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Estimation of saturation threshold of epitope-specific
CTL frequencies

In the total CTL killing rate, the saturation in CTL frequencies is given by:
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Here j ∈ {a, p,m} denotes the acute, persistent (chronic) and memory groups, respec-
tively. C 1

2
,j is the CTL frequency saturation threshold. The peptide load on the target

cells is λ, and kmax,j is the maximal killing rate, which is half-maximal at λ 1
2
,j.

For very high pulsing concentrations at the saturation level for the peptide-dependent
killing efficacy, the relation (1) can be replaced by:
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Here, the total killing rate in a group can be regarded as a given fixed rate fs, where
s ∈ {a, p}, for acutely and persistently infected, respectively. If the total killing rate is
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fixed and we assume C 1
2
,a = C 1

2
,p = C 1

2
, then kmax,j and C 1

2
are implicitly linked by (1).

Hence,
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These are two linear functions of kmax,a and kmax,p in C 1
2
. The value for C 1

2
, at which

they intersect is given by:

C 1
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With estimates of Ca,p, as well as fa,p, it is therefore possible to infer the value of C 1
2

at which the maximal per CTL killing efficacies of acutely and persistenly infected mice
are equal. In order to obtain the confidence intervals, we sample 105 times from the
confidence distributions around the estimates of Ca,p and fa,p, taking into account the
covariance between them. To obtain a better estimate for this covariance, we assumed
the correlation between Ca and fa to be equal to the correlation between Cp and fp.
We hence measured the covariance between the set {Ca, Cp} and the set {fa, fp}. The
confidence intervals for C 1

2
are calculated by the percentile method.

The values for C 1
2

have been measured directly in the in vivo killing assay. We esti-
mated the values of fa,p by setting the epitope-specific CTL levels to one in the killing effi-
cacy dependence model. By that method we obtain more realistic estimates for the total
saturation killing rate than by only considering the data at maximum peptide concen-
trations. This leads to fa = 0.062(0.015, 0.109) min−1, fp = 0.031(0.009, 0.052) min−1.
With these estimates and the experimental data for Ca,p, we obtain that C 1

2
= 0.0095

(0.0883,−0.010). The negative value for the lower bound of the CI stems from the fact
that some of the samples combinations do only have negative solutions for C 1

2
. This is

true for 13.5% of cases.

Model selection of model C

To gain more confidence in model C, we performed further F-tests on alternatives to
model C that are derived from model B and have equal numbers of parameters. There
exist five alternatives to model C with an equal number of independent parameters.
Four ways exist to further relax assumptions in model C by adding one single parameter.
These alternative models also allow unequal values of kmax between treatments groups.

Of all five ways to further relax the assumptions made in model B by adding one
more parameter, model C provides by far the best improvement, with a p-value of
about two orders of magnitude below the next best alternative model. Note that this
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also includes models where the equality between killing efficacies in different models is
relaxed. Relaxing the assumptions further to include one more parameter than in model
C, does not significantly improve fits (see S1 Fig.).

Calculation of Akaike Information criterion measures

In this section we show how the Akaike Information Criterion (AIC) values were cal-
culated in the manuscript and in S2 Fig. The AIC is a measure employed for the
assessment of the information loss associated with a model fit to data. The larger the
AIC, the higher the information loss and the less desirable the model in relation to other
models. We begin with the definition of the AIC:

AIC = 2k − 2l(Θ), (6)

where k is the number of free parameters in the model, and l(Θ) is the maximized
value of the log-likelihood of the model fitted to the data. In the text below, we are
going to follow the exposition by Mohanan [27] as well as Burnham and Anderson [28]
to clarify how we calculated the AIC.

The assessment of the number of parameters is straight forward in the models explored
in the manuscript. To calculate the maximum log-likelihood, we use its relationship to
the sum of squared residuals (SSR), which is the output of the optimization procedures
utilized to fit the models to the data.

In non-linear regression, the observations yi, where i ∈ {1, . . . , n} are being used
to fit a non-linear model g(xi,Θ), where xi is the the vector of predictors for the ith

observation, and Θ is a k-dimensional vector of parameters. Since a value exists for
each i of the model function g, we can the define a vector g(Θ), where the ith entry
corresponds to g(xi,Θ). In non-linear regression, it is commonly assumed that:

Y ∼ Nn(g(Θ), σ2In), (7)

where σ2 is the variance of the errors and In is the unity matrix of dimension n. From
this relation, it follows that the corresponding distribution of observations should be:

L(Θ, σ2) = (2πσ2)−
n
2 exp(−

n∑
i

(yi − g(xi,Θ))2

2σ2
). (8)

Interpreted as a function of Θ, this is the likelihood function of the non-linear model.
Using the the following notation for the sum of squared residuals (SSR):

S(Θ) =
n∑
i

(yi − gi(xi,Θ))2, (9)
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we can proceed to calculate the log-likelihood:

ln(Θ, σ2) = log(L(Θ, σ2)) = −n
2

log(2π)− n

2
log(σ2)− S(Θ)

2σ2
. (10)

Since the maximum likelihood estimator of σ2 is proportional to the SSR, that is,

σ̂2 = S(Θ)/n, (11)

we find that the log likelihood is directly proportional to the logarithm of the SSR, and
that maximizing the likelihood is equivalent to minimizing the SSR:

ln(Θ) = constant− (n/2) log(S(Θ)). (12)

In most applications involving AIC values, the constant terms which only depend on
the number of observations are neglected, since AIC values do only confer meaning when
compared to AIC values of other models applied to the same data set.

The non-constant terms are identical to those implemented in logLik [23], an R-based
function to calculate the log-likelihood from, for instance, nonlinear-regression estimates
of the SSR found by the R-function nls [23].

In the manuscript, we therefore calculated the AIC values in the following way:

AIC = 2k + n log(S(Θ)). (13)

In the study presented here, we have n = ng · ngs · nt · np = 240, where ng = 3 is
the number of mice groups utilized for model fitting, ngs = 4 is the number of mice per
group, nt the number of measured time points and np = 5 is the number of different
peptide loads employed.
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