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1. Methods 

1.1 Participants 

 Only 104 out of 134 participants who completed longitudinal assessment at both 

occasions, were tested on the 4T scanner; the remaining 30 participants were scanned on a 3T 

magnet that replaced it, a change that was beyond our control. Comparison of a small sample 

scanned back-to-back on 4T and 3T magnets established significant differences among the 

collected data sets, which precluded combined analyses (Raz, unpublished data). Thus, only 

participants scanned on the 4T scanner were eligible for this study 

 Initially, 219 participants (67.6% women) completed baseline assessments, and of those, 

134 returned for follow up. The sample of 134 participants who completed both waves of the 

study did not differ from the group of 85 drop-outs with regard to the sex composition  (χ2 = 

2.60, p > 0.10), frequency of diagnosed and treated hypertension (χ2 = 1.20, p > 0.10), years of 

formal education (t[217] = 0.28, p > 0.10, systolic (t[216] = 0.33, p > 0.10) and diastolic (t[216] = 

1.28, p > 0.10) blood pressure,  self-reported leisure-time physical activity (χ2 = 0.88, p > 0.10), 

and frequency thereof (t[217] = 1.65, p = 0.100 ), as well as the proportion of smokers (χ2 = 

1.00, p > 0.10).  However, the participants who remained in the study, were older (mean age = 

53.37, SD = 13.82 years vs. 48.49, SD = 17.32 years, t[217] = -2.30, p < .05) and had slightly 

higher mean MMSE scores (mean MMSE = 28.98, SD = 0.99 vs. 28.60, SD = 1.18; t[217] = -

2.55, p < .05).   

1.2 DTI Processing 

1.2.1 DTI Processing Pipeline. All DTI data were processed using a custom pipeline, 

implemented in the FMRIB Software Library (FSL) v5.0.2 (Analysis Group, FMRIB, Oxford, UK). 

The pipeline was written, tested and executed on an Apple Mac Pro workstation running Mac 

OS 10.7 (Apple, Inc., Cupertino, CA). The pipeline was designed with multiple overarching 

goals: 1) Assess the same anatomical regions from two occasions of measurement; 2) Minimize 
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undue interpolation resulting from spatial transformation by sampling from native space images; 

and 3) Optimize the signal from normal appearing white matter by excluding cerebral-spinal fluid 

(CSF) and white matter hyperintensities (WMH) visible on T2-weighted images. This was 

achieved by pre-registration of data from the two measurement occasions for each participant, 

using the tract-based spatial statistics (TBSS; Smith et al., 2006) processing pipeline to reduce 

FA images to a group-wise, mean white matter (WM) ‘skeleton,’ one voxel wide, using the T2-

weighted b0 images to mask CSF and visible WMH from native space images, and deprojection 

and sampling of the mean WM skeleton and atlas-derived skeletonized regions of interest 

(ROIs) from the CSF/WMH-masked native space data. In addition, data are thresholded at 

multiple points to minimize noise in the final signal. Although these may be considered 

redundant steps, such a conservative approach should only serve to maximize signal to noise 

ratio. A complete description of all processing steps follows. 

1.2.2 Post-acquisition. Images were averaged across acquisitions on the scanner 

console and saved in DICOM format. We converted image data from DICOM format into NIFTI-

1 (.nii) using MRIConvert 2.0 (Jolinda Smith, University of Oregon, Lewis Center for 

Neuroimaging [http://lcni.uoregon.edu/~jolinda/mriconvert]), which also extracted and rotated 

the b-vector matrix for each participant by multiplying the original b-vector gradient matrices by 

the inverse of the individual rotation matrices (i.e., the patient image orientation matrix). 

1.2.3 DTI Pre-processing. Following extraction of the first (b0) volume from each of the 

two paired (Time 1, Time 2) 4D files, the FMRIB's Linear Image Registration Tool (FLIRT; 

Jenkinson and Smith, 2001) was used to linearly register the b0 images from each occasion 

using a 6-degrees-of-freedom (df) rigid registration with tri-linear interpolation, saving the 

transformation matrices for subsequent use. Following registration, the script invoked the 

‘avscale’ command to calculate the matrices needed to transform both images into the 

intermediate or ‘halfway’ space between them. The ‘convert_xfm’ command extracted the 

halfway-forward and halfway-backward matrices and inverted copies of the two matrices for 
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later use.  

We used the brain extraction tool (BET; Smith, 2002) in FSL on the paired, 

untransformed b0 images and the native 4D .nii file to produce brain masks and remove non-

brain tissue; BET parameters included the –m and –R flags for binary mask creation and robust 

repeated estimation of the brain center, respectively. The b0 images, stripped of non-brain 

tissue, were subsequently eroded by one voxel. The 4D brain masks were used to fit the tensor 

using the dtifit function, as well as participant specific b-vectors, a common b-value of 800 

mm2/s, and the ‘save_tensor’ function to retain the DTI components for later use.  

Next, the ‘vecreg’ command rotated the saved tensor components using the halfway 

transformation matrices (i.e., Time 1 – halfway backward, Time 2 – halfway forward) that were 

generated on the previous step using convert_xfm. The fslmaths ‘tensor-decomp’ function refit 

the tensor data for both occasions in the transformed, halfway space between the two 

longitudinal images, and applied an upper threshold of 1.2 to the resulting, halfway-transformed 

fractional anisotropy (FA) maps to remove noisy voxels. These thresholded FA maps were 

subsequently used in the tract-based spatial statistics (TBSS; Smith et al., 2006) processing 

approach for WM skeletonization.  

1.2.4 Pre-processing – WMH/CSF Segmentation. The pipeline used FMRIB’s Automated 

Segmentation Tool (FAST; Zhang et al., 2001) to segment the eroded, skull-stripped b0 images 

into six separate maps based on voxel intensity (SI Figure 1). These included two images 

representing primarily WM in addition to images whose intensity reflected cerebrospinal fluid 

(CSF), areas of WMH, or image noise at interfaces between CSF and other tissue types, grey 

matter, and hypointense voxels reflecting noise at or near iron-containing subcortical nuclei 

(e.g., the basal ganglia). Fslmaths summed and binarized the two WM maps into a mask. Last, 

we refit the diffusion tensor in native space using the same procedures as above, but using the 

binarized WM mask. Next, fslmaths averaged the second and third eigenvalues created by dtifit 

for the WMH/CSF-masked data into radial diffusivity (RD) images for both occasions, and 
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renamed the first eigenvalue map as the axial diffusivity (AD) image.   

1.2.5 TBSS-skeletonization. We used the TBSS processing framework to create a 

group-wise WM skeleton in standard space, and then to nonlinearly deproject the skeleton and 

WM atlases back to halfway space. We ran standard TBSS processing on the FA images 

generated by refitting the tensor in halfway transformed space. The FMRIB58_FA standard 

space image was used as the target for non-linear registration, and the data were nonlinearly 

aligned into 1 mm × 1 mm × 1mm MNI 152 space. The TBSS pipeline then generated the mean, 

standard space FA image from both waves of the sample, and the corresponding WM skeleton. 

We used a threshold of 0.3 in the final step of TBSS processing (i.e., tbss_4_prestats), to 

reduce areas with poor reliability in the mean WM skeleton. Last, the tbss_deproject routine was 

applied to the mean WM skeleton mask, and to the JHU-ICBM white matter atlas labels at 1mm, 

and the JHU-ICBM white matter tractography atlas (Mori et al., 2005; Wakana et al., 2007); the 

‘2’ and ‘–n’ flags were used to nonlinearly warp the skeleton mask and atlases back to the 

space they were in at the first step of TBSS processing – here, the halfway space between 

measurements, while maintaining the integer values of the atlas regions. Furthermore, by using 

tbss_deproject on the atlases, the atlas values were only deprojected along the WM skeleton.  

1.2.6 De-projection. We used FSL’s FLIRT process to transform the atlas-derived, 

skeletonized regions of interest (ROIs) and the mean WM skeleton mask from individual halfway 

space to the original, native space from acquisition. Using fslmaths, we applied a lower 

threshold of 0.20 and an upper threshold of 1.001 to the native FA images from both occasions. 

This was necessary as FSL’s tensor fitting method permits estimation of FA values over 1.0, 

primarily due to noise or motion. The thresholded FA image was then binarized and used to 

mask the deprojected skeleton mask in native space, reducing noise from each individually 

deprojected skeleton from which we sampled values. We used the FSL ‘applywarp’ function to 

deproject the Harvard-Oxford subcortical atlas (Desikan et al., 2006) to native space, using the 

subject-specific inverse warp matrices generated by TBSS and the halfway transformation 
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matrices created earlier; whereas tbss_deproject restricts deprojected values to the WM 

skeleton, this deprojection method does not.  

1.2.7 Mask Creation.  For each subject, we extracted separate masks from the atlases 

deprojected to native space. For redundancy, we used the individual native space, FA-

thresholded skeletons as a secondary mask on the ROI masks during extraction. This 

eliminated any noisy voxels from individual ROIs not apparent on the group WM skeleton. When 

possible, we extracted separate masks for left and right and combined hemispheres.  

In addition to mask extraction from the deprojected, skeletonized atlases, some 

additional manipulation of the masks was necessary. The atlases contained only individual 

masks for non-lateralized structures on the midline, such as corpus callosum (CC). Therefore, 

we used fslmaths to extract separate hemispheric masks from the Harvard-Oxford atlas 

transformed to individual subject space. We used these to mask left and right sides of the CC 

including body, genu, and splenium, to create separate lateralized masks. In addition, we 

sought to eliminate overlap between ROIs. The JHU-tractography atlas masks for forceps minor 

and forceps major were spatially redundant with the masks for CC genu and CC splenium, 

respectively. In order to model the variance from those regions separately, we used fslmaths to 

create separate, non-overlapping masks by subtracting the masks for genu and splenium from 

those for forceps minor and forceps major, respectively.  

In addition, visual inspection of the uncinate fasciculus (UF) masks revealed substantial 

overlap between the two atlases in this rather small ROI. Therefore, we used fslmaths to sum 

the separate masks from the two atlases into a new UF mask with increased coverage.  

1.2.8 Data Sampling. Based on visual inspection of the resultant masks, we chose 13 

WM atlas-derived ROIs for sampling and analysis. The WM masks included the following tracts 

and regions previously associated with cognitive abilities in studies of aging: CC genu, CC 

splenium, CC body, dorsal cingulum bundle (CBd), ventral cingulum bundle (CBv), superior 

longitudinal fasciculus (SLF), and two divisions of the internal capsule, the anterior limb (ALIC), 
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and posterior limb (PLIC) – all taken from the ICBM-DTI-81 white matter labels atlas. In addition 

we included ROI masks taken from the JHU WM tractography atlas, including the inferior 

longitudinal fasciculus (ILF), inferior frontal-occipital fasciculus (IFOF), forceps major and 

forceps minor, as well as the UF mask created from both JHU atlases. Care was taken to 

ensure masks did not overlap. We chose to exclude masks that demonstrated visually apparent 

inconsistencies in coverage across the sample. These included the masks for superior frontal-

occipital fasciculus, corticospinal tract, and corona radiata.    

Data were sampled from the native space data masked for WMH/CSF for each of the 

atlas-derived masks. The fslstats function sampled and output the mean values and standard 

deviations for non-zero voxels for masks from left, right, and combined hemispheres for the 

three DTI indices AD, RD, and FA. We inspected standard deviations from the sampled FA 

values to help ensure no subject had excessive noise in a given ROI (e.g., standard deviations 

for all FA data were < .15). In addition, we evaluated the standard error of the mean values for 

each region sampled for each participant. Standard error values were low (FA SE range = 0.006 

to 0.08), and varied according to the size of the region sampled. 

1.3 Data Conditioning 

 One concern was cases included sufficient number of voxels for meaningful signal. In 

select cases, masking resulted in a relative dearth of coverage for six ROIs. Cases with voxels 

numbering ≥ 3 standard deviations below the mean were excluded from analysis. Thus, one 

case was removed from analysis of CC splenium, and CBd, two cases were excluded from 

models of CBv and ILF, and three cases were removed from analyses of UF.  

1.4 Data Analysis 

 The paramount concern with the latent chance score modeling approach is the need to 

establish metric invariance (Meredith, 1964), a statistical precept necessary for longitudinal 

modeling of LVs in which the relationship between manifest and LVs must remain constant 

between measurement occasions. Meeting this assumption is necessary for confident 
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interpretation of the changes at the latent level. Metric invariance can be tested in Mplus by 

simply constraining the factor loadings for the two occasions to be equivalent. If there is metric 

invariance over time, the model provides a good fit for the data. However, if model fit borders on 

acceptable, there are small steps that can be taken in an attempt to modify the models. These 

include freeing factor covariances, factor means, or residual variances, fixing factor variances to 

1, and fixing baseline factor means, individual paired indicator intercepts, and auto-correlated 

residuals between the baseline and change score factors to zero. In cases in which it does not 

reduce model fit, degrees of freedom can also be gained by imposing additional equality 

constraints on observed indicator intercepts and variance/residual variance, as well as on auto-

correlated residuals for a given indicator between measurement occasions. If model fit is still 

unacceptable and can only be improved by removal of the equality constraints on the Time 1 

and Time 2 factor loadings, then there is significant measurement variance over time, and 

change in that cognitive domain cannot be modeled. 

2. Results 

2.1 Exclusion of HDL cholesterol from metabolic risk factor models 

Initially, using data for the normotensive-only sample and thus avoiding confounding 

effects of medication, we fitted a CFA model to the baseline metabolic risk indicators: log-

transformed triglyceride level, HDL cholesterol level, systolic blood pressure, waist-to-hip ratio, 

and fasting blood glucose level. HDL was multiplied by -1 to align its scaling with the other 

indicators. The fit was acceptable only if bidirectional paths were specified between HDL and 

both triglycerides and waist-to-hip ratio (χ2[2] = 0.41, p = .813, CFI/TLI = 1.00/1.10, RMSEA = 

0.00, SRMR = 0.01). Moreover, the univariate LCSM for metabolic syndrome using the same 

indicators as those in the CFA and their longitudinal counterparts also fit adequately (χ2[47] = 

56.77, p = .156, CFI/TLI = 0.99/0.98, RMSEA = 0.05, SRMR = 0.08), even without specifying the 

correlational paths for HDL. Furthermore, there was significant variance in the latent change 

score (estimate/S.E. = 2.13, p = .034). However, when we subsequently incorporated the 
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metabolic syndrome risk (Met) factor LCSM in multivariate models to evaluate the effects of 

change in vascular risk on DTI indices, the models did not fit well. Model fit improved after 

specifying correlational paths between HDL and triglycerides, which violated basic requirements 

of the LCSM framework. Thus, we specified an alternative LCSM for vascular risk without HDL 

in the model. The new LCSM with metabolic risk score without HDL was a good fit for the data 

(χ2[31] = 21.90, p = .886, CFI/TLI = 1.00/,1.03 RMSEA = 0.00, SRMR = 0.06), but the estimated 

variance in the change score was no longer significant (estimate/S.E. = 1.79, p = .074). 
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 SI Table 1. Test-retest correlations between Time 1 and Time 2 for unstandardized values and latent factors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Unstd. Left and right are raw mean values sampled from ROIs before standardizing data to z-scores. Latent factor scores were 
saved from univariate latent change score model output.

  

CBd CBv IFOF ILF SLF UF CC 
Genu 

CC 
Body 

CC 
Splenium 

Forceps 
Major 

Forceps 
Minor ALIC PLIC 

FA              

 
Unstd. Left 0.441 0.679 0.765 0.652 0.795 0.631 0.822 0.538 0.594 0.628 0.813 0.774 0.467 

 
Unstd. Right 0.202 0.414 0.832 0.581 0.889 0.706 0.843 0.534 0.648 0.760 0.810 0.658 0.642 

 
Latent factor 0.620 0.999 0.918 0.978 0.962 0.884 0.998 0.666 0.958 0.986 0.863 0.947 0.894 

AD              

 
Unstd. Left 0.445 0.315 0.549 0.638 0.777 0.681 0.473 0.147 0.467 0.468 0.700 0.778 0.674 

 
Unstd. Right 0.153 0.346 0.640 0.385 0.820 0.510 0.418 0.023 0.334 0.542 0.695 0.780 0.619 

 
Latent factor 0.711 0.647 0.941 0.967 0.926 0.971 0.975 0.369 0.968 0.823 0.887 0.950 0.996 

RD  
 

           

 
Unstd. Left 0.560 0.471 0.846 0.726 0.840 0.594 0.820 0.787 0.675 0.727 0.843 0.852 0.426 

 
Unstd. Right 0.367 0.365 0.868 0.778 0.897 0.535 0.867 0.788 0.792 0.762 0.838 0.786 0.584 

 
Latent factor 0.888 0.986 0.969 0.999 0.974 0.862 0.999 0.841 0.949 0.997 0.913 0.949 0.773 
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SI Figure 1. Diagram depicting the procedure used for segmenting out cerebral spinal fluid and 
white matter hyperintensities. Using FSLs FAST tool for segmenting the b0 image into 6 images 
based on intensity, the two maps corresponding to white matter (WM) were summed, binarized, 
and the tensor refit in the WM-only mask for subsequent sampling. 
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