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Figure S1 (related to Figure 1).  
Endogenous ID complex is modified in response to DNA damage by the 
small ubiquitin-like modifiers SUMO1 and SUMO2. 

A. Current model of replication-dependent ICL repair (Knipscheer et al., 
2009; Long et al., 2011; Raschle et al., 2008; Zhang and Walter, 2014). 

B. HeLa/FLAG-SUMO1 cells were treated with doxycycline (DOX) for 48 h 
to induce the expression of FLAG-SUMO1. Cells were subjected to 
mitomycin C (MMC) (1 μM) or hydroxyurea (HU) (2 mM) treatment for 
24 h and protein extracts were analyzed by immunoblotting with the 
indicated antibodies. WCE, whole cell extracts. 

C. Same as (B) except with HeLa/FLAG-SUMO2 cells. 
D. Stable HeLa cell lines expressing wild type FLAG-SUMO2 were treated 

with doxycycline (DOX) for 24 h to induce FLAG-SUMO2 expression. 
Cells were then lysed under denaturing conditions, subjected to FLAG 
immunoprecipitation and then analysed by immunoblotting using the 
indicated antibodies. WCE, whole-cell extract; IP, immunoprecipitates. 
MCM6 is used as a loading control. Left, example of Western blot data, 
showing SUMO-modified forms of FANCI in the whole cell extract and 
after immunoprecipitation of the SUMO1. Right, same data but after 
cropping the important bands. 

E. HeLa/FLAG-SUMO2 cells were exposed to various genotoxic stresses 
and processed as in (D).  

F. HeLa/FLAG-SUMO1 cells were treated with HU (2 mM) for various 
durations before being processed as in (D).  

G. Stable HeLa cell lines expressing wild type (WT) or conjugation-
deficient (ΔGG) FLAG-SUMO1 were transfected or not with FANCI 
siRNA and treated with doxycycline (DOX) for 24 h to induce FLAG-
SUMO2 expression. Cells were then subjected to MMC treatment for 
an additional 24 h and collected. SUMOylation of FANCI and FANCD2 
was analysed as in (D). 

H. Same as in (G), using FANCD2 siRNA. 
I. HeLa/FLAG-SUMO1 cells were biochemically fractionated, diluted in 

denaturing buffer before immunopurification and immunoblotting with 
the indicated antibodies.  
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Figure S2 (related to Figure 2).  
PIAS1, PIAS4, ATR and the FA core complex promote ID complex 
SUMOylation. 

A. HeLa/FLAG-SUMO1 cells were transfected with control (CTRL) or 
siRNAs against known SUMO E3 ligases, induced for FLAG-SUMO1 
expression by DOX addition, then treated with HU (2 mM) for 24 h, 
lysed under denaturing conditions, immunopurified using FLAG beads 
and analysed by immunoblotting using the indicated antibodies.  

B. Same as (A) except for SUMO2. 
C. Depletion efficiencies of PIAS4 siRNAs used in this study. PIAS4(#4) 

was typically used in most experiments. 
D. Depletion efficiencies of PIAS1 siRNA used in this study. 
E. U2OS cells were transfected with HA-Strep-PIAS1 or empty vector (−) 

for 24 h and then subjected to MMC treatment (1 μM) for a further 24 h. 
HA-Strep-PIAS1 complexes were purified with Strep-Tactin Sepharose 
and analysed by immunoblotting with the indicated antibodies. 

F. Antibody controls related to the in situ promixity ligation assay shown in 
Fig. 2E, either lacking primary antibody or secondary antibody. Scale 
bar, 10 μm. 

G. HeLa/FLAG-SUMO1 cells were transfected with control or ATR siRNA, 
induced for FLAG-SUMO1 expression by DOX addition, treated with 
MMC (1 μM) for 24 h, then analysed as in (A).  

H. Same as above but with FANCA siRNA transfection. 
I. Same as above but with FANCL siRNA transfection. 
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Figure S3 (related to Figure 3).  
Analysis of ID complex chromatin dynamics after replication stress 
using QIBC. 

A. U2OS cells were treated with HU (2 mM) for 2 h, pre-extracted in situ 
with detergent, fixed and then immunostained with FANCD2 and RPA2 
antibodies together with DAPI to stain nuclear DNA content. QIBC can 
be used to discriminate RPA that is dynamically loaded on ssDNA 
produced by HU-induced fork stalling, compare left and right (Toledo et 
al., 2013).  

B. As in (A) except the mean FANCD2 intensity is plotted against mean 
RPA2 intensity. Previous assessment of S-phase cells in (A) allows 
discrimination of S-phase chromatin loading of FANCD2 (red). 

C. As in (B) except total FANCD2 intensity is plotted against mean RPA2 
intensity. Note that FANCD2 exists in three cellular populations after 
isolation of chromatin bound proteins using in situ pre-extraction: 1. low 
RPA, low FANCD2 (G1-phase); 2. low RPA, high FANCD2 (G2-phase 
telomere-associated structures (Fan et al., 2009); 3. intermediate-to-
high FANCD2, high RPA (S-phase). FANCI exhibits exactly the same 
dynamics (data not shown). 

D. Examples of images obtained from the high-content microscope used 
to generate data in A-C, showing predominantly G1 and S-phase cells. 

E. As in (D), but showing mainly S and G2 cells. 
F. Assessment of siSENP6Smartpool depletion efficiency by immunoblotting. 
G. U2OS were transfected with HA-Strep-SENP6CI, subjected to laser 

microirradiation, pre-extracted or not, fixed and immunostained with the 
indicated antibodies. Scale bar, 10 μm. 
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Figure S4 (related to Figure 4).  
RNF4-mediated polyubiquitylation of the ID complex. 

A. RNF4 mutants used in this study. The hydrophobic residues of the N-
terminal SIM region were mutated to alanines to give rise to the *SIM 
mutant. Two cysteines in the C-terminal RING domain were mutated to 
serine, to create the *RING mutant. 

B. Immunoblot assessment of RNF4 siRNAs used in this study. 
C. U2OS cells were transfected with control (CTRL) or RNF4 siRNA then 

transfected with RNF4 or RNF4 siRNA-resistant (RNF4siR) expression 
constructs, before whole cell extracts were assessed by 
immunoblotting to determine efficiency of RNF4siR resistance to RNF4 
siRNAs. 

D. Generation of U2OS stable cell lines expressing similar levels of 
mCherry-RNF4siR wild type and mutant alleles, as assessed by 
immunoblotting with the indicated antibodies. 

E. Schematic showing the principle of the multicolor competition assay 
(MCA) (Smogorzewska et al., 2007) used in Fig 4A.  

F. The U2OS/mCherry-RNF4siR *RING mutant was transfected with RNF4 
siRNA, treated with MMC (0.3 μM) for 24 h, pre-extracted, fixed and 
immunostained with FANCD2 antibody. Scale bar, 10 μm. 

G. U2OS cells were transfected with GFP-RNF4siR constructs, treated with 
MMC (1 μM) for 4 h, before immunoprecipitation with GFP-Trap beads 
followed by immunoblotting with the indicated antibodies. 

H. U2OS/HA-Strep-ubiquitin cells were transfected with control or RNF4 
siRNA, treated with HU (2 mM) for 24 h and in the last 4 h were treated 
with the proteasome inhibitor MG132 (10 μM), before cells were lysed 
under denaturing conditions, immunopurified using Strep-Tactin 
Sepharose and analysed by immunoblotting with indicated antibodies. 

I. U2OS cells were transfected with wild type HA-Strep-ubiquitin (WT), or 
two derivatives containing only one available lysine, K48 (K48only) or 
K63 (K63only), exposed to HU (2 mM) for 24 h and in the last 6 h were 
treated with the proteasome inhibitor MG132 (10 μM), before cells were 
lysed under denaturing conditions, immunopurified using Strep-Tactin 
Sepharose and analysed by immunoblotting with the indicated 
antibodies. 

J. U2OS/FANCI cells were transfected with wild type HA-Strep-ubiquitin 
(WT), or two derivatives containing K48R or K63R mutations, treated 
with HU (2 mM) for 24 h and in the last 4 h were treated with the 
proteasome inhibitor MG132. Ubiquitin-associated FANCI was then 
analysed after HA purification and immunoblotting with antibody 
against endogenous FANCI.  

K. HeLa/FLAG-SUMO2 cells were transfected with control or RNF4 
siRNA, induced for SUMO expression by DOX addition, then treated 
with HU (2 mM) for 24 h and in the last 6 h treated with MG132, then 
lysed under denaturing conditions, immunopurified using FLAG beads 
and analysed by immunoblotting using the indicated antibodies.  

L. Coomassie-stained gels of recombinant His-Strep-HA-RNF4 and 
UBCH5b proteins used in this study. 
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Figure S5 (related to Figure 5).  
DVC1 is the specific p97 adaptor that promotes extraction of the ID 
complex in a ubiquitin-dependent manner. 

A. U2OS cells were co-transfected with FLAG-DVC1 and p97-Myc wild 
type (WT) or ATPase-dead E578Q (EQ), treated with HU (2 mM) for 24 
h and then pre-extracted, fixed and immunostained with the indicated 
antibodies. Scale bar, 10 μm. 

B. U2OS cells were co-transfected with GFP-DVC1 wild type (WT), *SHP 
or *UBZ together and p97-Myc, treated with MMC (0.3 μM) for 24 h 
and then pre-extracted or not, fixed and immunostained with the 
indicated antibodies. Note that the GFP-DVC1 ubiquitin-binding 
deficient *UBZ mutant is completely solubilised followed pre-extraction, 
indicating that it is not stably retained on chromatin in response to 
replication stress (unextracted panel). Scale bar, 10 μm. 

C. U2OS/GFP-DVC1 cells were transfected with CTRL, FANCA or 
FANCD2 siRNA, treated with either HU (2 mM) or MMC (0.3 μM) for 24 
h and then fixed. Scale bar, 10 μm. 

D. U2OS cells were co-transfected with FLAG-NPL4, FLAG-UFD1 or 
FLAG-p47 together with p97-Myc, treated with MMC (0.3 μM) for 24 h 
and then fixed and immunostained with the indicated antibodies. Note 
that each of these p97 adaptor proteins was unable to promote 
extraction of the ID complex after ICL formation. Furthermore, none 
were resistant to an in situ pre-extraction step (data not shown), 
indicating that they are not stably recruited to stalled replication forks. 
High (HI) and low (LO) expressing cells were included for comparison. 
Scale bar, 10 μm. 

E. Immunoblot analysis of HeLa cells used for clonogenic assays in Fig 
5E. 
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K1248 K1288

AVATAMARVLRETKPIPNLIFAIEQYEKFLIHLSKKSKVNLMQHMKLSTSRDFKIKGNILDMVL!
AVSTTMAKVLRETKPIPNLVFAIEQYEKFLIQLSKKSKVNLMQHMKLSTSRDFKIKGSVLDMVL!
AVSKSMAKVLRETKPIPNLVFAIEQYEKFLIQLSKKSKVNLMQHMKLSTSRDFKIKGNVLDMVL!
VVSTVMAKVLRDTKPIPNLIFAIEQYEKFLIHLSKKSKVNLMQYMKLSTSRDFRINASMLDSVL!
AGPTAIARALRETKPIPNLIFAIEQYEKFLIHLSKRSKVNLMKHIKLSTSRDFKIKGNILDVVL!
AGASAVARVLRETKPIPNLIFAIEQYEKFLIHLSKRSKVNLMQHIKLSTSRDFKIKGNILDMVL!
ALTVTSAKILRDTKPIPNLIFAIEQYEKFLIHLSKKSKVNLMQYMKLSTSRDFRINAATLDAAL!
AVAAASAKVLRETKAIPNLIFNIEQYEKFLILLSKKSKVNLMQYMKLSTSRDFRINAATLEAAL!
AVATAMARVLRETKPIPNLIFAIEQYEKFLIHLSKKSKVNLMQHMKLSTSRDFKIKGNILDVVL!
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Figure S6 (related to Figure 6).  
FANCI SUMOylation regulates ID complex chromatin retention. 

A. Location and protein sequence alignment of potential SUMO sites in 
FANCI. 

B. FANCI SUMO site K-to-R expression constructs used in this study. The 
HA-FANCI *SUMO mutant contains all six K-to-R substitutions. 

C. U2OS cells were transfected with HA-FANCI wild type (WT) or SUMO 
site mutants and where indicated His-FLAG-SUMO2, subjected to HU 
treatment (2 mM) and 24 h later SUMO conjugates were purified under 
denaturing conditions using Ni2+ agarose. SUMO-modified FANCI was 
analysed by immunoblotting with HA antibody. *, denotes unmodified 
FANCI in immunoprecipitate. 

D. FANCI SUMO sites in the context of the previously described 
FANCD2/FANCI crystal structure (Joo et al., 2011) (PDB: 3S4W). 
Electrostatic surface and images were created using Pymol. Notably, 
the K715 residue is followed by a string of conserved negatively 
charged amino acids and an SQ phosphorylation site, which further 
classifies the K715 site as a negatively charged amino acid dependent 
SUMOylation motif (NDSM) (Yang et al., 2006). The negatively 
charged amino acids within this specialised SUMO motif promotes 
interaction with a basic patch on the SUMO E2 UBC9, thus targeting 
UBC9 to substrates to promote their SUMOylation (Mohideen et al., 
2009). Viewed within the context of the ID complex crystal structure, 
the FANCI K4, K638, K715, K1248 and K1288 are all surface 
accessible for the SUMOylation machinery. In contrast, the K646 
residue is buried within the ID complex and would require restructuring 
of the complex in order to undergo SUMOylation.  

E. U2OS/HA-FANCI WT or *SUMO cells transfected with FANCI siRNA 
against the 3’-UTR were treated with HU (2 mM) for 24 h and lysed 
under denaturing conditions before immunoprecipitation with anti-
FANCD2 antibody or pre-immune serum (IgG). Bound material was 
analysed by immunoblotting with the indicated antibodies. 
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Figure S7 (related to Figure 7).  
HA-FANCI WT phenocopies endogenous FANCI. 
U2OS/HA-FANCI WT cells were depleted of endogenous FANCI together with 
FANCD2, SENP6, RNF4 or DVC1 and processed for QIBC. Results of a 
representative experiment are shown. 
 
 



 

Supplemental Experimental Procedures 
 
Plasmids and siRNA 
Expression plasmids encoding His-FLAG-SUMO2, HA-Strep-PIAS1, HA-
Strep-PIAS4, Myc-p97, FLAG-NPL4, FLAG-p47 and FLAG-UFD1 were 
described previously (Danielsen et al., 2012; Mosbech et al., 2012). A plasmid 
expressing pcDNA4/TO-HA-Strep-SENP6 was generated using established 
protocols. A plasmid expressing human HA-FANCI was a kind gift from Tony 
Huang (NYU Medical School, USA) and was subcloned into peGFP-C1 
(Clontech). pcDNA3/HA-ubiquitin WT, K48R and K63R were described 
previously together with the pcDNA4/TO-HA-Strep-ubiquitin WT, K48-only and 
K63-only plasmids (Damgaard et al., 2012). RNF4 WT and *SIM cDNAs were 
synthesised by Eurofins MWG and both were rendered insensitive to two 
independent non-overlapping siRNAs by silent mutation of the following 
underlined nucleotides: siRNF4(#1) target – GAATGGACGTCTCATCGTT; 
siRNF4(#2) target – GACAGAGACGTATATGTGA. The RNF4 WT and *SIM 
cDNAs were cloned into pAcGFP-C1 and pmCherry-C1 expression vectors 
(both Clontech), to produce siRNA-Resistant GFP-RNF4siR and mCherry-
RNF4siR WT and *SIM constructs. GFP-RNF4siR and mCherry-RNF4siR *RING 
mutant (C132S/C134S) was produced by site-directed mutagenesis. Cloning 
and site-directed mutagenesis was performed with PrimeSTAR Max 
Polymerase (Clontech) and KOD Hot Start Polymerase (Novagen). All 
constructs were verified by sequencing. Primer sequences are available upon 
request. Plasmid transfections were carried out using either GeneJuice 
(Novagen) or Fugene 6 (Promega) according to the manufacturer’s 
instructions. Transfection of siRNAs was performed with RNAiMAX 
(Invitrogen) according to the manufacturer’s instructions. The siRNA 
sequences and associated references used in this study were: 
ATR (5’-CCUCCGUGAUGUUGCUUGA-3’) (Casper et al., 2004),  
control (CTRL) (5’-GGGAUACCUAGACGUUCUA-3’) (Mosbech et al., 2012),  
FANCA (5’-GCAGGUCACGGUUGAUGUA-3’) (Liu et al., 2010),  
FANCD2 (5’-CAACAUACCUCGACUCAUU-3’) (Liu et al., 2010),  
FANCI (5’-GCAGAAAGAAAUAGCGUCU-3’) (Liu et al., 2010),  
FANCI (5’-UTR) (5’-GGAAGUUUGUGGCGGAGUU-3’) (this study), FANCI 
(3’-UTR) (5’-GCGCUUCACCUGAAAGAUA-3’) (this study), FANCL (5’-
GACAAGAGCUGUAUGCACU-3’) (Meetei et al., 2003) 
FANCM (5’-AGACAUCGCUGAAUUUAAA -3’) (Xue et al., 2008),  
MMS21 (5’-CUCUGGUAUGGACACACAGCU-3’) (Galanty et al., 2009),  
Pc2(#1) (5’-CGUGGGAACCGGAGGAGAA-3’),  
Pc2(#2) (5’-GUUUGUACGUGGUGUUAUU-3’),  
PIAS1 (5’-CGAAUGAACUUGGCAGAAA-3’) (Galanty et al., 2009),  
PIAS2 (5’-CUUGAAUAUUACAUCUUUA-3’) (Galanty et al., 2009),  
PIAS3 (5’-CCCUGAUGUCACCAUGAAA-3’) (Galanty et al., 2009),  
PIAS4(#1) (5’-GGAGUAAGAGUGGACUGAA-3’) (Galanty et al., 2009),  
PIAS4(#2) (5’-AGGCACUGGUCAAGGAGAA-3’) (Galanty et al., 2009),  
PIAS4(#3) (5’-AGCUGCCGUUCUUUAAUAU-3’) (this study),  
PIAS4 (#4) (5’-CAAGACAGGUGGAGUUGAU-3’) (this study),  



 

RNF4(#1) (5’-GAAUGGACGUCUCAUCGUU-3’) (Galanty et al., 2012; Yin et 
al., 2012),  
RNF4(#2) (5’-GACAGAGACGUAUAUCUGA-3’) (Galanty et al., 2012; Yin et 
al., 2012),  
RNF111 (5’-GGAUAUUAAUGCAGAGGAA-3’) (Poulsen et al., 2013),  
RanBP2 (5’-GGACAGUGGGAUUGUAGUG-3’) (Joseph et al., 2004),  
SENP1 (siGENOME Smartpool # M-006357-00), SENP2 (siGENOME 
Smartpool #M-006033-01), SENP3 (siGENOME Smartpool #M-006034-01), 
SENP5 (siGENOME Smartpool #M-005946-01), SENP6 (siGENOME 
Smartpool #M-006044-01), SENP7 (siGENOME Smartpool #M-006035-01), 
SENP6 (5’-GAAAGUGAAGGAGAUACAG-3’),  
TOPORS (5’-CAAGGAGCCUGUCUAGUAA-3’). 
 
Cell culture 
Unless otherwise indicated, the following doses of genotoxic agents were 
used: Mitomycin C (MMC, 1 μM), Hydroxyurea (HU, 2 mM), Aphidicolin (APH, 
4 μM), IR (10 Gy), Cisplatin (5 μM) and UV (20 J/m2).  
 
Purification and detection of endogenously SUMOylated proteins 
Purification of endogenous FANCI or FANCD2 for SUMO2/3 analysis was 
carried out essentially as described (Barysch et al., 2014). Briefly, cells were 
lysed in the presence of 1% SDS, sonicated, boiled at 95°C for 10 minutes 
and then diluted 1:10 in RIPA dilution buffer. Lysates were passed through a 
0.45μm filter and incubated with 2 μg of FANCI or FANCD2 antibody or 
control IgG overnight at 4°C. Protein A sepharose was then added for 4 h and 
bound material was subsequently washed with RIPA buffer containing 0.1% 
wt/vol SDS. Bound proteins were eluted with sample buffer. 
 
Antibodies 
Antibodies used in this study included: mouse monoclonals to SUMO2/3 
(Abcam), mCherry, 6xHis (Clontech), RPA2* (clone 9H8, Diagnostic 
Biosystems), γH2AX* (Millipore), GFP, HA*, (Santa Cruz), FLAG, vinculin 
(Sigma); rabbit monoclonals/polyclonals to γH2AX*, FANCD2*, PIAS1, RPA1* 
(clone EPR3472), RPA2* (clone EPR2877Y), SUMO2/3 (Abcam), FANCA, 
FANCI*, SENP6 (Bethyl Laboratories), Chk1(pS317), Histone H2AX, NF-κB, 
PIAS4 (Cell Signaling), FANCD2* (Novus Biologicals), RNF4 (a kind gift from 
J. Palvimo, University of Eastern Finland, Kuopio, Finland), FANCL (a kind gift 
from Weidong Wang, National Institute of Aging, USA); goat polyclonals to 
ATR, DVC1 and MCM6 (Santa Cruz); rat monoclonal to HA* (Sigma). *, 
denotes that the antibody was used for QIBC.  
 
In vitro SUMOylation and STUbL assays 
For in vitro SUMOylation assays, components were added to a total reaction 
volume of 30 μl in SUMOylation buffer (50 mM Tris, pH 7.5; 5 mM MgCl2; 0.6 
mM DTT; 2 mM NaF) as follows: E1 - SAE1/2 (Boston Biochem) - 30 μM, E2 - 
UBC9 (Boston Biochem) – 167 μM, E3 - PIAS1 (Enzo Life Sciences) or PIAS4 
(this study) – 120 μM, 15 mM SUMO1 or SUMO2 (both Boston Biochem) – 
667 nM FANCI or FANCD2. Reactions were incubated at 30°C for 2 h and 



 

stopped by the addition of 4x SDS-PAGE loading buffer. For STUbL assays, 
reactions were scaled up 3-fold. After the in vitro SUMOylation assay, extracts 
were diluted in 500 μl binding buffer (20mM Tris, pH 7.5; 150 mM NaCl; 
0.05% NP-40; 1 mM imidazole) and added to 15 μl (packed volume) Ni2+ 
agarose for 2 h at 4°C. Bound proteins were washed extensively in 50 mM 
Tris pH 7.5 and subjected to an in vitro ubiquitylation assay, using the 
following components: E1 (Boston Biochem) – 28 μM, E2 – UBCH5c (Boston 
Biochem) – 400 μM , E3 - RNF4 (this study) – 400 μM, Myc-ubiquitin (Boston 
Biochem) – 18 mM. Beads were incubated at 37°C for 90 mins with shaking 
and then washed extensively before the addition of SDS-PAGE loading buffer 
containing 250 mM imidazole. Reaction products were analysed by 
immunoblotting. 
 
QIBC 
Quantitative image-based cytometry (QIBC) was performed exactly as 
described (Toledo et al., 2013). Briefly, cells were pre-extracted, fixed and 
stained as described above before nuclear DNA was stained with DAPI 
(Molecular Probes) for 4 min in 0.01% Tween-20/PBS. Cells were mounted in 
Mowiol 488 medium (EMD Millipore). Images were acquired with an Olympus 
IX-81 wide-field microscope equipped with an MT20 Illumination system and a 
digital monochrome Mahatsu C9100 CCD camera. Olympus UPLSAPO 
10x/0.4 NA, 20x/0.75 NA and 40x/0.95 NA objectives were used. Automated 
and unbiased image analysis was carried out with the ScanR acquisition 
software. In experiments using the 10x objective, 4,000-10,000 cells were 
analysed per datapoint. Data was exported and processed in Spotfire (Tibco) 
software.  
 
Mass spectrometry-based analysis of FANCI/FANCD2 SUMO sites 
To determine FANCD2 and FANCI SUMO2 sites by mass spectrometry, in 
vitro SUMOylation assays were carried out as described above except with 
recombinant human SUMO2 (Q87R), a kind gift from Dr Alfred Vertegaal 
(Leiden University Medical Center, the Netherlands). In vitro SUMOylation 
reactions were performed for 2 h at 37°C, stopped by boiling in SDS-PAGE 
loading buffer and were separated by SDS-PAGE using a 4-12% NuPAGE gel 
(Life Technologies). Peptides were recovered from the SDS-PAGE gel using a 
standard in-gel digestion protocol (Lundby and Olsen, 2011). Peptide fractions 
were analyzed by online nanoflow LC-MS/MS using a Proxeon easy nLC 
1000 system connected to an Q-Exactive mass spectrometer (Thermo 
Scientific), as described (Kelstrup et al., 2012). Raw data was computationally 
processed using MaxQuant (developer version 1.4.0.3) and searched against 
the UniProt database (April 2012 release) using the integrated Andromeda 
search engine (http://www.maxquant.org) (Cox and Mann, 2008; Cox et al., 
2011). The SUMO remnant peptide (QQTGG) derived from tryptic cleavage of 
Q87R mutant SUMO was included as a variable modification on lysine 
residues using the default settings in MaxQuant. 
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