Supporting information (including 4 supplementary figures and legends)

Supplementary Figure S1. Role of the N-terminal DNA binding domains of Hop2-Mnd1 in duplex DNA capture with ATP as nucleotide co-factor.

Wild type (WT) and mutant variants of the Hop2-Mnd1 complex (0.6 or 1.2 μ M) were tested for their ability to promote duplex capture with ATP as the nucleotide cofactor. The mean values \pm s.d. from three independent experiments were plotted.

Supplementary Figure S2. Nucleotide cofactor dependence and specificity of the interaction between RAD51 and Hop2-Mnd1.

- **(a)** Pulldown assay to test for the interaction of RAD51 or RAD51(K133A) with (His)₆-tagged Hop2-Mnd1 using Ni²⁺-NTA resin to capture protein complexes. Analysis was conducted as in Figure 4a.
- **(b)** Pulldown assay to test for the interaction of RAD51 with Hop2-Mnd1 as in (a) under various conditions with different nucleotide cofactor as indicated.
- **(c)** Pulldown assay to test for the interaction of Hop2-Mnd1 with RecA from *E. coli.* or Rad51 from *S. cerevisiae* as in (a).

Supplementary Figure S3. The C-termini of Hop2 and Mnd1 are required for interaction of Hop2-Mnd1 with RAD51.

- (a) Summary of the Hop2-Mnd1 truncation mutants.
- **(b)** Pulldown assays to test for the interaction of RAD51 with (His)₆-tagged truncation mutants of Hop2-Mnd1. Analysis was conducted as in Figure 4a.
- **(c)** Pulldown assay to test for the interaction of RAD51 with (His)₆-tagged Hop2-Mnd1 and its truncated mutants (Hop2-Mnd1¹⁻¹⁸⁵ and Hop2¹⁻¹⁹⁰-Mnd1) as in (b).

Figure S4

Supplementary Figure S4. Testing of Hop2 mutants in the yeast three-hybrid analysis.

Yeast three hybrid analysis to test the interaction of RAD51 with Hop2-Mnd1 and its various mutants as indicated.