumulate(sptr−>getIntensityArray()−>data.begin(),

13 sptr−>getIntensityArray()−>data.end(), 0.0);

14 }
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Listing 3 TIC calculation using parallel indexed access. The following code

describes our C++ implementation in OpenMS which calculates the TIC using the

“random access” algorithm using an indexed mzML file and makes use of parallelization.

1 String in = "input.mzML";

2 IndexedMzMLFileLoader imzml;

3 // load data from an indexed MzML file

4 OnDiscMSExperiment<> map;

5 imzml.load(in, map);

6 double TIC = 0.0;

7 long int nr peaks = 0;

8 // create parallel loop (each thread has its own ‘‘map’’ variable)

9 #pragma omp parallel for firstprivate(map)

10 for (int i =0; i < map.getNrSpectra(); i++)

11 {

12 OpenMS::Interfaces::SpectrumPtr sptr = map.getSpectrumById(i);

13 // store TIC and number of peaks in local variables

14 double nr peaks local = sptr−>getIntensityArray()−>data.size();

15 double TIC local = std::accumulate(sptr−>getIntensityArray()−>data.begin(),

16 sptr−>getIntensityArray()−>data.end(), 0.0);

17

18 // block all threads and add to global counter

19 #pragma omp critical (indexed)

20 {

21 TIC += TIC local;

22 nr peaks += nr peaks local;

23 }

24 }
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Listing 4 TIC calculation using cached indexed access. The following code

describes our C++ implementation in OpenMS which calculates the TIC using the

“random access” algorithm using a cached mzML file.

1 String in = "input.mzML";

2 CachedmzML cache;

3 std::ifstream ifs(in.c str(), std::ios::binary);

4

5 // read the cached file and retrieve indices

6 cache.createMemdumpIndex(in);

7 const std::vector<std::streampos> spectra index = cache.getSpectraIndex();

8

9 double TIC = 0.0;

10 long int nr peaks = 0;

11 for (int i=0; i < spectra index.size(); i++) {

12 BinaryDataArrayPtr mz array(new BinaryDataArray);

13 BinaryDataArrayPtr intensity array(new BinaryDataArray);

14 int ms level = −1;

15 double rt = −1.0;

16 // move the file pointer to the correct location

17 ifs.seekg(spectra index[i]);

18 // get the raw data from the cached file

19 CachedmzML::readSpectrumFast(mz array, intensity array, ifs, ms level, rt);

20 nr peaks += intensity array−>data.size();

21 TIC += std::accumulate(intensity array−>data.begin(), intensity array−>data.end(), 0.0);

22 }
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Listing 5 TIC calculation using sequential (streaming) access. The following code

describes our C++ implementation in OpenMS which calculates the TIC using the

“event-based” streaming algorithm. Note that the objects described in Listing 6 needs to

be available for this code to work.

1 String in = "input.mzML";

2 TICConsumer consumer;

3 MzMLFile mzml;

4

5 // Perform the work

6 mzml.transform(in, &consumer);

7

8 // Read out the result

9 double TIC = consumer.TIC;

10 long int nr peaks = consumer.nr peaks;
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Listing 6 Code necessary to implement the streaming data acces. The following

code describes our C++ implementation in OpenMS which calculates the TIC using the

“event-based” streaming algorithm.

1 class TICConsumer :

2 public Interfaces::IMSDataConsumer< MSExperiment<> > {

3 public:

4 double TIC;

5 long int nr peaks;

6 // Create new consumer, set TIC and number of peaks to zero

7 TICConsumer() :

8 TIC(0.0),

9 nr peaks(0.0) {}

10

11 // For each spectrum, add the total intensity to the TIC variable

12 void consumeSpectrum(MSExperiment<>::SpectrumType & s) {

13 for (int i = 0; i < s.size(); i++) {

14 TIC += s[i].getIntensity();

15 }

16 nr peaks += s.size();

17 }

18

19 void consumeChromatogram(MSExperiment<>::ChromatogramType&) {}

20 void setExpectedSize(size t expectedSpectra, size t expectedChromatograms) {}

21 void setExperimentalSettings(const ExperimentalSettings& exp) {}

22 };
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B. Python code

See Listing 7 for example Python code used to calculate the TIC using the in-memory

API.

See Listing 8 for example Python code used to calculate the TIC using the indexed mzML

API.

See Listing 9 for example Python code used to calculate the TIC using the cached API.

See Listing 10 for example Python code used to calculate the TIC using the “event-based”

streaming API.
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Listing 7 TIC calculation using Python in-memory access. The following code

describes our implementation in OpenMS which calculates the TIC using the Python “in

memory” algorithm.

1 import pyopenms

2 exp = pyopenms.MSExperiment()

3 pyopenms.MzMLFile().load("infile.mzML", exp)

4 TIC = 0.0

5 nr peaks = 0

6 for spec in exp:

7 TIC += sum(spec.get peaks()[1])

8 nr peaks += spec.size()

Listing 8 TIC calculation using Python indexed access. The following code

describes our implementation in OpenMS which calculates the TIC using the Python

“random access” algorithm using an indexed mzML file.

1 import pyopenms

2 exp = pyopenms.OnDiscMSExperiment()

3 pyopenms.IndexedMzMLFileLoader().load("infile.mzML", exp)

4 TIC = 0.0

5 nr peaks = 0

6 for i in range(exp.getNrSpectra()):

7 spec = exp.getSpectrum(i)

8 TIC += sum(spec.get peaks()[1])

9 nr peaks += spec.size()
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Listing 9 TIC calculation using cached indexed access in Python. The following

code describes our implementation in OpenMS which calculates the TIC using the Python

“random access” algorithm using a cached mzML file.

1 import pyopenms

2 exp = pyopenms.SpectrumAccessOpenMSCached("infile.mzML")

3 TIC = 0.0

4 nr peaks = 0

5 for i in range(exp.getNrSpectra()):

6 spec = exp.getSpectrumById(i)

7 TIC += sum(spec.getIntensityArray())

8 nr peaks += len(spec.getIntensityArray())
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Listing 10 TIC calculation using the Python interface The following Python code

calculates the TIC using the “event-based” streaming algorithm.

1 class TICCalculator:

2

3 def init (self):

4 self.TIC = 0

5 self.nr peaks = 0

6

7 def consumeSpectrum(self, s):

8 self.TIC += sum(s.get peaks()[1])

9 self.nr peaks += s.size()

10

11 def consumeChromatogram(self, s):

12 pass

13

14 def setExpectedSize(self, x, y):

15 pass

16

17 def setExperimentalSettings(self, e):

18 pass

19

20 functor = TICCalculator()

21 pyopenms.MzMLFile().transform("infile.mzML", functor)

22 TIC = functor.TIC

23 nr peaks = functor.nr peaks

13



II. SUPPLEMENTAL DISCUSSION

A. Comparison between C++ and Python libraries

In Figure 4 we compare the performance of the different APIs provided in OpenMS

through pyOpenMS [1] in terms of performance. As expected, processing speed of Python is

slightly slower than C++, however the new pyOpenMS execution times are also substantially

improved over the 1.11 OpenMS kernel. Only the cached implementation in Python offered

a substantial speed gain over C++, but the improvement was not as large as observed for a

pure C++ implementation.

B. Considerations regarding random access reads in large files

Some algorithms need random access reads into large raw data files that cannot be easily

bundled or ordered by retention time. In these cases, random access to data is necessary

which precludes the algorithm from using the in memory implementation (due to system

memory restrictions) and the event-driven implementation (since random access is neces-

sary). In these cases, using the indexed data access API – which relies on the mzML idx

standard – is the most straight-forward way to implement such an algorithm. The mzML idx

standard stores binary offsets to the individual data tags inside the mzML file which allows

a file seek to jump to the desired location and read the next XML tag (either a <spectrum>

or <chromatogram> tag).

However, using the mzML idx standard has at least two main disadvantages. (i) The

file needs to be in de-compressed form while reading since the indices relate to the de-

compressed locations and stream-based compression algorithms such as gzip do not allow

random access. (ii) During each read the raw data has to be converted from a base64 string

into a floating point number representation in memory which is generally the most time

consuming step while reading. If many random access operations need to be performed,

these two disadvantages necessitate initial de-compression of the file and then only allow

relatively slow access to each spectrum.

Therefore, we implemented the “cached” file format that allows fast caching of the raw

data while retaining the meta data structure of mzML. The file format consists of two linked

files, a cachedMzML which only contains the raw mass spectrometric data and an associated
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TABLE I: Execution time for C++ implementations. The execution times for

different mzML readers implemented in C++ are compared (best of 3) on a file with a size

of 800 MB. The dev version refers to the development version of OpenMS described in the

main text, or in the case of ProteoWizard to the SVN revision 7261 (committed

2015-03-06).

Software Version Access Mode Execution Time Execution Time

(1 thread) (16 threads)

OpenMS 1.11 In Memory 47.6 s 47.6 s

ProteoWizard dev (r7261) 10.45 s 10.45 s

OpenMS dev In Memory 13.0 s 8.97 s

OpenMS dev Indexed 11.18 s 1.55 s

OpenMS dev Event-driven 11.98 s 7.0 s

OpenMS dev Cached 0.7 s 0.27 s

mzML file which does not contain any raw data (only the meta-data is retained in the XML

data structure). By allowing for clear separation of raw data and meta-data, reading the

meta-data into memory and performing search operations (for example collecting all spectra

within a certain retention time window, collecting all spectra with their precursor masses

in a certain range etc.) is extremely fast since the data structures are very small (generally

a few MB) and no raw data needs to be loaded into memory for this operation. Once a

suitable set of spectra (or a single spectrum) is found, its associated raw data can be loaded

from the disk from the cachedMzML file for further processing. Loading the raw data of

specific spectra from disk can be extremely fast as indicated by Figure 1 and 2 in the main

text, which indicate that loading the cached raw structures can be more than 10 times faster

than any other access mechanism. As we describe in the main text, we were able to process

the raw data of all spectra of a 60 GB mzML file and compute the TIC on this data in less

than 20 seconds using the cached access algorithms.
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TABLE II: Execution time for Python implementations. The execution times for

different mzML readers in Python are compared (best of 3) on a file with a size of 800 MB.

All tests were performed on the same RHEL system also used in the main text. The “dev”

versions indicate that we used OpenMS with the enhancements described in the main text.

Note that the “OpenMS” software relates to the C++ implementation (shown as

comparison) while pyOpenMS relates to the Python implementation.

Software Version Access Mode Execution time

pymzML 0.7.4 SAX parsing 35.6 s

pyOpenMS 1.11 In Memory 49.5 s

pyOpenMS dev In Memory 14.3 s

pyOpenMS dev Indexed 20.4 s

pyOpenMS dev Event-driven 18.4 s

pyOpenMS dev Cached 5.6 s

OpenMS 1.11 In Memory 47.6 s

OpenMS dev In Memory 13.0 s

C. Comparison to other libraries

In order to assess the performance of our implementation, we compared it to the XML

parsing implementation available in the ProteoWizard software, another major open-source

data access library [2, 3]. We used the ProteoWizard library revision 7261 to build a custom

program that calculates the TIC and compared it to the performance measured using the

OpenMS implementations. The results of the measurement are shown in the main text, in

Figure 1 and in Table I.

Our results indicate that the single threaded execution of ProteoWizard and OpenMS are

on par in terms of processing speed (except the “cached” implementation which is an order of

magnitude faster). However when using multiple threads, OpenMS is 30 % (“In Memory”),

60 % (“event-driven”) or even a factor of 4 (“indexed”) and 50 (“cached”) faster.

We also compared our implementation to pymzML [4] which only provides a feature-

complete mzML reader. Interestingly, when run on the same machine as the other com-

parisons, we found pymzML to outperform the Python and C++ OpenMS 1.11 implemen-
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tations (see Table II). These results are consistent with the ones reported in Bald et al.

[4] who found that OpenMS and pymzML perform similarly. However, after applying the

modifications reported in this article, we find that the Python implementations based on

pyOpenMS are substantially faster than pymzML (see Table II). We observed speedups of

two-fold or more (up to six fold for the cached Python implementation). In addition, we

conclude that the Python wrappers do not carry a large overhead in performance as the dif-

ference between the C++ (OpenMS) and Python (pyOpenMS) implementations were about

10 % for the “In Memory” algorithms. For the other access modes, we observed larger over-

head time (less than two-fold for “event-driven” and “indexed”). For these comparisons, the

TICCalculator.py script was used.

[1] H. L. Röst, U. Schmitt, R. Aebersold, and L. Malmström, Proteomics 14, 74 (2014).

[2] M. C. Chambers, B. Maclean, R. Burke, D. Amodei, D. L. Ruderman, S. Neumann, L. Gatto,

B. Fischer, B. Pratt, J. Egertson, et al., Nature Biotechnology 30, 918 (2012).

[3] D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, Bioinformatics (Oxford, England)

24, 2534 (2008).

[4] T. Bald, J. Barth, A. Niehues, M. Specht, M. Hippler, and C. Fufezan, Bioinformatics 28, 1052

(2012).
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FIG. 1: Processing speed for the different algorithms. The processing speed

normalized to the number of peaks processed per second for different algorithms (and

ProteoWizard for comparison) is depicted. The speed was measured across a range of

different mzML files which contained 54.29 · 106 to 456.3 · 106 peaks. For clarity in the

display, the figure in the main text does not contain an error bar for the “cached”

implementation. Since the “cached” implementation is an order of magnitude faster than

the other implementations, additional graphs are provided here with the error bar drawn

to scale.
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FIG. 2: Memory requirements for the low-memory algorithms. Memory

requirements as a function of the number of peaks for the low-memory algorithms. The

“event-driven” and “cached” implementations show linear behavior in memory,

independent of the number of peaks in a file. The “indexed” implementation shows a slight

increase in memory consumption with file size since it keeps meta-data (previous data

processing, retention time, MS1 level etc.) for each spectrum and chromatogram in

memory. Note that the memory requirements are at least one order of magnitude lower

than the file sizes.

19



0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0

Filesize (GB)

E
xe

cu
tio

n 
tim

e 
(s

)

●

●

●

●

●
●

●

●

●
●

●

●

● ● ● ●
● ● ● ●
●

●

●

●

Release 1.11
In Memory
Event−driven
Indexed
Cached
ProteoWizard

(a) Execution times (walltime) depending on file

size

0 2 4 6 8

0
20

00
40

00
60

00
80

00

Filesize (GB)

S
ys

te
m

 m
em

or
y 

(M
B

)

●

●

●

●

●

●

●

●

● ● ● ●● ● ● ●
● ● ● ●● ● ● ●

Release 1.11
In Memory
Event−driven
Indexed
Cached
ProteoWizard

(b) Memory requirements (mega byte) depending
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FIG. 3: Execution times and memory requirements of the described data access

implementations. Execution times and memory requirements as a function of the file size

in gigabytes for the different algorithms (instead of number of peaks as in the main text).
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FIG. 4: Execution times of the Python API. Execution times of the Python

implementations, compared to the C++ implementation in OpenMS. Note how the current

processing speed in Python almost matches the C++ processing speed and even exceeds it

for the cached implementation. The C++ value in this graph is equivalent to the single

threaded value for the “In Memory” algorithm in Figure 1 of the main text.
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