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Materials and Methods

Image preprocessing

Before applying vector diffusion maps, images must be
preprocessed so that the Euclidean distance between the
image pixels is informative: we need images who are de-
velopmentally similar to have relatively small Euclidean
distances, and images who are at disparate developmental
time points to have relatively large distances. We must
preprocess images to remove any experimental and imag-
ing artifacts, so that most of the variation is relevant to
the developmental dynamics.

The relevant image operations are listed below for our
general purposes, along with the relevant MATLAB func-
tions.

Intensity normalization Contrast-limited adaptive
histogram equalization (using the adapthisteq

function with an 8 × 8 tile grid, and a uniform dis-
tribution for the intensities with a clip limit of 0.01)
is used to normalize the intensities of signals whose
absolute intensity is not meaningful/informative.

Blur The imfilter function with a disc filter is used to
blur signals whose small-scale structure is not infor-
mative.

Intensity scaling (multichannel images only) The
immultiply function is used to scale signal inten-
sities. This is important for multichannel images,
as it determines the (relative) contributions of the
various signals.

Mean-centering The Canny method (Canny, 1986) is
used to detect the edges of the object in each im-
age (using the edge function). The image is then
translated so that the object (as determined by ex-
tremeties of the detected edges) is centered.

Size scaling For images whose relative size is unimpor-
tant to the developmental dynamics, the images are
rescaled/dialated so that the object size (as deter-
mined by extremeties of the detected edges) is con-
stant (we set this to be 80% of the total image).

Removing corners The image is cropped/filtered using
a disc centered in the middle of the image and whose
diameter is equal to the number of pixels; any pixels
outside of this disc are set to 0 (no intensity). This
removes any corner effects under rotations.

Drosophila gastrulation (live)

The original image resolution is 512 × 512 for the live
Drosophila embryo images. All images were subsampled
to 100 × 100 pixels for analysis, as this was found to be
a sufficient resolution to retain all of the major develop-
mental features within the data set. Images were normal-
ized, and then blurred with a filter of radius 5% of the
total image (5 pixels). Images were not mean-centered or
rescaled, as the entire live imaging data set was approxi-
mately centered already.

Zebrafish epiboly

The original image resolution was 320 × 288 for the ze-
brafish images. A 16-pixel border was removed from the
left and right sides to make the images square, and all im-
ages were then subsampled to 100× 100 pixels for analy-
sis, as this was found to be a sufficient resolution to retain
all of the major developmental features within the data
set. Images were not normalized or blurred. Images were
mean-centered so that the embryo in each frame was (ap-
proximately) centered. Images were not rescaled for size,
as changes in overall size are important.

Drosophila gastrulation (fixed)

The original image resolution was 1024 × 1024 for the
fixed Drosophila images. All images were subsampled to
100 × 100 pixels for analysis, as this was found to be a
sufficient resolution to retain all of the major develop-
mental features within the data set. The nuclei channel
was normalized, and all channels were blurred with a fil-
ter of radius 5% of the total image (5 pixels) to remove
the effects of individual nuclei. The nuclei channel was
scaled by half; because this signal occupies a larger frac-
tion of the image relative to the other signals, its overall
contribution is large, and so we downscaled it so that
each signal would have more comparable weight in the
algorithm. The images were mean-centered and scaled to
have a constant size using the nuclei signal to detect the
edges of the embryo within the frame.

Drosophila wing discs

The original image resolution was 1024 × 1024 for the
wing disc z-stacks. Each of the original wing disc z-stacks
contains 30–40 images. All images were subsampled to
100×100 pixels for analysis, as this was found to be a suf-
ficient resolution to retain all of the major developmental
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features within the data set. Each wing disc z-stack was
reduced to a 21-image stack, consisting of the brightest
image and the 10 images above and below. No channels
were normalized or blurred in the images, and the chan-
nel intensities were kept at their imaging values. Images
were mean-centered using the Wingless/Patched signal to
detect the edges of the sample. Images were not rescaled
for size, as changes in overall size are important.

Algorithms

We demonstrate the algorithms for registration and tem-
poral ordering using a synthetic data set. The relatively
simple dynamics of this data set allows us to easily visu-
alize and illustrate the main features of the different al-
gorithms. Motivated by the geometry of our Drosophila
embryo images, we construct a sequence of concentration
profiles defined on a ring, and rotate each ring randomly
around its center; an example is shown in Fig. S2A. Ro-
tation of the ring corresponds to shifting (with periodic
boundary conditions) the one-dimensional concentration
profile shown at the bottom of Fig. S2A (the symmetry
group is SO(2), the group of all two-dimensional proper
rotations). Each concentration profile is a noisy Gaus-
sian (shown in Fig. S2B), and the Gaussians increase in
intensity as a function of “time”. We discretize the pro-
files into 100 points, so our numerical data will be 100-
dimensional vectors (the corresponding symmetry group
for the discretized profiles is Z100, the group of integers
modulo 100). Fig. S2C shows the entire data set; the
concentration profiles have been stacked in an array, so
that each row corresponds to a single profile. Because
the profiles are unregistered and unordered, the underly-
ing dynamics (a Gaussian whose amplitude grows in time)
are not readily apparent.

Angular synchronization (Singer, 2011)

Let x1, . . . , xm denote the signals that we wish to align
with respect to rotations; each signal is a function defined
on the unit circle (on the plane). First assume that each
signal xi is a noisy rotated copy of the underlying signal
xtrue (which we are not given), such that

xi = f(xtrue, θi) + ξi (1)

where the function f(xtrue, θi) rotates the signal xtrue by
θi degrees, and ξi is a (typically Gaussian) noise term.
Our goal is to recover θ1, . . . , θm. Up to noise,

xi ≈ f(xj , θi − θj); (2)

note that (2) does not require knowledge of xtrue. We can
obtain an estimate of θi − θj by computing the rotation
that optimally aligns xj to xi, i.e.,

θi − θj ≈ θij = arg min
θ
‖xi − f(xj , θ)‖2. (3)

Practically, the signals are discretized in a n-long vector
(the local intensity at n equidistant points around the cir-
cle); rotating the function by an angle θ then corresponds
to cyclically shifting the elements of xi by θi

2πn (rounded
to the nearest integer to obtain a valid shift). For the
one-dimensional discretized profiles shown in Fig. S2, we
exhaustively search over all n = 100 possible shifts of the
signals to obtain the optimal angles in (3). Alternatively,
for continuous signals, an optimization algorithm can be
used (Ahuja et al., 2007).

Rather than work with the angles θij directly, it is more
convenient to consider the rotation matrices,

R(θij) =

[
cos(θij) − sin(θij)
sin(θij) cos(θij)

]
, (4)

which we can think of as operating on the points of
the unit circle (on the plane) on which our signal is de-
fined. Successive rotations correspond to multiplication
of the corresponding rotation matrices: R(α1 + α2) =
R(α1)R(α2). Due to the orthogonality of rotation matri-
ces, R(−α) = R(α)T .

Let d denote the dimension of the rotation matrices we
are considering (for planar rotations, R(θij) ∈ R2×2 and
d = 2). We construct the matrix H ∈ Rmd×md, where H
is an m×m matrix of d× d blocks, with the i, jth block
of H, Hij , defined as

Hij = R(θij). (5)

Under our assumption that θij ≈ θi − θj , Hij ≈
R(θi)R(θj)

T and

H ≈


R(θ1)
R(θ2)

...
R(θm)

 [R(θ1)TR(θ2)T . . . R(θm)T
]
. (6)

It follows directly from (6) that the top block
eigenvector of H contains our best estimates of
R(θ1), R(θ2), . . . , R(θm). Let φ1, φ2, . . . , φmd denote the
eigenvectors of H ordered so that |λ1| ≥ |λ2| ≥ · · · ≥
|λmd|, where λi is the eigenvalue corresponding to φi.
Then,

R̂ =


R̂1

R̂2

...

R̂m

 =

 | | |
φ1 φ2 . . . φd
| | |

 , (7)

where R̂i ∈ Rd×d is (nearly) the estimate for R(θi). To
obtain our estimate of R(θi), denoted Ri,est, we project

R̂i onto the closest orthogonal matrix,

Ri,est = UiV
T
i , (8)

where Ui and Vi are the left and right singular vectors,
respectively, of R̂i. We adjust the sign of φ1 so that
det(Ri,est) = +1, ensuring proper rotations (note that
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systematically incorporating improper rotations is also
possible (Goemans and Williamson, 1995; Bandeira et al.,
2013)). We estimate θi by inverting (4), and register the
signals by rotating signal i by −θi. We note that, in
our actual computations, the pairwise rotations θij are
computed in a discrete setting, then the overall synchro-
nization is performed in the continuum context to obtain
θi, and the results are rounded to give the closest discrete
shift.

Importantly, this formulation also considers higher-
order consistency information. For example, given our
pairwise estimates Rij , we know that relationships of the
form

R(θik)R(θkj) ≈ R(θi)R(θk)TR(θk)R(θj)
T = R(θi)R(θj)

T

(9)
should also hold. Note that

(H2)ij =
∑
k

R(θik)R(θkj); (10)

therefore, all information of the form in (9) is contained
in the matrix H2 (and higher order consistency informa-
tion in its higher powers). Because H and H2 have the
same eigenvectors, our problem formulation accounts for
not only pairwise alignment information, but also these
higher-order considerations.

Diffusion maps (Coifman et al., 2005)

Given m data points x1, . . . , xm (typically vectors in a
high-dimensional vector space), we want to find a coordi-
nate transformation y(x) that preserves local geometry:
points that are “close” in the original space should also be
“close” in the coordinates y. The first step is to construct
the matrix W ∈ Rm×m, where Wij is large if points xi
and xj are “close.” We use a diffusion kernel,

Wij = exp

(
−d

2(xi, xj)

ε2

)
, (11)

where d(xi, xj) is a pairwise distance between xi and xj
(often the Euclidean distance), and ε is a characteristic
scale. Points less than ε apart are thus considered “close”
and points farther than ε apart are considered “far away”.
ε can be chosen using several techniques (see, for example
(Coifman et al., 2008; Rohrdanz et al., 2011)); here, we
take ε to be 1/4 of the median of the pairwise distances
for the two-dimensional images, and 1/2 of the median of
the pairwise distances for the three-dimensional z-stacks.

To find the coordinate y, we want solve the following
optimization problem (Belkin and Niyogi, 2003)

arg min
y

∑
ij

Wij(y(xi)− y(xj))
2. (12)

We first compute the diagonal matrix D, where Dii =∑m
j=1Wij , and the matrix A, where

A = D−1W. (13)

We calculate the eigenvectors φ1, φ2, . . . , φm, ordered
such that |λ1| ≥ |λ2| ≥ · · · ≥ |λm|. Because the matrix
A is similar to the symmetric matrix D−1/2WD−1/2, A
is guaranteed to have real eigenvalues and real, orthogo-
nal eigenvectors. Because the matrix A is row-stochastic,
λ1 = 1 and φ1 is a constant vector; this is a trivial solution
to (12). The next eigenvector, φ2, is the (non-trivial) so-
lution to (12), so that φ2(j), the jth entry of φ2, gives the
“new” coordinate for data point xj (i.e., φ2(j) = y(xj)).
In our application, we have assumed that this single di-
rection of variability, parameterized by φ2, is one-to-one
with time. Ordering the data by φ2(j) will then, effec-
tively, order them in time. The procedure generalizes
when the data lie on higher-dimensional manifolds (not
just curves) in data space, where leading eigenvectors can
give subsequent embedding coordinates for the data.

Vector diffusion maps(Singer and Wu, 2012)

In vector diffusion maps, given data points x1, . . . , xm,
one first constructs the matrix S ∈ Rmd×md, with the
i, jth block of S, Sij , defined as

Sij = AijHij (14)

where Aij ∈ R (defined in (13)) pertains to the diffu-
sion kernel between data points, and Hij ∈ Rd×d (defined
in (5)) pertains to the pairwise alignment between data
points. It is important to note that distance d(xi, xj) used
in the diffusion kernel in (11) is the distance between data
points after after pairwise alignment, i.e., the minimum
distance between all possible shifts of the two data points
(which is obtained in (17)). In the language of symme-
try groups, this distance is a metric between the orbits
induced by the relevant symmetry group.

One then computes the eigenvalues λ1, λ2, . . . , λmd
and eigenvectors φ1, φ2, . . . , φmd of S, ordered such that
|λ1| ≥ |λ2| ≥ · · · ≥ |λmd|. These eigenvectors contain
information about both the optimal rotations (the “syn-
chronization” component) and the variation of the data
after the spatial symmetries have been factored out (in
our case, their temporal variation). Assuming that the
data (after symmetries have been factored out) are rela-
tively closely clustered, it is reasonable to expect, as in
angular synchronization, that the top (block) eigenvector
of S contains approximations of the optimal rotations,
which can be computed in the same way from (8). We
then expect subsequent eigenvectors to contain informa-
tion about the main direction(s) of data variability mod-
ulo the geometric symmetries.

In general, the embedding coordinates are given by

ψk,l(i) = 〈φk(i), φl(i)〉, (15)

where φk(i) ∈ Rd denotes the ith block of φk, If we assume
that the rotations and the dynamics are uncoupled and
therefore separable, then the eigenvectors of S have the
following structure: each block eigenvector contains esti-
mates of the optimal rotations (up to a constant rotation)
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multiplied by the corresponding embedding coordinate (a
scalar) As the first diffusion maps coordinate is constant
over the data, the first block eigenvector contains only the
optimal rotations. The second block eigenvector (eigen-
vectors d+ 1 through 2d) contains the optimal rotations,
each multiplied by their second diffusion maps coordinate.
We can therefore recover this diffusion maps coordinate
by taking inner products of the columns of the second
block eigenvector with columns of the first block eigen-
vector. The jth embedding coordinate will be given by
ψk,l, where jd + 1 < k ≤ (j + 1)d and 1 ≤ l ≤ d, and
we select k, l such that the coordinate ψk,l has the largest
variability, i.e., the jth coordinate is ψk,l, where k, l is the
solution to

max
jd+ 1 ≤ k ≤ (j + 1)d

1 ≤ l ≤ d

∑
i

ψk,l(i)
2. (16)

Registering images

To register sets of images, the first step is to compute the
optimal alignments between pairs of images. Practically,
we have square images discretized as pixels (rather than
continuous functions on the plane). For each image pair
Ii and Ij we compute

θij = arg min
0◦≤θ<360◦

‖g(Ij , θ)− Ii‖2. (17)

where g(Ij , θ) is image Ij rotated around the center of
the square by θ degrees. The norm, ‖ · ‖, is the Euclidean
norm between the pixel intensities of the channels. The
domain of the image (a square) is not invariant to our ro-
tations; however, the pixels near the corners of the square
are preprocessed to have zero intensity, and so the norm
can be meaningfully computed as long as the main image
does not “move out of” the original square. Image rota-
tion is performed with the imwarp function in MATLAB,
using linear interpolation to estimate the pixel intensi-
ties after rotation. The missing pixels in the corners of
the rotated image are taken to have zero intensity. The
solution to (17) is not easily computed, as the objective
function will most likely be nonconvex. Therefore, in-
stead of using an optimization procedure, we discretize
the search space and exhaustively search to find the so-
lution (for the results presened, we use 10◦ discretization
steps). Although computationally demanding, this “em-
barrassingly parallelizable” direct enumeration approach
is not prohibitive here. Once we have computed θij for
all image pairs, we can proceed with the vector diffusion
maps procedure. The rotation matrices returned from
vector diffusion maps can be used to calculate the an-
gle of rotation for each image (by inverting (4)), and the
function g as described previously is then used to rotate
the images.

The eigenvalue spectrum

We can use the eigenvalues from (vector) diffusion maps
to help deduce the dimensionality of the data. In dif-
fusion maps, the largest eigenvalue will always be 1 and
correspond to the trivial (constant) eigenvector, and |λk|
gives a measure of the importance of coordinate φk. We
therefore expect to see a “spectral gap” in the eigenvalues
which separates the meaningful coordinates from those
corresponding to noise. However, some embedding coor-
dinates which appear meaningful according to the eigen-
values may be harmonics of previous coordinates (Fergu-
son et al., 2010), and one must visually check for cor-
relations among potential embedding coordinates before
deducing the true dimensionality of the data.

In vector diffusion maps, the importance of each coor-
dinate is measured by the product of the corresponding
eigenvalues (i.e., the importance of ψk,l is given by |λkλl|).
We again expect to see a “spectral gap” in these eigen-
value products between those corresponding to meaning-
ful coordinates (modulo higher harmonics) and those cor-
responding to noise.

Smooth trajectories from registered and
ordered images

Once we have registered and ordered the images, we can
smooth the resulting trajectory to obtain a “stereotypic”
developmental trajectory. Let I1, . . . , Im denote the set
of registered and ordered images (so Ij is the jth image in
the ordered set). We define the average image at time τ ,
denoted Iτ (where 1 ≤ τ ≤ m), as a (Gaussian) weighted
average of the images,

Iτ =

∑
j exp

(
− |j−τ |

2

σ2

)
Ii∑

j exp
(
− |j−τ |

2

σ2

) (18)

where σ is the scale of the Gaussian filter. For the im-
ages in Fig. 5 and 6, we take σ = 2. See (Kemelmacher-
Shlizerman et al., 2011) for a more detailed discussion.
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Outline of algorithm used to register and or-
der images

1. Compute the alignments for each pair of im-
ages, as described in (17). Retain both the
optimal pairwise rotations as well as the min-
imum distances obtained when pairs are opti-
mally aligned.

2. Compute the corresponding rotation matrices
R(θij) from (4).

3. Select ε for use in the diffusion maps kernel.
Taking ε to be 25 − 50% of the median of the
pairwise distances often yields good results.

4. Compute the matrix S in (14). Aij is computed
from (11) and (13), using the pairwise distances
from step 1, and Hij = R(θij) are computed in
step 2.

5. Compute the eigenvalues λ1, λ2, . . . , λ2m and
eigenvectors φ1, φ2, . . . , φ2m of S, ordered such
that |λ1| ≥ |λ2| ≥ · · · ≥ |λ2m|.

6. Estimate the optimal three-dimensional rota-
tion for each image: stack the first two eigen-
vectors φ1, φ2 into a 2m × 2 matrix, and
then divide this matrix into m 2 × 2 blocks,
R̂1, . . . , R̂m. Compute the estimated rotations
for each of these m blocks as in (8). If most of
the rotations are improper (det(R) = −1), flip
the sign of one of the eigenvectors.

7. Multiply each estimated rotation Ri,est by
RT1,est (so that R1,est will become the identity
matrix).

8. For each image i, compute the optimal rotation
to align the image by converting RTi,est (note
the transpose) to the corresponding angle using
(4).

9. Compute the first embedding coordinate
ψk,1(i) as described in (15) and (16), where
3 ≤ k ≤ 4.

10. To order the images, sort them by the values
of this embedding coordinate ψk,l(i).
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Data set VDM Rank Correlation PCA Rank Correlation
Drosophila gastrulation (live) 0.9989 0.8137

Zebrafish epiboly 0.9955 0.6351
Drosophila gastrulation (fixed) 0.9716 0.8658

Drosophila wing discs 0.9436 0.9381

Table 1: Comparison between rank correlation coefficients when ordering using the first vector diffusion maps (VDM)
embedding coordinate, and rank correlation coefficients when ordering by the first principal component analysis
(PCA) (Shlens, 2005) projection coefficient. For ordering using PCA, we computed the first principal component
of the registered images, and then ordered the images by the projection coefficients onto this first mode. The PCA
ordering is always less accurate than the vector diffusion maps ordering. In the zebrafish data set, the ordering is
much less accurate using PCA, as the dynamics of the morphing and spreading of the cell mass are highly nonlinear.
The PCA and VDM orderings are comparable for the wing disc data; this is to be expected, as the tissue simply
grows in time.
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Fig. S1: (Left) A lateral view of a Drosophila em-
bryo stained with DAPI (gray), dpERK (red), and Twi
(green). The embryo is presented so that the anterior (A)
side is to the left and the posterior (P) side is to the right.
The arrow indicates the position where the cross-section
of an embryo is imaged. (Right) A dorsoventral view of
the cross-section of the Drosophila embryo. The dorsal
(D) side is up and the ventral (V) side is down. Images
were collected at the focal plane ∼ 18% from the posterior
pole of an embryo (arrow in the left image).
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Fig. S2: Synthetic data set used to illustrate the data
processing algorithms. (A) One-dimensional concentra-
tion profile on a ring (top), and the corresponding profile
on a line (bottom). (B) Intensity corresponding to the
profile in A. (C) An ensemble of concentration profiles,
each of the form described in A. Each row in the array
corresponds to a single profile. (D) The profiles in C, now
registered using angular synchronization. (E) The profiles
in D, now temporally ordered using diffusion maps. (F)
The profiles in C, registered and temporally ordered in a
single step using vector diffusion maps.

0 5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

1

embedding coordinate

pr
od

uc
t o

f e
ig

en
va

lu
es

embed coord

em
be

d 
co

or
d 

2

embed coord 1

em
be

d 
co

or
d 

3

embed coord 1
em

be
d 

co
or

d 
4

1
Fig. S3: Eigenvalue spectra for the Drosophila live imag-
ing data set presented in Fig. 3. Note that there is a
gap after the fourth eigenvalue product. Below are the
second, third, and fourth embedding coordinate plotted
versus the first embedding coordinate. Note that coor-
dinates 2–4 are higher harmonics (and thus simple func-
tions) of coordinate 1, and are therefore not informative
about structure in the data set. We can conclude that
the data set is effectively one-dimensional and can be pa-
rameterized/ordered by coordinate 1.
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Fig. S4: Eigenvalue spectra for the zebrafish data set pre-
sented in Fig. 4. Note that there is a gap after the fourth
eigenvalue product. Below are the second, third, and
fourth embedding coordinate plotted versus the first em-
bedding coordinate. Note that coordinates 2–4 are higher
harmonics (and thus simple functions) of coordinate 1,
and are therefore not informative about structure in the
data set. It is not immediately obvious that coordinate 3
is a harmonic of coordinate 1; the distortion in the plot
is due to density effects in the data (the developmental
changes are slower towards the beginning of the trajec-
tory, and so there is a higher density of images in this
portion of the one-dimensional curve), We can conclude
that the data set is effectively one-dimensional and can
be parameterized/ordered by coordinate 1.
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Fig. S5: Eigenvalue spectra for the fixed Drosophila im-
ages presented in Fig. 5. Note that there is a gap after
the first eigenvalue product. We can conclude that the
data set is effectively one-dimensional and can be param-
eterized/ordered by coordinate 1.
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Fig. S6: Eigenvalue spectra for the wing disc data set
presented in Fig. 6. Note that there is a gap after the
first eigenvalue product. We can conclude that the data
set is effectively one-dimensional and can be parameter-
ized/ordered by coordinate 1.
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