
Information Recovery In Behavioral Networks
Supporting Information

Tiziano Squartini,1 Enrico Ser-Giacomi,2 Diego Garlaschelli,3 and George Judge4
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In the context of agent based modeling and network theory, we focus on the problem of recovering
behavior-related choice information from origin-destination type data, a topic also known under the
name of network tomography. As a basis for predicting agents’ choices we emphasize the connection
between adaptive intelligent behavior, causal entropy maximization and self-organized behavior in
an open dynamic system. We cast this problem in the form of binary and weighted networks
and suggest information theoretic entropy-driven methods to recover estimates of the unknown
behavioral flow parameters. Our objective is to recover the unknown behavioral values across the
ensemble analytically, without explicitly sampling the configuration space. In order to do so, we
consider the Cressie-Read family of entropic functionals, enlarging the set of estimators commonly
employed to make optimal use of the available information. More specifically, we explicitly work
out two cases of particular interest: Shannon functional and the likelihood functional. We then
employ them for the analysis of both univariate and bivariate data sets, comparing their accuracy
in reproducing the observed trends.

PACS numbers: 89.75.Da; 02.50.Le; 89.65.Ef
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I. SUPPORTING INFORMATION

A. Univariate data sets

As previously noted, eq. 6 induces a distribution on the ensemble of pathways. In other words, eq. 6 allows
us to restate the problem of predicting the fluxes on origin-destination networks as a (more) general problem
of statistical inference, where the unknown distribution on the pathways {pc}Cc=1 must be determined on the
basis of partial information and represented by the conditions

∑
c

pc = 1 and
∑
c

pcQ
α
c = 〈Qα〉, α = 1 . . .M, (I.1)

where the second equation in I.1 is nothing else than eq. 6, rephrased in more general terms (with Qαc
replacing Aαc and 〈Qα〉 replacing rα). Eq. 7 can thus be rewritten as

L ≡ I(p,q, γ)− θ0

[∑
c

pc − 1

]
−
∑
α

θα

[∑
c

pcQ
α
c − 〈Qα〉

]
(I.2)

and the probability coefficients are obtained by solving the system

∂L
∂pc

= 0, ∀ c. (I.3)

The resolution of the system I.3 gives us the desired coefficients {pc}Cc=1 as functions of the Lagrangean

multipliers, pc = pc(~θ), ∀ c. Once found, the parametric probability coefficients must be substituted back

into L, in order to obtain a quantity which is a function of the unknowns solely: L(~θ). The last step in the

procedure is the optimization of the function L(~θ), by finding the values of the parameters ~θ∗ which satisfy
the condition

∂L
∂θi

∣∣∣∣
~θ∗

= 0, ∀ i. (I.4)

For expository purposes, we explicitly demonstrate the analytical derivation of the Shannon functional for
univariate data sets. In this case, the probability coefficients given by eq. I.3 have the expression

∂L
∂pc

= 0 =⇒ pc = qc
(
e−1+θ0+Hc

)
, ∀ c (I.5)

having defined Hc ≡
∑
α θαQ

α
c . Our probability coefficients can be thus rewritten as

pc =
qce

∑
α θαAαc∑

c qce
∑
α θαAαc

, ∀ c. (I.6)

Substituting the analytical expression of pc back into L produces a quantity which is solely function of

the vector of unknown parameters ~θ and the function to optimize with respect to the vector ~θ becomes

L(~θ) = − ln

[∑
c

qc

(
e
∑
α θαAαc

)]
+
∑
α

θαrα. (I.7)
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Figure A. Pictorial matrix representation of a local area network at the Information Networking Institute of Carnegie
Mellon University (black squares represent ones, white squares represent zeros - see [27]), composed by twelve sub-
networks, communicating via two routers (one with four subnetworks, the second one with the remaining eight
subnetworks - the routers are linked via a single connection). The network topology we consider yields 24 observed

aggregate traffic volumes and 144 origin-destination traffic volumes to be estimated.

B. A second worked-out example concerning univariate data sets

For completeness, we discuss a second example of traffic networks. The data set was collected at the
Information Networking Institute of Carnegie Mellon University (see [27]) whose routing matrix is reported
in Figure A in S1 Information The network topology we consider yields 24 observed aggregate traffic
volumes and 144 origin-destination traffic volumes, observed every five minutes (473 points in time). This
second dataset is larger than the first, allowing us to test the scalability of our approach.

The analysis of Carnegie University data is illustrated in Figure B in S1 Information Again, our
method captures the chosen temporal trends, impliying that our procedure is applicable to problems with
higher dimensionality. However, the results concerning Carnegie University data present some differences
with respect to the Bell Labs ones.

Since a visual inspection of Figure B in S1 Information is not feasible, to quantify the agreement
between our estimates and the observations we have calculated the correlation coefficient between the ob-
served trends and the corresponding expected ones. The results for the Shannon functional are: r = 0.994
for the upper left panel (1st time point), r = 0.991 for the upper right panel (3rd time point), r = 0.996 for
the middle left panel (80th time point), r = 0.985 for the middle right panel (190th time point), r = 0.989
for the bottom left panel (330th time point) and r = 0.993 for the bottom right panel (456th time point).
The results for the likelihood functional are (in the same order): r = 0.581 (1st time point), r = 0.595 (3rd
time point), r = 0.703 (80th time point), r = 0.699 (190th time point), r = 0.693 (330th time point) and
r = 0.701 (456th time point).

Despite the rather high values of r, the strongly oscillatory character of the observed data set seems to
have the effect of lowering the performance of our procedure: in fact, our estimations predict a “smoother”
behavior than that of real data which, on the other hand, appear much more irregular (see lowest panels of
Figure B in S1 Information). As for the Bell Labs data set, the net result is that high values of traffic
data are well estimated while the lower ones (included the zero ones) are generally overestimated.

Quite surprisingly, even the differences characterizing the performances of the two functionals are larger
than for the Bell Labs data set: this time the best result (witnessed by the higher correlation coefficients
for all the time points) is obtained by the Shannon functional which seems to better follow the irregular
observed trends: the predictions obtained by the likelihood functional, in fact, show flat regions which in
turn have the effect of lowering the numerical correlation value.

C. Bivariate data sets

For bivariate problems, the CR family of functionals becomes

I(p,q, γ) =
1

γ(γ + 1)

∑
j

∑
k

pjk

[(
pjk
qjk

)γ
− 1

]
(I.8)
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Figure B. Analysis of Carnegie University data corresponding to six chosen time points. The number of the channel
is reported on the x-axis. Observed and estimated x are reported on the y-axis (logarithmic scale). Colors referes
to: observed data (black trend), our estimation based on Shannon functional (blue trend), our estimation based on
the likelihood functional (red trend). The lowest panels show a zoomed region of the “channel plots” corresponding

to the 80th and 190th time points.

j and k respectively indicating the row and column index of the probability matrix P to be estimated and
of the prior, bivariate one Q. The constraints are now represented by the conditions

∑
k

pjk = 1, ∀ j and
∑
j

x′jpjk = y′k, ∀ k. (I.9)

For bivariate problems, the number of multipliers rises, since the required number of normalization condi-
tions equals the number of matrix rows. Thus, in order to correctly implement our approach, two vectors ~α

and ~β must be considered. Constraining equation I.8 for bivariate data sets (and again for Shannon entropy)
leads to

I

(
p,

1

C
, 0

)
=
∑
j

∑
k

pjk ln pjk + lnC −
∑
j

βj

(∑
k

pjk − 1

)
−
∑
k

αk

∑
j

pjkx
′
j − y′k

 (I.10)
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Table A. Precint-level data of Louisiana’s 5th CD elections (see [23]).

Rep. Dem. Ind.1 Ind.2 Abst. Total

White − − − − − 1158

Black − − − − − 222

Other − − − − − 31

Total 963 207 28 17 196 1411

and maximizing it with respect to pjk implies that the functional form of our coefficients is

pjk =
eαkx

′
j∑

k e
αkx′j

, ∀ j, k; (I.11)

by substituing back into L we get

L(~α) = −
∑
j

(
ln

[∑
k

eαkx
′
j

]
+
∑
k

αkx
′
j

)
. (I.12)

Similar results are obtained for the other functionals.

D. A second worked-out example concerning bivariate data sets

The second bivariate data set we discuss comes from an application in political science and concerns voter
behavior and candidate choice (as reported in Table A in S1 Information - see [26]). The result of the
application of our method to the elections percentages is shown in Table B in S1 Information.

Since privacy issues prevent the percentage of people voting for a given candidate from being available,
the second bivariate data set we analyzed provides only aggregate data about the elections results: the single
matrix entries are thus missing. Nonetheless, our method provides a prediction of the unknown entries, by
adopting the same procedure used for the “eggs and bacon” problem. As can be seen from table Table
B in S1 Information, Shannon functional and the likelihood functional give compatible estimates of the
voting percentages: this similarity is effectively summed up by the “global” Pearson correlation coefficient
between the Shannon expected matrix and the likelihood expected matrix (both treated as an unique vector
of numbers), equal to 0.988716. It should be noted, however, that significative differences can be observed
for the percentages referring to the independent candidates. Nonetheless, when interpreted in the light of the
previous results, these differences carry an important information, signalling that independent candidates
true percentages are, probably, not only the lowest ones, but even compatible with zero.

Table B. Estimated precint-level percentages of Louisiana’s 5th CD elections (see [23]).

Shannon functional

Rep. Dem. Ind.1 Ind.2 Abst. Total

White 877.555 144.824 0.968424 0.0422665 134.611 1158

Black 78.5616 55.6173 21.2953 11.6828 54.843 222

Other 6.88327 6.55916 5.73627 5.27497 6.54634 31

Likelihood functional

Rep. Dem. Ind.1 Ind.2 Abst. Total

White 865.704 141.143 12.2831 6.89041 131.831 1158

Black 89.4101 58.4307 10.9359 6.44502 56.7707 222

Other 7.7549 7.41397 4.77993 3.66401 7.38656 31

Total 963 207 28 17 196 1411
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