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Obtaining statistically equivalent data sets for the internal scaling profiles: The internal 
scaling profiles were calculated as outlined in the main manuscript. There is an intrinsic 
asymmetry in the volume of data associated with pairs at different separations. As an example, a 
sequence of length 17  (15 residues + 2 capping residues) has 16 pairs of residues separated with 
a linear sequence separation of one (|i–j|=1) and only one residue pair separated by 16 residues. 
To account for the disparity in data volume, we employ the following approach to create 
statistically equivalent datasets for each pair. 

1. For each pair of residues at each sequence separation a high-resolution distance 
distribution is generated (bin widths of 0.05 Å). There are 16 distributions per replica for 
|i–j|=1 and two distributions per replica for |i–j|=15 

2. From the distance distribution for each pair, we selected 2,500 distance values and 16 × 
2500 values were generated from the distributions for |i–j|=1 while 2 × 2500 distributions 
were generated for |i–j|=15.  

3. The steps 1 and 2 were repeated for each replica. This creates 20 × 16 × 2500  (800,000 
values) and 20 × 2 × 2500 (100,000 values) for sequence separations |i–j|=1 and |i–j|=15, 
respectively. 

4. From these data sets, we randomly selected 50,000 data points without replacement for 
each |i–j| separation between 1 and 15 to create 15 sets of data of equivalent size 

This approach ensures that we use equivalent numbers of points from the distance distributions 
for all sequence separations thereby creating statistically equivalent datasets.  
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Relative occupancies of GdmCl around peptides:  The values for πXY were generated as 
described in the main text. In all of the plots shown in Figure SI-1, X refers to the nitrogen atoms 
or the central carbon atom of the Gdm+ ion. The reference radial distribution function from the 
bulk solution pertains to the Gdm+ / Cl– cation-anion pair such that equation (5) from the main 
text is rewritten as: 
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The resultant relative occupancy values are shown in Figure SI-1.  

Figure SI-1: Relative occupancies of the Gdm+ nitrogen atoms (top row) and central 
carbon atom around different backbone and sidechain sites of polyglycine, CAP, and OSP. 

Analysis of amino acid compositional biases using a reduced alphabet: IDPs are deficient in 
bulky hydrophobic residues that make up the stable hydrophobic cores of folded proteins. Given 
this observation, amino acids are categorized as order promoting and disorder promoting 
residues.1,2 The residues in the set {TAGRDHQKSEP} are designated as disorder promoting or 
D, while those in the set {WFYIMLVNC} are considered to be order promoting or O. We 
analyzed how the ratio disorder-to-order promoting residues, referred to hereafter as the D:O 
ratio, and distributions of D versus O-type residues vary within five sets of proteins. In all cases 
we considered only sequences of length greater than 20. The five datasets are as follows:  

1. Human proteome: We extracted 220,202 distinct sequences corresponding to the 
complete and reviewed human proteome. These were obtained from the UniProt3 
database.  
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2. D2P2 derived disordered regions: We used the D2P2 database 4 of disorder predictions 
to scan the entire human proteome for regions predicted by five or more predictors to be 
disordered. This yielded 129,874 fragments, which reduces to 29,844 upon the length 
restriction of 20 residues or more.  

3. DISPROT5: We obtained 693 sequences from the curated database of intrinsically 
disordered proteins. These sequences correspond to bona fide disordered proteins or 
regions.   

4. PDBSELECT256: This database is an inventory of non-redundant sequences that share 
less than 25% sequence homology and have structural models deposited in the protein 
data bank (PDB). In all, we analyzed 3,119 sequences from this dataset.  

5. Full set of human structural sequences: We also analyzed the full set of sequences 
associated with human proteins obtained from the PDB. We first determined the set of 
unique human proteins in the PDB. For proteins with more than one structure associated 
with them, a single specific structure was selected at random. The sequences from the 
PDB files were collected. This ensures that we only collected sequences associated with 
well-structured proteins instead of collecting full sequences from proteins containing both 
folded and potentially disordered regions. In all, this dataset comprised of 8,924 
sequences.  

Table SI-1 summarizes the statistics for the sequences within each dataset. Figure SI-2 shows 
the five histograms, each quantifying the number density of sequences with specific D:O ratios.  

Table SI-1: The table below provides a summary of the statistics associated with sequences 
in each dataset. 

Dataset Number of 
sequences 

Mean fraction 
disordered 

Standard deviation 
of fraction 
disordered 

Human proteome 20,202 0.63 0.073 

D2P2 disordered 29,844 0.79 0.064 

DISPROT 693 0.67 0.074 

PDBSELECT 3,119 0.62 0.064 

All human PDB 8,924 0.62 0.05 
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Figure SI-2: Number densities of the fraction of disorder promoting residues within 
sequences drawn from each of the five datasets.  

The data shown in Figure SI-2 highlight the similarities in the fraction of disorder promoting 
residues that are calculated using distributions for very different datasets of foldable proteins. In 
contrast, regions that are predicted to be disordered show a much higher fraction of disorder 
promoting residues. While sequences in DISPROT do show an increased fraction of disorder 
promoting residues, we suggest this increase is modest because a significant fraction of the 
sequences in the DISPROT database contain structured domains as well as disordered regions.  

Internal scaling plots with error bars: In the interest of completeness, Figures SI-3-5 show 
internal scaling plots for each of the three peptides with error bars.  

Figure SI-3: Internal scaling profiles for G15 in each of the three milieus (top row) and in 
the three reference ensembles (bottom row).  
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Figure SI-4: Internal scaling profiles calculated over the backbone atoms of CAP in each of 
the three milieus (top row) and in the three reference ensembles (bottom row). 

Figure SI-5: Internal scaling profiles calculated over the backbone atoms of OSP in each of 
the three milieus (top row) and in the three reference ensembles (bottom row). 
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