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ABSTRACT The electromagnetic field is assigned a sel-
consistent role in which abrupt slowing ofthe colapse produces
radiation and the pressure of the radiation produces abrupt
slowing. A simple expression is introduced for the photon
spectrum. Conditions for light emission are proposed that
imply a high degree of spatial loalization. Some numerical
checks are satifed. A study of the mecical equations of
motion sugts an expntion of the very short time scale in
terms of oppositely directed field pressures and the speed of
light.
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The remarkable phenomenon.of coherent sonoluminescence
(1) has posed the following question: How does a macro-
scopic, classical, hydromechanical system, driven by a mac-
roscopic acoustical force, generate an astonishingly short
time scale and an accompanying high electromagnetic fre-
quency, one that is at the atomic level? Bubble collapse in
itself [Lord Rayleigh had already described it in 1917 (2)]
gives no hint of light-creation-capability.
To the latter point, I offer the hypothesis that light plays a

fundamental role in the mechanism. Provocatively put:
The collapse of the cavity is slowed abruptly by the

pressure of the light that is created by the abrupt slowing of
the collapse.
A more manageable approach would separate this into two

parts: finding the radiation pulse emitted by an abrupt slow-
ing, and finding the abrupt slowing produced by the emission
ofa radiation pulse; to be followed by a self-consistent choice
of parameters.

I begin with the weak, single pair emission probability of
ref. 3, but with instantaneous collapse replaced by a highly
localized, but finite loss of dielectric kinetic energy. The
initial steps are those of ref. 3 that lead to the pair emission
probability amplitude
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What is different is the structure of &(x), now

E(X) = - (e- 1) in(r(t) - r).

The situation thus described, for Ie - 11 << 1, has the uniform
dielectric constant e for all radii r > r(t) but is the vacuum of
unit dielectric constant for r < r(t).
The differential probability for pair emission, the absolute

square of the probability amplitude, is given by the product
of the factor

where the latter coordinate integrals are restricted by *r <
*r(*t), r < r(t).

It helps to introduce the new variables
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so that the coordinate integral reads

f(dp-')f(d6)exp[iCr(t +

Then, in the spirit of ref. 3, for the circuwstane rk >> 1, the
a integral is approximated by (21r)38(k + k'), and4the iP
integral becomes the volume ofa sphere with radius l(r(*t) +
r(t)).
On eliminating explicit reference to i' = -i, the differen-

tial probability for the emission of a photon pair with equal
and opposite momenta emerges as

(2ir)3 (e- 1)2 - fd*tdt e-2iw(*t-t)[- (r(*t)+3r(t))].

There should be no significant contributions from end points
in carrying out a partial integration on *t and on t. That
transforms the integrand of the double time integral into

e-2iw(*t-t)( _ )_3 v(*t)v(t)[- (r(*t) + r(t))

in which the respective vs are the time derivatives of the
corresponding rs.
The phrase "abrupt slowing of the collapse" is more

usefully presented as follows: during the short time interval
in which the IvIs decrease significantly, the rs undergo a small
relative change. Thus the latter bracket is effectively the
constant r. Then the double time integral emerges as the
absolute square of a single integral, which, through an
additional partial integration, introduces the acceleration:
d/dt v(t). The outcome for the differential probability is
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Perhaps the simplest model for the acceleration is the
Gaussian

d
v(t) = -v12 exp[-Y2(t to)2]

dt

where v is (approximately) the velocity at the onset of
slowing, just prior to time to. The implied Fourier transform
is

dte2iw(t-t0) d v(t) = Wvjexp-2]
te

dt [vep y

The somewhat remote aspect of these considerations
(le - 11 << 1) makes them-at best-qualitative. Accord-
ingly, I omit all fixed factors and focus on the shape of the
energy spectrum (energy per wavelength):

x1p3(A\]

where A0 locates the peak intensity. For long wavelengths (A
>> AO), the intensity varies as 1/A3, whereas the Gaussian

structure dominates for A << A. For A = 1AO the intensity
drops, relative to the peak value, by the fzactor 1/11.3; the
analogous factor for A = 2AO is 1/2.6.
What is so remarkable about coherent sonoluminescence is

not that macroscopic bodies can produce lights-our early
ancestors could manage that-but that the light emission is
confined to a very short time interval. In order to be quan-
titative, I submit this more specific hypothesis.
The conditions for light emission are at hand when the fluid

kinetic energy becomes independent of t, for a short time
interval, and similar remarks apply immediately after the
emission act. In effect, one is picking out the circumstances
for spontaneous radiation, from a coherent state of definite
energy, to another such state of definite, lower energy.

Outside regions of electromagnetic activity, the conserved
mechanical energy is (4)

E= 2ITpO[r3v2 + f2r3 + p 3 ro()(]

T + Vc + VP.

For a conserved E, and a locally constant in time T. so must
Vc + Vp be locally constant in time, which means that Vc +
Vp have a vanishing r derivative. This singles out an equi-
librium point,t where the attractive force of Vc balances the
repulsive force of Vp. Notice that the statements for the two
circumstances are the same; there is a unique radial distance,
re, where the light is emitted. It is given by

1=Pon23(V1)2r )

or

ro [3 pon2 1 1/3y

re [2 po v-1]
tIn ref. 4, the term "equilibrium radius" was misleadingly applied to
ro. It is more appropriately assigned to re.

For y = 1.4, andpo = poQ2, ro/re = 1.37. Thus, in the example
of ref. 5, where ro0 4 x 10-4 cm, one has re = 3 x 10-4 cm.

I enquire again about the magnitude of vat, the radial
velocity immediately after the blast of light. This time there
is no appeal to information about the first bounce, and, of
course, ro and re are no longer equated. The assumption of
energy conservation over the path between re and r, the
minimum radius, as expressed by

re2+1+_ -(i3]= r3[1 + 2(.)"
[Ql 3 (re) 3 r)

with the experimental inputs ro =4 x 10-4 cm, r = 0.7 x 10-4
cm, yields

V2
Va = 10.4, Ivael = 3 x 103 cm/s.

One sees the possibility of calculating Ivtel either by intro-
ducing the first bounce parameter r1, but not the minimum
radius r (ref. 4, without the distinction between rae and ro), or,
by using r, without reference to ri. The two procedures are
connected by the statement of energy conservation for the
first bounce:

()3 +2 ()3(-1) = 3 +-° )

The introduction of r = 0.7 x 10-4 cm yields r1 = 7 x 10-4
cm, and conversely.

Finally, I look at the Lngian that includes both me-
chanical and electromagnetic effects:

L = T- Vc-Vp + Le,

where the e(?t)-dependent part of Le is

Le= J(dl) 2 eat) [ A(ft)] 2

The contributions ofthe two regions, on opposite sides ofthe
moving surface r(t), are conveyed by

E('t) = e X i1[r - r(t) - 0] + 1 x vn[r(t) - r - 0],

where 0 is approached through positive values.
The stationary property of the actions, for the infinitesimal

variations Or(t), yields

3]d[4irpor3] d v(t) +

-f(d?) -[- - A(®t)] {6[r(t) - r - 0] - eO[r - r(t) -0],

where 6[ ] is a delta function, and ... refers to terms of lesser
degree in the time derivative, which will be of secondary
importance for abrupt slowing.

Just before that begins, there is no significant field, and v(t)
is essentially constant. Then the field strength rises rapidly in
the vacuum region, giving a positive value to the right side of
the above equation. Accordingly, v(t), which is negative,
must move toward smaller magnitudes-the slowing has
begun. That process will cease when the field, flowing at the
speed of light toward the outer dielectric region, has pro-
duced the countering pressure.
For some specific results, it is useful to separate radial and

transverse aspects,
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(dr) = drdS,

and then perform the r integration in the respective volumes.
On defining F+, the outward surface force, and F-, the
inward force, which include the unwritten contributions of
the other field type, one gets

d
[4rpor3] dt v(t) = F+(t) - F(t).

First, multiply by the positive quantity -v(t), and then
integrate over the time span of the emitted pulse:

Tbe- T= dt(-v)(F+ - F)

=fIdrl(F+ - F4).

One sees that the kinetic energy released equals the work
done on-the energy transferred to-the electromagnetic
field.
Momentum, defined mechanically by

aT
P = aV= [4irpor3]v,

now enters as

d
-p(t) = F+(t) - F(t).dt

The integrated consequence here is

IPIMb - IPlae = fdt(F+ - F):

the momentum removed from the mechanical system is
transferred to the electromagnetic field.
The somewhat mysterious initial hypothesis has emerged

clarified, as an unusual example of a familiar fact-
spontaneous emission of radiation by an electrical system is
a single, indivisible act that obeys the laws of energy and
momentum conservation.

1. Barber, B. & Putterman, S. (1991) Nature (London) 352,
318-320.

2. Rayleigh, J. (1917) Philos. Mag. 34, 94.
3. Schwinger, J. (1993) Proc. Nadl. Acad. Sci. USA 90, 4505-

4507.
4. Schwinger, J. (1993) Proc. Nadl. Acad. Sci. USA 90,7285-7287.
5. Barber, B. & Putterman, S. (1992) Phys. Rev. Lett. 69, 3839-

3842.

Physics: Schwinger


