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S.1. Constrained Reactive Solid Mixtures

Each mixture constituent is denoted by the su-
perscript �. We may assume that one of these
constituents represents the strong molecular bonds,
which do not break in this model, whereas the
remaining constituents represent weak molecular
bonds. The position of a material point of � in
its reference configuration is denoted by X

� and
the motion of that material point is x = �� (X� , t).
The corresponding velocity is v

� = @��/@t and
the deformation gradient is F

� = @��/@X� . In a
constrained mixture, all the constituents move to-
gether, implying that v

� = v 8�, where we have
adopted the reference configuration of one of these
constituents as the master reference configuration
X. Though the velocities v

� are all the same, the
deformation gradients F

� may be distinct.
The apparent density of � (mass of � per vol-

ume of the mixture in the current configuration)
is denoted by ⇢� . The axiom of mass balance for
constituent � may be written as

@⇢�
r

(X� , t)

@t
= ⇢̂�

r

(X� , t) (S.1)

where ⇢�
r

= J⇢� is the referential apparent density
of � (mass of � per volume of the mixture in the
master reference configuration X), ⇢̂�

r

= J ⇢̂� where
⇢̂� is the mass density supply to � from reactions
with all other constituents, and J = detF where
F is the deformation gradient relative to the mas-
ter reference configuration (Ateshian and Ricken,
2010). A constitutive relation is needed to describe
⇢̂�
r

for specific reactive processes. According to the
axiom of mass balance for the mixture, the mixture
mass supply is zero,

X

�

⇢̂�
r

= 0 (S.2)

If each constituent is assumed to be intrinsically
incompressible, and there are no pores in the mix-
ture (i.e., the mixture of solids is saturated), then
J� = detF� = 1 for all � and the solid mixture is
also incompressible. Both compressible and incom-
pressible mixtures are included in this treatment.

We now adopt the constitutive assumption that
the state variables for these constrained reactive

mixtures are (✓,F� , ⇢�
r

), where ✓ is the absolute
temperature and � spans all the solid constituents.
These constitutive assumptions imply isothermal
conditions and no dissipation via the rate of de-
formation (i.e., no rate-type viscoelasticity). Un-
der this constitutive assumption, and according
to Coleman and Noll (1963), the Clausius-Duhem
inequality prescribes the following form for the
Cauchy stress of a compressible mixture,

T =
1

J

X

�

@ 
r

@F�

· (F�)T (S.3)

leaving the residual dissipation inequality
X

�

⇢̂�
r

µ�  0 (S.4)

where  
r

is the mixture free energy density (free
energy per volume of the mixture in the master ref-
erence configuration X) and

µ� =
@ 

r

@⇢�
r

(S.5)

is the chemical potential of constituent � (Tinoco
et al., 1995; Ateshian and Ricken, 2010). For in-
compressible mixtures, the corresponding mixture
stress is

T = �pI+
X

�

@ 
r

@F�

· (F�)T (S.6)

and the residual dissipation inequality is given by
X

�

⇢̂�
r

µ̄�  0 (S.7)

where µ̄� = µ� +p/⇢�
T

is the mechano-chemical po-
tential of �, ⇢�

T

is its true density (mass of � per vol-
ume of �, which is invariant for intrinsically incom-
pressible constituents), and the pressure p arises
from the incompressibility constraint.

In the treatment below, the mixture is assumed
to include strong bonds and weak bonds. By def-
inition, strong bonds do not break or reform, thus
their mass density supplies ⇢̂�

r

are always zero and
their corresponding referential mass densities ⇢�

r

remain constant. Therefore, there is no further
need to distinguish individual strong bonds �. For
weak bonds, which break and reform, the con-
stituent � = u corresponds to the bond generation
that reforms at time u. In particular, the mass
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supply ⇢̂v
r

of the latest generation v, which corre-
sponds to bonds reforming in an unloaded configu-
ration, can be obtained from the net rate at which
bonds from all previous generations u are breaking,
⇢̂v
r

= �
P

u<v

⇢̂u
r

.
In a constrained mixture, the deformation gradi-

ents of weak bonds Fu are not independent of each
other, since for any other constituent v,

F

v =
@x

@Xv

=
@x

@Xu

· @X
u

@Xv

= F

u · Fuv (S.8)

where F

uv = @Xu/@Xv is invariant by definition.
As reported earlier (Ateshian and Ricken, 2010),
these constraints imply that the state of stress in
each mixture constituent u remains indeterminate,
though the mixture state of stress is determinate
and given by Eq.(S.3) or Eq.(S.6).

S.2. Bond Reaction

In the master reference configuration X of the
mixture, all the weak bonds are unloaded and in-
tact. Upon loading, these loaded bonds progres-
sively break over time; when they break, they
immediately reform into unloaded bonds. Newly
formed bonds may break and reform again when
subjected to loading. Bonds formed at time u have
a reference configuration that coincides with the
current configuration of the mixture at time u, thus
X

u = � (X, u), where � refers to the motion of the
master constituent (e.g., the strong bonds). The re-
lation between F

u and F is given in Eq.(1). Weak
bonds u do not exist prior to time u, and F

u (X, t)
represents the deformation gradient of those bonds
for all times t � u. Evidently, Fu (X, u) = I, since
the proposed model assumes that weak bonds are
unloaded at the time they are reformed. (We use
F =I as shorthand for indicating a strain-free state,
even though technically F is more generally a rota-
tion tensor under strain-free conditions.)

The reaction whereby bonds that were originally
formed in generation u break and reform into new
unloaded bonds of a subsequent generation v may
be written as

Eu ! Ev (S.9)

where E� denotes the ��generation weak bond.
This reaction is triggered by the loading of
u�generation bonds at time v, therefore the ki-
netics of this reaction must depend on the state
of strain (section S.6). The reaction of Eq.(S.9)
describes the breaking and reforming of one weak

bond species; when multiple bond species exist in
a mixture, a similar reaction may describe their
breakage, under the assumption that the breaking
of one bond species has no influence on the break-
ing of other species. (More complex frameworks
may be constructed by assuming that various bond
species interact.)

S.3. Bond Free Energy

In mixture theory, the free energy density of a
mixture is evaluated as the sum of the free energy
densities of its constituents. Consider that the sum
of the free energy densities of all strong bond species
is given by  e

r

(✓,F) and that of all weak molecular
bonds of a single species b is  b

r

(✓,F� , ⇢�
r

), so that
the total mixture free energy density is

 
r

(✓,F, ⇢�
r

) =  e

r

(✓,F) + b

r

(✓,F� , ⇢�
r

) (S.10)

The constitutive assumption in this statement is
that the free energy  e

r

of strong bonds is inde-
pendent of the evolving concentration ⇢�

r

of weak
bonds. This assumption is adopted for its simplic-
ity, and may be relaxed in a more general frame-
work. To evaluate  b

r

from the sum of free energy
densities of all weak bonds in this species, we also
adopt the constitutive assumption that the specific
free energy (free energy per mass) of each bond gen-
eration � = u is given by  b (✓,Fu), with the func-
tional form of  b remaining the same for all bond
generations u. This dependence of  b on the defor-
mation F

u should have the usual form of a specific
strain energy function:  b should be zero in the ab-
sence of strain, and positive for any non-zero strain
state, to reflect the physics of energy storage in a
bond. Restricting the state variables of  b to ✓ and
F

u (i.e., excluding ⇢�
r

) is a further simplifying con-
stitutive assumption, implying that the specific free
energy of a bond species is independent of the con-
centration of any generation of that species (or any
other bond species in the mixture).

By definition, for each weak bond generation
� = u, the free energy density of that generation
is ⇢u

r

 b (✓,Fu), thus  b

r

=
P

u

⇢u
r

 b (✓,Fu). For
convenience, let ⇢b0 =

P
u

⇢u
r

represent the total ref-
erential density of weak bonds from species b (where
⇢b0 is a constant), and let  b

0 = ⇢b0 
b, then

 b

r

=
X

u

⇢u
r

 b (✓,Fu) =
X

u

wu b

0 (✓,F
u) (S.11)
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where wu is the current mass fraction of bonds from
the u�generation,

wu = ⇢u
r

/⇢b0 (S.12)

Non-dimensional mass fractions wu are more con-
venient variables than bond densities ⇢u

r

for the
purpose of tracking the free energy contribution of
each generation, since explicit knowledge of ⇢b0 is
not required. Thus, the mass balance relations in
Eqs.(S.1) & (S.2) may be rewritten in the form of
Eqs.(7) & (8), where

ŵu = ⇢̂u
r

/⇢b0 (S.13)

Substituting Eq.(S.11) into Eq.(S.10) produces
Eq.(2), which results in the expressions for the
stress given in Eqs.(3)-(6). Any desired constitu-
tive relation may be selected for  e

r

and  b

0, with
no obligatory relation between these two functions.
For example, if specific weak bond species are in-
sensitive to certain strain invariants,  b

0 may be
independent of those, even though  e

r

may depend
on them.

It follows from Eqs.(S.5) & (S.10)-(S.11) that the
chemical potential of the ��generation of a bond
species is simply

µ� =  b (✓,F�) (S.14)

This equivalence between chemical potential and
specific free energy occurs because of the simpli-
fying constitutive assumption that  b is not a func-
tion of ⇢�

r

. (In physical chemistry of solutions, this
same assumption produces ideal solutions (Tinoco
et al., 1995; Ateshian, 2007); we may thus de-
scribe this bond mixture model as an ideal mix-
ture.) Substituting this relation into the residual
dissipation inequality in Eq.(S.4), making use of
Eqs.(S.2) & (S.13), recognizing that ⇢̂�

r

= 0 for
strong bonds, and recalling that the bond free en-
ergy of the youngest forming generation v is zero,
 b (✓,Fv = I) = 0, produces

X

u<v

ŵu b (✓,Fu)  0 (S.15)

This relation implies that the net free energy from
all breaking bonds must be decreasing at all times.
By construction (for stability), the bond specific
free energy  b (✓,F�) is always positive. Therefore,
to satisfy the Clausius-Duhem inequality for arbi-
trary deformation histories F

u (t), it is necessary

and sufficient to let ŵu  0 for all u < v (i.e., for
all breaking bond generations).

For incompressible mixtures, the equivalent rela-
tion for the stress stems from Eq.(S.6),

T (✓,F� , ⇢�
r

) = �pI+T

e (✓,Fs) +
X

�

w�

T

b (✓,F�)

(S.16)
where the functional forms for T

e and T

b are also
given in Eqs.(5)-(6), with J = 1. The dissipation in-
equality of Eq.(S.7) similarly reduces to Eq.(S.15),
by recognizing that ⇢�

T

appearing in the expression
for µ̄� is the same for all bond generations of a given
bond species, and making use of Eq.(S.2) to show
that

P
�

⇢̂�
r

µ̄� =
P

�

⇢̂�
r

µ� .
The relation of Eq.(S.11) now shows that the

bond free energy density  b

r

reduces to zero when
the deformation remains constant for a sufficiently
long time, since wu’s of all but the youngest genera-
tion (u < v) reduce to zero over time; though wv of
the youngest generation increases to unity, the cor-
responding  b

0 (✓,F
v) of that generation is equal to

zero by definition, since F

v = I. Therefore, the
mixture free energy  

r

reduces to the elastic free
energy  e

r

of the polymer species under a sustained
constant deformation. Conversely, upon instanta-
neous application of a deformation relative to this
steady-state condition, we find that  

r

=  e

r

+ b

0,
since wu = 0 for u < v, wv = 1 and F

v 6= I at
that instant. Thus,  e

r

+ b

0 is the maximum strain
energy density that can be stored in the mixture
under instantaneous deformation.

S.4. Differentiation

When the free energy density  b

0 is expressed as
a function of Fu (t) = F (t) ·F�1 (u), differentiating
it with respect to F produces the chain rule

@ b

0

@F
=
@ b

0

@Fu

:
@Fu

@F
(S.17)

Since
@Fu

@F
= I⌦F

�T (u) (S.18)

it follows that

@ b

0

@F
=
@ b

0

@Fu

· F�T (u) (S.19)

Therefore, the Cauchy stress is

T

b (✓,Fu) = J�1 @ 
b

0

@F
· FT = J�1 @ 

b

0

@Fu

· (Fu)T

(S.20)
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and the second Piola-Kirchhoff stress is

S

b (✓,Fu) = F

�1 · @ 
b

0

@F

= F

�1 (u) · (Fu)�1 · @ 
b

0

@Fu

· F�T (u)

(S.21)
When the free energy density  b

0 is expressed as
a function of Cu = (Fu)T · Fu, then

@ b

0

@Fu

= 2Fu · @ 
b

0

@Cu

(S.22)

so that

T

b (✓,Fu) = J�1
F

u · 2 @ 
b

0

@Cu

· (Fu)T (S.23)

and

S

b (✓,Fu) = F

�1 (u) · 2 @ 
b

0

@Cu

· F�T (u) (S.24)

Evidently, the expressions for the Cauchy stress,
Eqs.(S.20) & (S.23), are more compact than those
for the 2nd Piola-Kirchhoff stress, Eqs.(S.21) &
(S.24), when evaluating these quantities as a func-
tion of the relative deformation gradient F

u or rel-
ative right Cauchy-Green tensor C

u.
The expression for reactive quasilinear viscoelas-

ticity in Eq.(18) may be rewritten in terms of the
second Piola-Kirchhoff stress as

S [F (t)] = S

e [F (t)] + g (t)Sb [F (t)]

�
ˆ

t

0+
ġ (t� u)Sb [Fu (t)] du

(S.25)

where S

b [Fu (t)] is given in Eq.(S.21) or Eq.(S.24).

S.5. Step Deformation

Consider a reactive viscoelastic material which
is at rest for all t  0, and subjected to a step
deformation where F (X, t) = H (t)F0 (X). For
this deformation history there are only two weak
bond generations, u = �1 (the generation ini-
tially at rest) and v = 0+ (the latest genera-
tion, formed starting at the time of loading), with
F

u (X, t) = H (t)F0 (X) and F

v (X, t) = I. Substi-
tuting these expressions into Eq.(4) and recognizing
that T

b [I] = 0 produces

T = H (t)
�
T

e [F0] + wu (X, t)Tb [F0]
�

(S.26)

The mass fraction wu of breaking bonds is obtained
by solving Eq.(7) subject to the initial condition

wu (0+) = 1 (all weak bonds are initially intact).
Similarly, the mass fraction wv of reforming bonds
is solved with the initial condition wv (0+) = 0
(no weak bonds have started reforming immediately
upon loading). Thus, wu (0+) + wv (0+) = 1; com-
bining this initial condition with the mass balance
for the mixture, Eq.(S.2), produces

wu (t) + wv (t) = 1 , t > 0 (S.27)

Under this step loading configuration it follows that
wu (t ! 1) = 0 as wv (t ! 1) = 1, when the re-
action of Eq.(S.9) terminates. Therefore, accord-
ing to this result and Eq.(S.26), the bond mass
fraction wu (t) is equivalent to the reduced relax-
ation function g (t) in response to this step de-
formation, with T (t) = T

e [F0] + g (t)T
b

[F0] for
t > 0. Specifically, the stress rises initially to
T (0+) = T

e [F0] + T

b [F0] and eventually relaxes
to T (t ! 1) = T

e [F0].
In the classical quasilinear viscoelasticity frame-

work, a step deformation with F (X, t) =
H (t)F0 (X) produces S

b [F (u)] = H (u)Sb [F0].
Substituting this expression into Eq.(25) and per-
forming the integration produces S (t) = S

e [F0] +
g (t)Sb [F0] for t > 0. Using Eq.(26), the cor-
responding Cauchy stress is T (t) = T

e [F0] +
g (t)Tb [F0], which is identical to the expression
from reactive quasilinear viscoelasticity. Therefore,
in the special case of a prescribed step deformation,
the two frameworks produce the same response.
This equivalence does not hold under general con-
ditions.

S.6. Effect of Strain on Breaking of Bonds

At any time t � u, there may be multiple bond
generations � of a bond species that are breaking
(� < u) while the u�generation is forming in its ref-
erence configuration (Figure 1). The u�generation
bonds may start to break at time v > u if Fu (v)
produces a strain whose nature is constitutively
assumed to cause breakage of that bond species.
For example, it may be assumed that only distor-
tional strains cause a specific bond species to break,
whereas another bond species may break only in re-
sponse to dilatational strains.

Criscione et al. (2000) proposed an invariant ba-
sis for natural (or Hencky) strain (⌘ = lnV in the
spatial frame, where V is the left stretch tensor),
where the first invariant, K1 = tr⌘ = ln J , mea-
sures only the amount of dilatation; and the second
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invariant, K2 = |dev ⌘|, measures only the amount
of distortion. For a bond species that breaks only
when subjected to distortional strain, the forming
u�generation will start to break at time v only if
Ku

2 (v) > 0, where Ku

2 is the value of the K2 in-
variant evaluated from F

u. Thus, Ku

2 measures
the distortional strain of u�generation bonds rel-
ative to their reference configuration. However, if
Ku

2 (v) = 0, the u�generation will continue to form
at time v. Therefore, the value of Ku

2 (t) at any
time t > u may serve as the trigger for switching
the u�generation from a forming to a breaking gen-
eration.

Similarly, if a different bond species breaks and
reforms only in response to dilatational strain, we
may choose |Ku

1 (v)| > 0 as the trigger for this
switch. More generally, |Ku

1 (v)|+Ku

2 (v) > 0 would
trigger the breaking of a bond species that responds
indiscriminately to any mode of strain.

Once a generation u starts breaking at t � v,
the rate at which the breakage progresses may de-
pend on the magnitude of the strain evaluated from
suitable strain invariants derived from F

u (v). For
example, for bond species that break in response to
distortional strain, it may be reasonable to model
the reduced relaxation function as a function of
Ku

2 (v), such as

g (✓,Fu (v) ;X, t� v) =

✓
1 +

t� v

⌧ (Ku

2 (v))

◆��

(S.28)
where ⌧ (Ku

2 ) represents a strain-dependent char-
acteristic relaxation time that varies as a function
of the value of Ku

2 (v). A constitutive relation for
⌧ (Ku

2 ) may be given by

⌧ (Ku

2 ) = ⌧0 + ⌧1 (K
u

2 )
↵ (S.29)

where ⌧0 and ⌧1 are material constants with units
of time and ↵ is a non-dimensional exponent. In
principle, the exponent � in Eq.(S.28) may also be
a function of Ku

2 (v).
As shown in these equations, for nonlinear vis-

coelasticity the function g may vary with the magni-
tude of strain invariants. More generally, any other
strain invariants may be used to determine the re-
sponse of g, including strain invariants under spe-
cific material symmetries, to account for anisotropic
viscoelasticity as indicated below (section S.8).

S.7. Standard Linear Solid

Consider a one-dimensional analysis under in-
finitesimal strains, where the strong and weak
bonds behave as linear elastic materials with strain
energy densities given by  e

r

["] = 1
2E

e"2 and
 b

0 ["] = 1
2E

b"2. The resulting stresses are given
by T e ["] = Ee" and T b ["] = Eb". Here, Ee and
Eb represent Young’s moduli of the strong and
weak bonds, respectively. Consider that the re-
duced relaxation function is exponential, as given
in Eq.(13).

For a stress-relaxation problem, let " (t) =
"0H [t]. Then, according to Eqs.(19) & (21), the
strain energy density of this standard linear vis-
coelastic solid is

 
r

(t) =
1

2
Ee

⇣
1 + �e�t/⌧

⌘
"20H [t] (S.30)

and the corresponding stress response is

T (t) = Ee

⇣
1 + �e�t/⌧

⌘
"0H (t) . (S.31)

where � = Eb/Ee.
For a creep problem, let T (t) = T0H (t), where

T0 is the applied stress, in which case " (t) must be
obtained from Eq.(21), such that

T0

Ee

H (t) = (1 + �) " (t)� �

⌧

ˆ
t

0+
e�(t�u)/⌧" (u) du

(S.32)
The solution to this equation is

" (t) =
1

1 + �

h
1 + �

⇣
1� e�

1
1+�

t
⌧

⌘i T0

Ee

H (t)

(S.33)
This solution may be used to evaluate the strain
energy density under creep using Eq.(19). The re-
sulting expression is too lengthy to present here;
but as an example, in the limit as � ! 1, this ex-
pression reduces to

 
r

(t) =
T 2
0

8Ee

e�t/⌧


t

⌧
+ 2

⇣
1� 2et/2⌧ + 2et/⌧

⌘�

(S.34)
The solutions of Eqs.(S.31) & (S.33) are equiv-

alent to the corresponding responses of a standard
linear solid, where Eb represents the stiffness of the
spring in series with the dashpot, and Ee is the
stiffness of the parallel spring. Representative plots
of the temporal evolution of the strain energy den-
sity for the standard linear solid in stress-relaxation
and creep are presented in Figure 5.
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S.8. Anisotropic Viscoelasticity

Free energy densities of strong and weak bonds
are functions of multiple strain invariants, whose
number depends on material symmetry (three for
isotropy, five for transverse isotropy, etc.) Func-
tions of these invariants may be combined in any
number of ways and it is straightforward to pre-
scribe different relaxation functions for each combi-
nation.

For example, a compressible isotropic elastic solid
may have a strain energy density given by

 
r

(✓,F) =


2
K2

1 + µK2
2 (S.35)

where µ and  are material constants that respec-
tively represent the shear and bulk moduli in the
limit of infinitesimal strains, and K1 and K2 rep-
resent two of the strain invariants of the natural
strain tensor (Criscione et al., 2000) (also see sec-
tion S.6). Similarly, a fiber bundle oriented along
the unit vector n in its reference configuration may
be modeled by the strain energy density function

 
r

(✓,F) = H (I
n

� 1)
1

2
⇠ (I

n

� 1)2 (S.36)

where ⇠ is a material constant representing the fiber
modulus, I

n

= n ·C · n is the square of the stretch
along n, C = F

T ·F is the right Cauchy-Green ten-
sor, and the unit step function H (I

n

� 1) imposes
that the fiber only sustains tension.

For this viscoelastic solid, it may be proposed
that there are three weak bond species entering into
Eq.(22), with  b

0 = K2
1/2 for the first,  b

0 = µK2
2

for the second, and  b

0 given by the expression
of Eq.(S.36) for the third. Each of these bond
species has a distinct reduced relaxation function
g
b

(✓,F;X, t) that may optionally depend only on
the strain invariant that enters each of the corre-
sponding  b

0. The functional form of the strain
energy density  e

r

of strong bonds (the elastic re-
sponse) need not use the same combinations of
strain invariants as those of the weak bonds. This
example illustrates how anisotropic viscoelasticity
may be introduced in a simple manner by incorpo-
rating multiple weak bond species that depend on
different subsets of strain invariants, each species
having distinct bond kinetics.

S.9. Continuous Relaxation Spectrum

For the reactive quasilinear viscoelasticity frame-
work of Eqs.(17) & (18), the application of Eq.(22)

for modeling multiple bonds produces

 
r

[F (t)] =  e

r

[F (t)] +
X

b

g
b

(t) b

0 [F (t)]

�
X

b

ˆ
t

0+
ġ
b

(t� u) b

0 [F
u (t)] du

(S.37)
A continuous relaxation spectrum may be con-
structed from Eq.(S.37) by assuming that  b

0 has
the same functional form for all the weak bond
species, all of which have reduced relaxation func-
tions g

b

(t) = g (⌧
b

; t) whose relaxation times ⌧
b

vary
continuously from ⌧1 to ⌧2. In that case, the sum-
mations over b in Eq.(S.37) may be converted into
suitable integrals,

 
r

[F (t)] =

 e

r

[F (t)] +
1

g0

ˆ
⌧2

⌧1

g (⌧
b

; t) d⌧
b

 b

0 [F (t)]

� 1

g0

ˆ
t

0+

✓ˆ
⌧2

⌧1

ġ (⌧
b

; t� u) d⌧
b

◆
 b

0 [F
u (t)] du

(S.38)
where the scale factor

g0 =

ˆ
⌧2

⌧1

g (⌧
b

; 0) d⌧
b

(S.39)

has been introduced to maintain the convention
that  b

0 represents the weak bond free energy den-
sity when all weak bonds are intact. For example,
if the reduced relaxation function g is exponential
as given in Eq.(13), the resulting integrals over ⌧

b

produce
ˆ

⌧2

⌧1

g (⌧
b

; t) d⌧
b

= ⌧2e
�t/⌧2 � ⌧1e

�t/⌧1

+ t


Ei

✓
� t

⌧1

◆
� Ei

✓
� t

⌧2

◆�

(S.40)
with g0 = ⌧2 � ⌧1, and
ˆ

⌧2

⌧1

ġ (⌧
b

; t� u) d⌧
b

= Ei

✓
� t� u

⌧1

◆
�Ei

✓
� t� u

⌧2

◆

(S.41)
where Ei (·) represents the exponential integral
function.

S.10. Reactive Versus Classical

This section provides several illustrative com-
parisons of the responses achieved when using
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Figure S.1: Comparison of reactive and classical quasi-
linear viscoelasticity frameworks in uniaxial tensile stress-
relaxation, with fixed or free lateral boundaries. The axial
stretch ratio at the end of the ramp is 2.

the exponential reduced relaxation function g of
Eq.(13) in the reactive quasilinear framework,
Eq.(18), versus the classical quasilinear framework,
Eq.(25), in the range of very large deformations.
All calculations were performed using the FEBio
open-source finite element software (Maas et al.,
2012)(www.febio.org), where the reactive viscoelas-
ticity framework has been implemented using the
discrete forms of Eqs.(2) & (4). In all cases, the
strong and weak bonds are modeled using the non-
linear isotropic elastic constitutive model of Holmes
and Mow (1990), whose strain energy density is
given by

 
r

= c
�
eQ � 1

�
/2 (S.42)

where

Q = �
I2 � 3� 2⌫ (I1 � 3)

2 (1� ⌫)
� � ln

�
J2

�
(S.43)

and
c =

1� ⌫

(⌫ + 1) (1� 2⌫)

E

�
(S.44)

In the limit of infinitesimal strains, E represents
Young’s modulus and ⌫ is Poisson’s ratio; � is a
nonlinear parameter that controls the exponential
response in Eq(S.42); I1 and I2 are the first and
second invariants of C, respectively. In all the ex-
amples illustrated here, these properties were set to
E = 1, ⌫ = 0.3 and � = 0.5 for both strong and
weak bonds, and ⌧ (✓) = 4 for the function g.

In the first example (Figure S.1), a uniaxial ten-
sile stress-relaxation response is analyzed under a
ramp-and-hold deformation profile. The ramp time
is 5 and the axial stretch ratio at the end of the
ramp is 2. Responses are examined when the lat-
eral boundaries are either free or fixed. Inspite of
the large deformation, the lateral-free responses are
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Figure S.2: Comparison of reactive and classical quasilin-
ear viscoelasticity frameworks in uniaxial tensile creep, with
fixed or free lateral boundaries. The prescribed axial stress
is equal to 1.

0 

1 

2 

3 

4 

0 10 20 30 40 

A
xi

al
 n

or
m

al
 s

tre
ss

 

t 

classical lateral-fixed 
reactive lateral-fixed 
classical lateral-free 
reactive lateral-free 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

0.01 0.1 1 10 100 

A
xi

al
 s

tre
tc

h 

t (log scale) 

classical lateral-free 
reactive lateral-free 
classical lateral-fixed 
reactive lateral-fixed 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

0 10 20 30 40 

Sh
ea

r s
tre

ss
 

t 

classical 
reactive 

Figure S.3: Comparison of reactive and classical quasilinear
viscoelasticity frameworks in simple shear stress-relaxation
at different shear rates �̇. The Lagrangian shear strain at
the end of the ramp is E

xy

= 0.5. The graph displays the
shear stress component T

xy

.

nearly identical between the reactive and classical
frameworks. However, when lateral boundaries are
fixed, the reactive model shows a lower peak stress.

In the second example (Figure S.2), a uniaxial
tensile creep response is examined under a pre-
scribed step tensile traction of 1. Similarly to the
previous example, the analysis includes the cases of
free and fixed lateral boundaries. In both cases of
lateral boundary conditions, the creep responses of
the reactive and classical models are very similar,
though not identical.

In the final example (Figure S.3), the material is
subjected to simple shear at a constant shear rate
�̇ to achieve a Lagrangian shear strain E

xy

= 0.5,
then allowed to relax in this sheared configuration.
The resulting shear stress T

xy

is plotted in the fig-
ure, showing that the reactive and classical frame-
works produce identical outcomes for instantaneous
shearing (�̇ ! 1), but the reactive framework pro-
duces lower peak stresses than the classical frame-
work with decreasing shear rates.

In summary, the responses under the classical
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and reactive viscoelasticity frameworks may differ
depending on the loading rates and boundary con-
ditions. These differences, when they occur, only
become apparent at larger strains, since the two
frameworks agree exactly in the limit of infinitesi-
mal strains when the reduced relaxation function is
exponential.
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