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Supplemental Methods and Materials 

Methods 

MRI acquisition 
  
A large MRI data set representing normal young adults (N = 1405, mean age 21.4  2.9 
years, 57% female) was obtained from the Harvard-MGH Brain Genomics Superstruct 
Project (1) (Table 1). Imaging was performed with a 3T Siemens Tim Trio scanner 
equipped with a standard 12-chanel head coil. Functional images were acquired using a 
gradient echo echo-planar sequence (frame TR 3.0 sec, TE 30 ms, flip angle 85°, 3  3 

 3 mm voxels). During rs-fMRI, subjects were instructed to remain still, stay awake, 
and keep their eyes open. Two rs-fMRI runs (124 frames each) were acquired per 
subject. Total rs-fMRI time was 12.0 minutes, discounting the first 4 frames of each run. 
Anatomical imaging included one sagittal T1-weighted magnetization prepared multi-
echo (MP–RAGE) scan (T1W) and one T2-weighted scan (T2W). Additional imaging 
details are given in (2). 
 

fMRI preprocessing 

fMRI preprocessing was as described in (3). Briefly, this included compensation for 
slice-dependent time shifts, elimination of systematic odd-even slice intensity 
differences due to interleaved acquisition, and rigid body correction of head movement 
within and across runs. Atlas transformation was achieved by composition of affine 
transforms connecting the fMRI volumes with the T2W and T1W structural images. 
Additional preprocessing in preparation for latency analysis included spatial smoothing 
(6 mm full width at half maximum (FWHM) Gaussian blur in each direction), voxel-wise 
removal of linear trends over each fMRI run, and temporal low-pass filtering retaining 
frequencies below 0.1 Hz. Spurious variance was reduced by regression of nuisance 
waveforms derived from head motion correction and timeseries extracted from regions 
(of “non-interest”) in white matter and CSF as well the BOLD timeseries averaged over 
the brain (4). Frame censoring was computed at a threshold of 0.5% root mean square 
frame-to-frame intensity change (5). Epochs containing fewer than 10 contiguous 
frames were excluded. These criteria removed 3.5 ± 1.3% of frames from the functional 
connectivity computations. Subjects with less than retained 100 frames were excluded 

altogether, as were subjects with an outlying T1Watlas voxel similarity measure. 
Application of these quality assurance criteria left 1376 usable datasets that were 
randomly divided into 2 cohorts of 688 subjects each.   

Computation of lag between BOLD time series 
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Our method for computing lags between time series has been previously published (3). 
We briefly recapitulate the methodology here. Conventional seed-based correlation 
analysis involves computation of the Pearson correlation, ݎ, between the time series, 
 ሻ, extracted fromݐଶሺݔ ,ሻ, extracted from a seed region, and a second time seriesݐଵሺݔ
some other locus (single voxel or region of interest).  Thus, 

௫భ௫మݎ  ൌ
ଵ

ఙೣభఙೣమ

ଵ

்
 ሻݐଵሺݔ ∙   [S1]       ,ݐሻ݀ݐଶሺݔ

where ߪ௫భ and ߪ௫మ are the temporal standard deviations of signals ݔଵ and ݔଶ, and ܶ is 

the interval of integration. Here, we generalize the assumption of exact temporal 
synchrony and compute lagged cross-covariance functions. Thus, 

௫భ௫మሺ߬ሻܥ  ൌ
ଵ

்
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where ߬ is the lag (in units of time). The value of ߬ at which ܥ௫భ௫మሺ߬ሻ exhibits an 

extremum defines the temporal lag (equivalently, delay) between signals ݔଵ and ݔଶ (6). 
Although cross-covariance functions can exhibit multiple extrema in the analysis of 
periodic signals, BOLD time series are aperiodic (7, 8), and almost always give rise to 
lagged cross-covariance functions with a single, well defined extremum, typically in the 
range േ1 sec.  We determine the extremum abscissa and ordinate using parabolic 
interpolation (Figure S1).   

Given a set of ݊ time series, ሼݔଵሺݐሻ, ⋯,ሻݐଶሺݔ ,  ሻሽ, extracted from ݊ regions of interestݐሺݔ
(ROIs), a lagged cross-covariance function can be computed between every pair of time 
series. Thus, 

௫௫ೕሺ߬ሻܥ  ൌ
ଵ

்
 ݐሺݔ  ߬ሻ ∙ ,݅					 ,ݐሻ݀ݐሺݔ ݆	 ∈ 1,2, … , ݊.    [S3] 

	݊ ௫௫ሺ߬ሻ is anܥ ൈ 	݊ matrix that describes the covariance structure of the signal system 
parametric in lag.  Finding all ߬, corresponding to the extrema, ܽ,, of ܥ௫௫ೕሺ߬ሻ yields 

the anti-symmetric, time delay matrix: 

ܦܶ  ൌ 	 
߬ଵ,ଵ ⋯ ߬ଵ,
⋮ ⋱ ⋮

െ߬ଵ, ⋯ ߬,
൩.        [S4] 

The diagonal entries of ܶܦ are necessarily zero, as any time series has zero lag with 
itself.  Moreover, ߬, ൌ 	െ ߬,, since time series ݔሺݐሻ preceding ݔሺݐሻ implies that ݔሺݐሻ 

follows ݔሺݐሻ by the same interval.  

Computation of lag threads from the time delay matrix 
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The matrix, ܶܦ௭, is derived from ܶܦ by forcing each column to be zero-mean. Each 
column indexed by ݅, ݅	 ∈ 	 ሼ1,2, … , ݊ሽ, then is a zero-centered lag map. We next apply 
principal components analysis (PCA) to ܶܦ௭ as a method for clustering the lag maps in 
 ௭. Before proceeding, we note that because PCA is being applied to find clusters in aܦܶ
set of lag maps, it is not necessary that ܶܦ௭ be square. Here, we let ܶܦ௭ be ݉	 ൈ 	݊, 
where ݉ (number of rows) > ݊ (number of columns). The rationale for this choice will be 
explained shortly. PCA is applied to ܶܦ௭ by computing ܥ, the ݊	 ൈ 	݊ covariance matrix 
of ܶܦ௭. Thus, 

 ሺ1 ݉⁄ ሻሾܶܦ௭ሿ்ሾܶܦ௭ሿ ൌ ܥ ൌ  [S5]       .்ܸ߉ܸ

The columns of ܸ are the eigenvectors of ܥ; the diagonal entries of ߉ contain the 
eigenvalues. Eigenvalues derived by analysis of real rs-fMRI data are shown in main 
text Figures 1, 3A, and 4D. Lag thread topographies are computed as eigenvector-
weighted sums over lag maps. Thus, 

ܮ  ൌ ሺ1 √݉⁄ ሻሾܶܦ௭ሿܸ.         [S6] 

The columns of ܮ represent the lag thread topographies in units of time (sec). Lag 
thread topographies are illustrated in main text Figure 2 and Supplemental Figures S7-
S14. Using ்ܸܸ ൌ  it is a simple matter to show that the columns ,(the identity matrix) ܫ
of ܮ are mutually orthogonal and ordered according to variance explained. Thus, 

ܮ்ܮ  ൌ ்ܸCV ൌ Λ,         [S7] 

where Λ is the ݊	 ൈ 	݊ diagonal matrix of eigenvalues. Since the rank of ܮ generally is 
much less than ݊ ((9) Fig. 3A), it is useful to truncate ܮ to obtain 
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where ݇	 ൏ ݊. We verify the accuracy of this approach, we applied this procedure to the 
toy cases shown in Fig. 1 and Figs. S2-S4, animated either with impulse functions (as 
shown) or “1/f” spectral content duplicated from the BOLD rs-fMRI signal, and found that 
we were able to correctly recover the forward model. 

When the number of ROIs is small, it is most straightforward to define ܶܦ as square and 
skew-symmetric (்ܶܦ ൌ 	െܶܦ). Thus, in the illustrations shown in Fig. 1 and 
Supplemental Figures S2-S4, ݉ ൌ ݊ ൌ 6. However, in real BOLD fMRI data, when the 
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number of ROIs is large, defining ܶܦ as skew-symmetric leads to an under-estimation of 
the rank of ܮ because of the limited signal-to-noise ratio of BOLD rs-fMRI. Precisely this 
situation was encountered in our previous report (3), in which ܶܦ was defined as 
1849	 ൈ 	1849 on the basis of (9 mm)3 ROIs, leading to an estimated lag process rank of 
2. Here, we calculate lag maps at (6 mm)3 voxel resolution using reference signals 
extracted from (15 mm)3 cubic ROIs, with the voxels and reference regions both 
uniformly distributed over gray matter. This strategy represents a compromise between 
preserved spatial resolution and noise suppression effected by averaging over relatively 
large reference regions. Thus, the results shown in main text Figures 2-3 were derived 
using ܶܦ matrices defined as 6526	 ൈ 	330. These ܶܦ matrices necessarily are not 
skew-symmetric. However, the results shown in main text Figure 4 were obtained using 
perfectly skew-symmetric ܶܦ matrices in which ݉ ൌ ݊ ൌ 17. The results in Figure 4 
demonstrate that lag processes of rank 8 (or 6, depending on estimator) can be 
reproducibly extracted from a modest number or ROIs, provided that these ROIs 
represent terminal (beginning or ending) nodes of lag threads.  

Correlation across lag threads 

As is evident in [S7], ܮ்ܮ ൌ Λ is ݊	 ൈ 	݊. Similarly, ܮ෨்ܮ෨ ൌ Λ is ݇	 ൈ 	݇. The key step in 
relating lag threads to zero-lag temporal correlations is computation of the ݉	 ൈ 	݉ 
(voxels ൈ voxels) outer	product, 

 ܵ ൌ ሺ1 ݇⁄ ሻܮ෨Λ
ିଵܮ෨்.         [S9] 

In [S9], the factor, Λ
ିଵ, ensures that the values in ܵ are unit-less and confined to the 

range [-1, +1]. Numerically, these values are equivalent to Pearson correlations over lag 
threads. The relation between lag threads and zero-lag temporal correlation is best 
observed by masking ܵ to include only voxels with at least a 90% chance of belonging 
to one of the seven resting state networks defined in (10). These voxels correspond to 
the intersection of the (6 mm)3 voxels and the RSNs shown in Supplemental Fig. S5. 
The total number of such voxels is 1065. Hence, in main text Figures 5A and 5B, the 
matrices are 1065 ൈ 1065. 

Simulating synthetic BOLD fMRI time series 

To better understand the connection between lag threads and zero-lag temporal 
correlation structure (Figure 5), we generated synthetic timeseries, duplicating the 
spectral content of real BOLD rs-fMRI data. Power spectra of real data were estimated 
using the fast Fourier transform and averaging over all (6 mm)3 gray matter voxels and 
all subjects in the first group of 688. Repeating this procedure in the second group of 
688 subjects yielded nearly identical results. Log-log plots confirmed that these spectra 
were very similar, in the 0.01 Hz to 0.1 Hz frequency band, to previously reported 
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results (7, 8, 11). Synthetic timeseries then were generated by filtering white noise. We 
did not attempt to model regional differences in BOLD rs-fMRI spectral content as these 
differences are minor.  

Simulating lag threads 

The following is our basic strategy for simulating BOLD signal timeseries constructed 
from lag threads: the synthetic timeseries were used to realize lag threads with realistic 
spectral content. Each voxel in a thread was assigned the same timeseries, shifted by 
the appropriate, thread-determined lag, as illustrated in main text Figure 6B. The shift 
operation was implemented using sinc interpolation. Each lag thread was independently 
realized. To obtain the results shown in main text Figures 7B and 8C, multiple lag 
thread timeseries were temporally concatenated, where the ratios of the lengths of the 
timeseries corresponding to each lag thread were matched to the ratio of the lag thread 
eigenvalues. Temporal concatenation was followed by computation of zero lag temporal 
correlation matrices. Superposition of thread timeseries by averaging generated 
essentially the same results, which is predictable, as thread realizations are 
uncorrelated.  

In more detail, let ܮ෨ represent the set of 8 lag threads, as in [S8]. For each ݆, ݈ is then 

simply a vector of lag values, ݈,; ݅	 ∈ 	 ሼ1,2, … ,6526ሽ, where 6526 is the number of voxels 

in the system, and ݆ indexes thread number. Let ݂ሺݐሻ be a one-dimensional, synthetic 

realization of a BOLD signal. Then an individual lag thread ݈ is realized as a multi-

dimensional BOLD time series by producing ݒ ൌ 	 ݂ሺݐ  ݈,ሻ. The expression ݒ is a 

multi-dimensional time series where each voxel ݅ is assigned the timeseries ݂ሺݐሻ offset 

by the appropriate lag, ݈,. Repeating this procedure for each lag thread, we create 8 

synthetic multi-dimensional BOLD timeseries. We then temporally concatenate these 
time series to produce the BOLD timeseries, ܸ ൌ ሾݒଵ, … ,  ሿ. To respect the hierarchy of଼ݒ
lag threads, the ratios of the lengths of each ݒ are scaled by the their respective lag 

thread eigenvalues. Finally, to match the analysis of real rs-fMRI data, global signal 
regression was applied before computing the zero-lag temporal correlation structure of 
the time series.  

Generating orthogonal simulated lag threads 

As lag threads in real BOLD rs-fMRI data are computed by PCA, they are orthogonal by 
definition [S6-S7]. Accordingly, this feature was built into the lag thread simulations 
(main text Figures 1 and 7). Simulating orthogonal lag threads is trivial in the absence of 
motifs. The challenge is preserving shared motifs in orthogonal lag sequences. In the 
simulation shown in main text Fig. 7, there are 30 nodes, 8 lag threads and 2 motifs and 
both motifs are shared across all lag threads; in real data, all motifs may not be shared 
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across all lag threads. To simplify the simulation, all threads are modeled as 
propagating in lock-step (i.e., at unit intervals of time) through all nodes in sequence.  
(This simplification causes the distribution of inter-node lags to assume the form of a 
symmetric triangle peaking at 0; in real data this distribution appears to be 
approximately normal.) The motif constraint fixes the sequence of propagation though 
nodes 1-5 and nodes 6-10, respectively (see Supplemental Figure S6). The 
orthogonality condition was enforced by repeatedly permuting the thread sequences in 
all nodes outside the motifs, i.e., in nodes 11-30. [7] (ܮ்ܮ ൌ 	Λ, here 8 ൈ 8) was 
computed in each trial. Perfect orthogonality would correspond to zero in all off-diagonal 
terms. As an index of orthogonality, we evaluated the ratio of the mean squared off-
diagonal terms to mean squared diagonal terms (ሺ1 28⁄ ሻ∑ ,ߣ

ଶ
ஷ ሺ1 8⁄ ሻ⁄ ∑ ,ߣ

ଶ
 ). Over 107 

trials, the most nearly orthogonal simulated ܮ (Fig. S6) had an index of orthogonality = 
0.06. Thus, in main text Fig. 7, the simulation was approximate. 

Dimensionality attributable to a single shared thread motif 

In the main text, in connection with Fig. 8A, we note that the dimensionality of intra-RSN 
lag structure should be 1, if RSNs correspond to lag thread motifs, i.e., common 
sequences of propagation shared over lag threads. Implicit in this logic is that nodes 
belonging to a single motif should have a dimensionality of 1. Equivalently, the first 
eigenvector of intra-motif lag structure should account for 100% of the variance. In real 
data, in the brain as a whole, the first eigenvector accounts for 14% of the variance 
(main text Fig. 3A). In analyses restricted to within-RSN voxels (Fig. 8A), the first 
eigenvector accounted for 45% - 70% of the variance, excluding the SMN (40% in the 
SMN).  

The connection between RSNs and lag thread motifs is illustrated in main text Figure 7. 
The lag structure of all 30 nodes taken together has a dimensionality of 8, because 
there are 8 threads. The first eigenvector accounts for 19% of the variance. However, 
nodes 1-5 and nodes 6-10 constitute two motifs, i.e., "RSNs" (main text Fig. 7B). The 
lag structure restricted to a single motif, i.e., nodes 1-5 (or nodes 6-10) contains only 
one thread; the first eigenvector accounts for 100% of the variance and the 
dimensionality is 1, as in the case illustrated in Supplemental Figure S3. Thus, evidence 
of the connection between lag thread motifs and RSNs is low dimensionality of the lag 
system, or, equivalently, the high proportion of variance in the first eigenvector. 

Zero-lag temporal correlation need not specify lag structure 

Fig. 8 demonstrates that lag structure can give rise to zero-lag temporal correlations. 
The reverse is not true. That is, zero-lag temporal correlations need not impose any lag 
thread structure. This lack of relation is demonstrated in Fig. 9, in which we produce 
synthetic BOLD timeseries with zero-lag temporal correlation structure matched to real 
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data. We describe here our method for producing synthetic BOLD timeseries with a 
specific correlation structure. Let ܥ be the covariance structure derived from real rs-fMRI 
data (averaged over 688 subjects). In the present application, ܥ is a 36 ൈ 36 matrix 
(12). We compute the eigen-decomposition of ܥ ൌ ܹΛܹ௧. Now, suppose ܼ is a matrix 
of random normal deviates with dimensions ROIs ൈ time (in this case, 36 ൈ 2048 
seconds). The timeseries defined as ܨ ൌ ܼΛܹ௧ then has covariance structure matched 
to ܥ. Finally, we filter the timeseries in ܨ, as described previously, to produce the 
timeseries ܤ with spectral content matched to the real rs-fMRI BOLD signal.    

Lagged cross-covariance curves exhibit a single peak 

In general, it is possible for lagged-cross covariance (CCV) curves to exhibit multiple 
peaks, in which case choosing only a single peak to define a lag between regions would 
represent an oversimplification of the relevant dynamics. One obvious driver of multiple 
peaks in lagged CCV curves would be periodicity in the signals; however, we have 
previously noted that the rs-fMRI BOLD signal are known to be aperiodic (7, 13). 
Another mechanism that could give rise to multiple lagged CCV curve peaks are looped 
or re-entrant temporal sequences. However, in the case of the rs-fMRI BOLD signal, we 
believe it is valid to consider only single peaks in lagged CCV curves. We have 
examined hundreds of BOLD timeseries cross-covariance curves derived from ROI 
pairs of interest. In effectively all cases, we observe only a single peak in the range േ5 
sec (Figs. S25A-S25D). Secondary local extrema are rarely observed, and always 
appear at lag magnitudes > 6 sec, and always are of comparatively low magnitude (Fig. 
S25E). It is formally possible that these rare secondary peaks represent evidence for re-
entrant temporal architectures as illustrated in Fig. S25F. To address reentrancy, we 
simulated the 3-node reentrant system in Fig. S25F realized using time-series with 
spectral content duplicated from real BOLD data. The simulation has a lag of one unit 
between each node in the system. The resulting lagged CCV curve (Fig. S25G) shows 
2 peaks in the relation between nodes 1 and 3. The first peak is at -2, as node 1 leads 
node 3 by 2 units, and the second peak is at +1, as node 3 leads node 1 by one lag 
unit. Thus, reentrancy manifests as lagged CCV functions with multiple peaks of 
comparable magnitude. In the absence of consistent evidence of such lagged CCV 
curves in our data, we believe it unlikely that reentrant loops are a major feature of 
BOLD rs-fMRI lag structure. Additionally, although the coupling dynamics relating neural 
activity to the BOLD signal ("hemodynamic impulse response function") are 
incompletely understood mechanistically, it is clear that the spectral content of BOLD 
event-related responses is markedly attenuated above ~0.2 Hz, and there is no reason 
to suppose that it is otherwise in resting state activity (14, 15). In view of these 
considerations, we believe that it is valid to measure lags in the േ5 sec range by 
parabolic interpolation of CCV curves and to ignore secondary peaks at "extreme" lags. 
In effect, we are concerned only with temporal lags in infra-slow phenomenology. Within 
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this scope, we believe that our strategy does not simplify away or distort the essential 
phenomenology. 

Averaging to compute group level lag structure 

We compute ܶܦ௭ matrices in individuals, and then average these matrices to produce a 
group-level ܶܦ௭. Alternatively, we could have first averaged lagged CCV curves over 
subjects and then applied parabolic interpolation to produce a group level ܶܦ௭ matrix. In 
either case, PCA would be applied to the group-level ܶܦ௭ matrix. The reason we do not 
take the second approach is that it is computationally prohibitive, in large datasets, to 
write each subject’s set of cross-covariance curves to memory. However, to address 
whether both approaches yield the same answer, we compared the two strategies for 
computing group-level 17	 ൈ  ,௭ matrices. The result, shown in Fig. S26ܦܶ	17	
demonstrate that the ܶܦ௭ estimates are nearly identical. 

Group size required to compute lag structure 

In the main text, lag structure is computed at the group level in two very large, 
independent populations (N = 688 per group). This raises the question of how many 
subjects are required to observe lag threads at the group level. Regarding this question, 
it is useful recall that ܶܦ matrices are derived from lagged cross-covariance (CCV) 
analyses of high-dimensional timeseries. As lagged CCV curves are second order 
statistics, CCV measurement is affected by sampling error, the variance of which is 
inversely proportional to the number of independent samples. Owing to temporal auto-
correlation, BOLD fMRI yields one independent sample every ~6 seconds. The present 
analyses are based on 720 sec of fMRI data per subject (discounting censored frames), 
i.e., ~120 independent CCV samples/subject. Expressed in terms of standard errors, 

the precision of each CCV estimate then is on the order of േ1 √120⁄ , or േ9%. Lag 
estimates also are affected by instrumental errors. Important sources of instrumental 
error include the fact that lags must be estimated by interpolation of sparsely sampled 
fMRI data (1 frame every 3 sec). Electronic noise is another important source of 
instrumental error. Electronic noise depends on acquisition ROI size (16). Suppression 
of electronic noise by extracting reference signals from large (15mm cubic) ROIs 
represents an important component of the present strategy for computing 6526	 ൈ 	330 
 .matrices ܦܶ
 
The preceding considerations pertain to measuring lags over ROI pairs in individuals. 
However, lag threads are derived by eigenanalysis of ܶܦ matrices averaged over 
individuals. Deriving error bounds on these quantities from first principles would be 
exceedingly difficult. We therefore, adopt an empirical approach to this question. Fig. 
S27 plots convergence of ܶܦ matrix estimates depending on number included subjects. 
To make these estimates, we calculated two quantities in the first group of 688 subjects: 
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(I) the average TD matrix in our 17 ൈ 17 ROI system (as in main text Fig. 4), and (II) the 
average TD matrix in our 6526	 ൈ 	330 ROI system. We then computed both of these 
quantities in sub-samples of the second, independent group of 688 subjects and plotted 
the correlation (averaged over unique matrix cells) between the estimates. The 17 ൈ 17 
ROI system achieved excellent convergence after 50-100 subjects. In contrast, more 
than 400 subjects were required to achieve satisfactory convergence of the 6526	 ൈ 	330 
ROI system. This difference reflects variable suppression of electronic noise in the two 
cases, depending on ROI size: (6mm)3:(15mm)3 cubes in the  6526	 ൈ 	330 case vs. 
~7191mm3:7191mm3 irregular regions in the 17 ൈ 17 case (ROI voxel count range 54 to 
763, mean = 266). Thus, it takes more data to reconstruct the topography of threads 
than it does to estimate the dimensionality of the lag system on the basis of a priori 
selected ROIs. We note that the analysis illustrated in Fig. S27 does not distinguish 
between imprecision in the measurement of lags vs. inter-individual variability in lag 
structure. It is likely that the number of subjects required to achieve ܶܦ matrix 
convergence would be less if the quantity of data obtained in each subject were 
increased. However, the precise outlines of this trade-off are not known. 
 
Validity of applying PCA to recover lag thread topographies 
 
It is reasonable to ask whether PCA is an effective tool for decomposing the zero-
centered time delay matrix into a set of lag maps. To provide an answer, it is worth 
clearly stating the role of PCA in our analysis. Specifically, our application of PCA can 
be thought of as a clustering algorithm. As noted in the main text, when we compute 
seed-based lag maps using various loci as seeds, we often observe incompatible lag 
patterns. In other words, in one seed-based lag map, region A may be earlier than 
region B, whereas the situation is reversed in a second seed-based lag map; the 
anterior insula vs. posterior insula seeded lag maps (Figs. S15 and S16) illustrate this 
point. However, other seed-based lag maps are quite similar, e.g., the putamen and 
entorhinal cortex seed-based lag maps (Figs. S18 and S19). Given a set of 330 lag 
maps (columns of the matrix ܶܦ௭) we wish to identify all sets of compatible lag maps, 
e.g., those seeded from the putamen and entorhinal cortex. The PCA-derived 
topographies approximately identify the full set of unique, non-compatible lag systems 
(i.e., “lag threads”) that are superposed in BOLD rs-fMRI data.  
 
PCA is a linear technique that imposes orthogonality in choosing lag threads. Three 
pieces of evidence suggest that our results are not markedly dependent on the 
assumptions of linearity and orthogonality. First, to explore whether linearity significantly 
determines the computed topography of lag threads, we applied kernel PCA to ܶܦ௭ 
(using a Gaussian kernel) and obtained topographies (Fig. S28) very similar to those 
shown in main text Fig. 2. This result suggests that lag thread topographies are robust 
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to alternative clustering strategies. Second, to test whether lag threads obtained by 
linear PCA are representative of seed-based lag maps, we computed spatial 
correlations between lag thread topographies (T1-T8) and the topographies of 17 seed-
based lag maps (Fig. S29). This result shows that similar seed-based lag maps are 
represented together in a single lag thread. For instance, seed-based lag maps 
computed from the PCC, putamen, and entorhinal cortex, all of which appear quite 
similar by eye (see Figs. S18, S19, and S21), are strongly correlated with lag thread 1. 
Moreover, incompatible seed-based lag maps, such as anterior insula and posterior 
insula, are strongly represented in different lag threads: thread 2 vs. thread 3 in this 
example. The separation of seed-based lag maps is not perfect as lag threads were 
generated by applying PCA to lag maps generated from 330 lag maps, not just the 17 
maps used here as references. However, even in this imperfect demonstration, at least 
the first four lag threads separate these 17 lag maps derived from the whole brain well 
enough to suggest that the topographies of the first four lag threads are meaningful as 
reported. As a side note, it is noteworthy that the lag thread 5, which likely captures 
venous outflow, is only weakly correlated with each of the seed-based maps.  
 
Finally, to further demonstrate that lag threads are a complete decomposition of time 
delay structure in BOLD rs-fMRI, we computed the eigenvalue-weighted sum of the 8 
lag threads reported in the manuscript (Fig. S30B). For comparison, we show the lag 
projection map reported in our previous publication (Fig. S30A; (3)), which was 
computed by taking the column-wise mean of the ROI x ROI time delay matrix. As is 
evident, the two maps are very similar (spatial correlation r = 0.71). Therefore, we 
believe that the topographies of the lag threads derived by PCA represent a reasonably 
accurate decomposition of rs-fMRI time delay structure. The correspondence between 
the lag projection (Fig. S30A) and weighted lag thread sum (Fig. S30B) also constitutes 
evidence that the sign of the lag thread maps were correctly chosen.  
 
Supplemental Figure Captions 
Figure S1: Calculation of pair-wise timeseries lags using cross-covariance and 
parabolic interpolation. Lags are defined by analysis of timeseries derived from two loci. 
A: Two exemplar loci (both in the default mode network). B: Time series sampled over 
~300 s extracted from the illustrated loci. C: The corresponding lagged cross-covariance 
function, equation [S2]. The lagged cross-covariance is defined over the range ±	T, 
where T is the run duration. The range of the plotted values is restricted to ±12 s, which 
is equivalent to ±4 frames (red markers) when the repetition time is 3s. The lag between 
the time series is the value at which the [absolute value of the] cross-covariance 
function is maximal. D: This extremum can be determined at a resolution finer than the 
temporal sampling density (one frame every 3 seconds) by parabolic interpolation 
(green line) through the computed values (red markers). This extremum (arrow, yellow 
marker) defines both the lag between time series i and j (τ୧,୨; equation [S4]) and the 
corresponding amplitude (a୧,୨; equation [S4]). Panels A and B are adapted from (17). A 
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systematic lag between the two timeseries is visually apparent. Panels C and D are 
adapted from (3). 
 
Figure S2: Illustration of a perfectly synchronous system. This figure is formatted 
identically to Fig. 1. Panel A shows 6 timeseries consisting of perfectly synchronous 
timeseries. Panel B illustrates the absence of propagation. Panel C shows a time delay 
matrix (TD), equation [S4], that is identically zero. Panel D shows the eigenvalues of 
TD, equation [S5], which are identically zero. 
 
Figure S3: Illustration of a system with one lag thread. This figure is formatted 
identically to Figs. 1 and S2. Panel A shows 6 time series consisting of lagged 
timeseries. Panel B illustrates the propagation through nodes. Panel C shows the time 
delay matrix (TD). All rows are the same except for an additive constant. The lag 
structure of this system is fully captured in the column-wise mean projection, as shown 
in the bottom row of (C). Panel D shows the eigenvalues of TD, (equation [S5] in SI). 
As there is exactly one lag thread, there is exactly one non-zero eigenvalue. 

The same algebra applies to lag thread motifs, i.e., shared sequences of 
propagation across multiple lag threads within restricted sets of voxels. Thus, the 
dimensionality of the lag structure within an ideal thread motif is exactly 1, as in panel D.  
Equivalently, all (100%) of the lag variance within an ideal thread motif should be 
captured in the first eigenvector. The thread motif model posits that zero lag correlations 
within RSNs arise on the basis of shared motifs. As shown in Fig. 8, the maximum 
likelihood dimensionality of lag structure within a priori defined RSNs is indeed 1, in 7 
out of 8 cases (the exception being the SMN). However, in real data, the proportion of 
lag variance within RSNs captured by the first eigenvector is only 70% to 45%. Thus, 
the motif model accounts for RSNs as defined in (10), albeit imperfectly. 

 
Figure S4: Illustration of a system with one lag thread. This figure is identical Fig. S3 
except the sign of half the timeseries is inverted. The zero-lag correlation structure of 
the systems in Figs. S3 and S4 differ but the lag structure is the same. This example 
serves as a simple demonstration that zero-lag temporal correlation structure need not 
uniquely determine lag structure.  
 
Figure S5: Gray matter voxels and regions of interest. Lag maps and lag threads in 
Figs. 2-3 are based on a parcellation of gray matter into 6526 (6 mm)3 voxels, 
represented in panel A. Panel B shows a parcellation of gray matter into 330 (15 mm)3 
cubic regions of interest (equivalently, "large voxels"). These parcellations were used to 
create the rectangular, 6526 ൈ 300 time delay matrices submitted to principal 
components analysis (equation [S5]). Panel C shows the 1065 (6 mm)3 gray matter 
voxels satisfying the criterion of >=  90% probability of belonging to one of the 7 resting 
state networks defined in (10). This subset of voxels appears in the correlation matrices 
shown in Figs. 5A, 5B, and 7C. The original parcellation (10) lumped together the 
auditory network (AUD) and the sensorimotor network (SMN). Here, we have defined 
these networks as distinct, thereby increasing the total number of RSNs to 8. As in Fig. 
4, the color code in this figure has nothing to do with latency. 
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Figure S6: Thread motifs. Panels A and B recapitulate Figure 6. Panel C shows an 
alternative coding of the information in panel A in which voxel identities are listed 
according to their order in the thread sequence. Motifs are defined as common 
orderings across lag threads. The threads are very simple in Fig. 6 but not simple in Fig. 
7. Panel D shows the voxel ordering within threads used to create the simulation shown 
in Fig. 7. There are two thread motifs in this simulation, highlighted by the red and blue 
boxes. The voxel sequence within these motifs is preserved across all lag threads. 
 
Figures S7-S14: Lag thread maps corresponding to the first 8 eigenvectors (equation 
[S8]) obtained in the first group of 688 subjects. Note generally symmetric topographies. 
The corresponding eigenvalue plot is shown in Fig. 3A. Although lag threads 
superficially resemble RSNs, the relation between these two systems of maps is 
complex. There is no systematic relation between lag and conventional functional 
connectivity over voxel pairs (Fig. 5). We hypothesize that RSNs arise as consequence 
of shared motifs across lag threads (Figs. 7 and 8). Most features of lag threads appear 
to reflect brain organization. However, Lag Thread 5 prominently includes late voxels 
near large venous structures, e.g., the superior sagittal sinus, that most likely reflect 
non-neural mechanisms. Lateness in the venous outflow of the brain, as manifested in 
lag projection maps, is discussed in (3). 
 
Figures S15-S24: Lag maps calculated using reference time series extracted from 
selected ROIs in Fig. 4A. Each of these maps demonstrates features of particular 
interest. In any particular map, the seed structure must appear with a lag value of zero. 
Therefore, the lag map corresponding to a ROI that is predominantly early, e.g., the 
anterior insula, must be dominated by late values, as in Fig. S15. Non-transitivity of lag 
structure is apparent on comparison of multiple maps. For example, in the anterior 
insula map (Fig. S15), primary sensorimotor cortex is late with respect to anterior insula 
whereas, in the posterior insula map (Fig. S16), primary sensorimotor cortex is early 
with respect to anterior insula. A second interesting feature is evident on comparison of 
the caudate (Fig. S17) vs. the putamen (Fig. S18) lag maps. Most of cerebral cortex is 
markedly early with respect to the caudate but late with respect to the putamen (lateral 
cerebellum is late in both maps). Moreover, the sharp contrast between the caudate vs. 
putamen lag maps demonstrates the existence of sharp boundaries in lag structure. 
Third, many topographic features are evident in both the seed-based lag maps and the 
thread maps. This result lends face validity to the PCA strategy because 
orthogonalization of seed-based maps preserves the underlying structure. For, 
example, the caudate vs. putamen contrast is clearly evident in Lag Threads 1 (Fig. S7) 
and Lag Threads 4 (Fig. S10). It may also be noted that Lag Thread 1 (Fig. S7) 
captures many of the features present in lag maps generated from putamen (Fig. S18), 
entorhinal cortex Fig. S19), and posterior cingulate precuneus (Fig. S21). Finally, as 
mentioned in the Discussion, the lag between entorhinal cortex and cortex more 
generally depends on locus (Fig. S19). Primary sensory areas of cortex (vision, primary 
somatosensory) are early with respect to entorhinal cortex, whereas higher order 
cortical areas (medial prefrontal cortex, posterior cingulate precuneus) are late. 
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Figure S25: Five representative lagged cross-covariance (CCV) curves, computed at 
the group level in 688 subjects, between pairs of 17 regions of interest (Fig. 4). The x-
axes are in units of TR, so one unit represents 3 seconds. Thus, these curves span ±12 
seconds. Panels A-D are examples of typical lagged CCV curves, which exhibit a clear 
single peak. Panel E is an example of a rare lagged CCV curve which has a secondary 
local extrema at a lag of approximately -7 seconds. Panel F shows a schematic 
example of a looped or re-entrant architecture. We simulated the system represented in 
panel F with synthetic timeseries with spectral content duplicated from real BOLD 
signals. The resulting lagged CCV curve between nodes 1 and 3 is exhibited in panel G 
and shows 2 clear peaks of similar magnitude. The first peak is at -2, as node 1 leads 
node 3 by 2 units, and the second peak is at +1, as node 3 leads node 1 by one lag 
unit. Thus, reentrancy manifests as lagged CCV functions with multiple peaks of 
comparable magnitude. Multiple peaks are not generally observed in lagged CCV 
curves computed in real BOLD rs-fMRI data. 
 
Figure S26: Two approaches to group averaging of lag structure yield nearly identical 
results. We compute ܶܦ௭ matrices in individuals, and then average these matrices to 
produce a group-level ܶܦ௭. Alternatively, we could have first averaged lagged cross-
covariance curves over subjects and then applied parabolic interpolation to produce a 
group level ܶܦ௭ matrix. We used the 17 ROIs defined in main text Fig. 4 to compare the 
TD matrix computed by both strategies. The scatter plot demonstrates that the lag 
values produced by the two strategies are highly concordant.  
 
Figure S27: Empirical analysis of the number of subjects required to observe lag thread 
structure at two spatial resolutions. We computed an average TD matrix in our 17 ൈ 17 
ROI system and our 6526 ൈ 330 ROI system over the first group of 688 subjects. We 
then computed how correlated these structures are for subsets of a second, 
independent group of 688 subjects. We show subsets of sizes 1, 10, 20, 50, 100, 200, 
400, and 600. We randomly sampled each subset at least 50 times. In the 17 ൈ 17 case 
(panel A), which uses a small set of very large ROIs, good convergence is seen already 
in 50 subjects. In the 6526 ൈ 330 case (panel B), which entails higher spatial resolution, 
200-400 subjects are needed to achieve good convergence. Importantly, convergence 
is seen in both cases even though the convergent data set is independent of the dataset 
from which the mean time delay structure is computed. Therefore, these results also 
further establish the reproducibility of temporal delay structure in BOLD rs-fMRI.  
 
Figure S28: Topographies of the first four components derived by kernel PCA (KPCA) 
decomposition of the 6526 ൈ  ௭ matrix computed in group 1 (688 subjects). KPCAܦܶ 330
was applied with a Gaussian kernel with sigma = 1 second (18). The lag thread 
topographies produced by KPCA, which is a non-linear technique, are highly concordant 
with those produced by ordinary linear PCA (main text Fig. 2).  
 
Figure S29: Spatial correlations between 8 lag threads (T1-T8; Fig. S7-S14) and seed-
based lag maps computed with reference to 17 ROIs defined in main text Fig. 4A. The 
spatial correlation matrix demonstrates that seed-based lag maps that appear visually 
compatible are represented strongly in the same lag thread. For example, the putamen 
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and entorhinal cortex lag maps are both strongly represented in lag thread 1. In 
contrast, seed-based lag maps that produce incompatible features are represented in 
different lag threads. For example, the posterior insula lag map is strongly represented 
in lag thread 2 but not in lag thread 3, whereas the situation is reversed for the anterior 
insula lag map. Thus, at least the first four PCA derived lag thread topographies 
reasonably separate features produced by groups of seed-based lag maps.  
 
Figure S30: Lag projection topography is well recovered by computing the weighted 
sum of lag thread topographies. Panel A shows the lag projection map reported in our 
previous publication (Fig. S30A; (3)), which was computed by taking the column-wise 
mean of the ROI x ROI time delay matrix. Panel B shows the eigenvalue-weighted sum 
of the 8 lag threads reported in the manuscript. As is evident, the two maps are very 
similar (spatial correlation r = 0.71). Therefore, PCA-derived lag thread topographies 
represent a reasonably complete decomposition of rs-fMRI time delay structure. The 
correspondence between the lag projection (A) and weighted lag thread sum (B) also 
constitutes evidence that the sign of the lag thread maps were correctly chosen.  
 

Movie 1: In order to animate the propagation of lag threads through the brain, the first 
four lag threads were converted to movies. Each movie consists of 150 frames, where 
each frame represents a lag between -0.8 and 0.6 seconds. For each frame, the 
voxelwise lags for each thread were put through a normal probability distribution 
function with a mean equal to the lag for that frame and a standard deviation of 0.1. This 
procedure temporally smoothed each lag map by giving voxels high weights in frames 
with similar lag values. The resulting 4D image was transformed to 1 mm MNI152 atlas 
space and then spatially smoothed with a 2mm FWHM Gaussian kernel. Movie 1 is an 
animation of lag thread 1 in Main Text Fig. 2.  

Movie 2: Movie 2 is an animation of lag thread 2 in Main Text Fig. 2. 

Movie 3: Movie 3 is an animation of lag thread 3 in Main Text Fig. 2. 

Movie 4: Movie 4 is an animation of lag thread 4 in Main Text Fig. 2. 
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