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Experimental
The preparation of liquid crystal (LC)-in-water emulsions and the
adsorption of polystyrene (PS) particles onto the surface of LC
droplets have been described in detail before (1). Here, we only
provide a brief account of the systems considered here. Nematic
droplets were prepared by emulsifying 4 μL of 5CB in 1.98 mL of
an aqueous phase. The emulsification was performed in a T25
digital ULTRA-TURRAX homogenizer equipped with an S25
N-10G dispersing element. To adsorb PS particles onto the surfaces
of the LC droplets, 20 μL of 1% (wt/vol) PS particles were added to
the 1.98 mL of the LC-in-water emulsion. The mixture was then
homogenized at 6,400 rpm. The duration of homogenization was
30, 45, 60, or 300 s for adsorption of two, three and four, five, six
and seven, or more PS particles, respectively.
To characterize assemblies of particles at the surface of a

droplet, fluorescently labeled PS colloids (λexc = 480 nm/λem =
520 nm) were used. To capture micrographs, a 50-μL aliquot of
the LC emulsion was dispensed onto a glass coverslip. The LC
droplets were then imaged using an Olympus IX71 inverted
epifluorescence microscope equipped with a 100× oil- immersion
objective, crossed polarizers, mercury lamp, and Chroma filter
(457 nm ≤ λexc ≤ 502 nm, and 510 nm ≤ λem ≤ 562 nm).
Fluomicrographs of LC-in-water emulsions were collected
with a Hamamatsu 1394 ORCAER CCD camera connected to
a computer and controlled through SimplePCI imaging soft-
ware (Compix).
Using fluomicrographs, the diameter of PS particles and the

center-to-center distance between PS particles were measured to
be 1.01 ± 0.01 and 1.17 ± 0.06 μm, respectively. The error rep-
resents the SD over 30 fluomicrographs. That measurement in-
dicates that the PS particles are not closely packed.
The depth to which particles submerge into the droplets was

measured to determine the contact angle between the droplet
surface and the particle surface. As shown in the Fig. S1, for a PS
particle of 4-μm diameter, the contact angle at the surface of the
nematic 5CB LC droplet was found to be 95°, which confirms
that one-half of the particle is inside the droplet (2).

Simulation
The tensor representation of the LC is based on a spatial average
of the dyadic product of individual molecular orientations (3, 4).
The order parameter Q tensor is defined as follows:
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1
3
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where n is a vector aligned with the long axis of each molecule,
and δ is the Kronecker delta. According to this definition, Q is a
traceless tensor. The Q tensor can be diagonalized and written
as follows:
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where the S is the scalar order parameter and μ is biaxial order.

The free energy of the system is defined as a function of the Q
tensor and includes three contributions: the short-range Landau–de
Gennes, long-range elastic, and surface free-energy densities. A
general free-energy expression is written as follows:

FðQÞ=
Z
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Z
S

ðfsðQÞÞds.

The short-range Landau–de Gennes, long-range elastic, and sur-
face free-energy densities are given as fLdF, fE, and fs, respectively.
The short-range free energy is represented by a Landau–de
Gennes expression of the following form (3):
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where A and U are material parameters that capture the ther-
modynamics of the LC. These parameters set an energy scale for
the phase transitions A, and bulk scalar order parameter U.
For a uniaxial system, the elastic contribution to the free energy

to second order is written as follows (3, 4):
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The L constants are associated with different spatial deformations,
and they can be mapped onto the director elastic constants (5).
These mappings are as follows:

L1 =
k33 − k11 + 3k22

6S2
, L2 =

k11 − k22 − k24
S2

,   L4 =
k24
S2

.

The k constants describe the independent modes of deformation
in director representation, namely: splay (k11), twist (k22), bend
(k33) and saddle-splay (k24). The single elastic constant approx-
imation, where k11 = k22 = k33 = k24, is widely used in the litera-
ture and was adopted in this work (6–9).
The final term in the free energy describes the interaction of the

LCs with the surfaces. Depending on the anchoring type, there are
different forms that define the surface potential. Here, we restrict
our attention to degenerate planar anchoring, which is described
by a Fournier and Galatola expression of the following form (10):
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where
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=P. ~Q.P, P= δ− νν.

The projection of the tensor on the surface is defined by  ~Q
⊥
, ν is

the normal vector at the surface, and w denotes the strength of the
surface anchoring.
The total free energy is minimized by using the Euler–Lagrange

algorithm (4). Equilibrium conditions for bulk and surface are
given as follows:

∂f
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Again, here ν represents the surface normal.
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Our systems exhibit both surface and bulk contributions to the free
energy, and, therefore, the nodes on the surface of the droplet and
particles must be identified. To define bulk and surface nodes for the
droplet, we select all nodes located inside a sphere with radius
Rd +  ΔX=2, where Rd is the radius of droplet and ΔX is the grid
resolution. All nodes with six neighbors in the sphere are considered
to be bulk nodes, and the remaining nodes (with at least one bulk
neighbor) are defined as the surface nodes. The center of each
particle is located at a distance Rd from the center of the droplet,
and the method just described for assigning surface and bulk nodes
is also used to define the particle surface nodes. All simulations
were begun from a uniform director field, with the nematic director
aligned with the z axis. Such an initial condition encourages two
boojums to arise exactly at the z axis after relaxation, even in the
presence of particles. This allows for the systematic study of free
energy as a function of the angle (or distance) between the two
polar boojums and the location of the adsorbed particles.

All of our original calculations assumed that one-half of the
volume of each particle is inside the droplet. To assess the effect
of the depth that particles submerge into the droplet in our re-
sults, we repeated our calculations assuming that 40% or 60%
of the particle volume was inside the droplet. We found that
changing the depth does not substantially affect to the interaction
between particles or the interaction between particles and the
boojum. A representative set of results is shown in Fig. S2, where
we present the free energy of a particle as a function of its angle
with the boojum for three different depths. One can see that the
overall shapes of the corresponding free-energy profiles are
similar, indicating that small changes of contact angle in the
neighborhood of 95° are not sufficient to alter the conclusions of
our work. Note that, for the system with 60% of the particle
inside the droplet, the free energy close to the boojum is deepest,
because the particle can occupy a larger volume with a high
elastic energy at the pole.
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Fig. S1. A 4-μm-diameter PS particle adsorbed at the surface of nematic LC droplet. The contact angle was measured to be ∼95°. Reproduced from ref. 2 with
permission of The Royal Society of Chemistry (dx.doi.org/10.1039/C4SM01784F).
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Fig. S2. The free energy of a particle as a function of polar angle θ for three different depths. One particle is located at the boojum along the z axis, and the
other is driven along the droplet surface.
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