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1st Editorial Decision 11 June 2014 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the three referees who agreed to evaluate your manuscript. As you will see from the reports 
below, the referees acknowledge that the presented analysis is potentially interesting and that the 
gene expression data could serve as a useful resource. However, they raise a series of concerns, 
which should be carefully addressed in a revision of the manuscript.  
 
Without repeating all the points listed below, among the more fundamental points are the following:  
- The referees list a series of issues regarding the analyses resulting in the 'identification of key-
driver genes'. Importantly, they point out that the integration of tissue-specific gene expression data 
with eSNPs from other tissues could result in the identification of false positives, that updated 
information on PPIs should be used for the analysis and that the parameters used for defining the 
clusters need to be carefully considered.  
- Additional experimentation is required in order to better validate the novel key driver genes. 
Referees #2 and #3 offer constructive suggestions in this regard.  
- The manuscript should be carefully re-written and the presented analyses, datasets and methods 
need to be described in better detail.  

 
------------------------------------------------------  
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Reviewer #1:  
 
The authors employed a systems biology approach that integrates multiple types of genomic data 
sets to infer causal genes for blood pressure (BP) regulation. Specifically, they first identified 83 
differentially expressed genes associated with BP (i.e. the top BP signatures gene set) by using gene 
expression profiling from whole blood collected from 3,679 FHS participants. They also identified 
six co-expression modules (coEM) significantly associated with BP traits using the same data set. 
Then, three of those seven gene sets (1 top BP signatures gene set + 6 coEMs) were further selected 
and defined as "putatively causal BP gene sets," based on overall significance of the ICBP BP 
GWAS p-values of "eSNPs" associated with genes in the given gene sets. (Note: These eSNPs were 
also identified from the same gene expression data and then further augmented by adding existing 
eSNPs from BP-relevant tissues). Lastly, genes from the putatively causal BP gene sets were 
integrated into gene regulatory networks and protein-protein interaction (PPI) networks, and 671 key 
drivers (KDs) of BP regulation were then identified. Among those KDs, the authors experimentally 
validated one of the top KDs, the SH2B3 gene, in a KO mouse model, showing that some of the 
predicted genes indeed exhibit the differential expression pattern in SH2B3 deficient mice when 
hypertension conditions were induced by injection of Ang II.  
 
Although the experimentally tested SH2B3 gene seems genuine as further demonstrated in the 
companion manuscript (Saleh et al., submitted) and the gene expression data set would be a useful 
resource for the scientific community, I have the following substantial concerns about the presented 
computational approaches. Overall, I am not convinced that the proposed method can identify key 
drivers for BP regulation.  
 
1) Given that gene expression profiles are generally tissue-specific and that the expression data set 
used in this study was derived from whole blood, incorporation of the existing eSNPs from any 
other tissues (adipose, liver, and brain) would significantly decrease specificity and increase false 
positive detection. Several studies have already shown that eQTLs are mostly cell-type specific (i.e. 
Dimas et al., 2009, Science). The same concerns also apply to the regulatory/PPI network analysis. 
Only data from blood or blood-related cells (i.e. eQTLs from lymphoblastoid cell lines Lappalainen 
et al., 2013, Nature) would be useful.  
 
2) The identified co-regulated modules are suspicious too. For example, 2396, 2151, and 88 genes 
are in the putatively causal BP gene sets (turquoise, blue, and lightyellow respectively), which 
consist of approximately 30~40% of genes expressed in a given cell type, and they seem to be very 
loosely correlated, if at all. Also, GO terms associated with these gene sets (especially turquoise and 
blue coEMs) are general and less informative. What are the average correlation coefficients? Did 
authors carry out any cluster stability/robustness analysis? Authors should be more careful with the 
parameters that determine the clusters.  
 
3) Most of the predicted key driver genes also seem unlikely. 530 out of 671 are primarily evidenced 
by PPI, which is well known to suffer from high false positive rates (Cusick et al., 2005, Hum Mol 
Gen). Combined with large clusters, the PPI network seems to play a major role in providing false 
predictions of KDs.  
 
Minor points:  
1) Reference for PPI should be the latest one "Human Protein Reference Database--2009 update" 
(Prasad et al., 2009, Nucleic Acids Res)  
 
2) The term "putatively causal BP gene sets" is misleading. Changes in gene expression associated 
with genotypes can still be reactive  
 

 
Reviewer #2:  
 
Summary  
 
The authors have generated gene expression data (using Affymetrix Human Exon arrays ST 1.0) 



Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 3 

from whole blood RNA isolated from 3679 non-hypertensive individuals of the Framingham Heart 
Study (FHS) and are integrated this with published data from GWAS of blood pressure, other GGE 
studies and the text-mined driven PPI from HPRD to i) identify signature genes for BP, ii)BP-
coEMs and iii) eQTLs.  
 
Next, the authors examine which of the 27 CoEMs that also have eQTLs that either are risk enriched 
(P=0.05) or are in LD with known GWA SNPs for BP. The authors conclude that such CoEMs are 
likely causal for BP. Next Bayesian and PPI networks are used to identify KDs of the coEMs .¥  
 
They conclude that their integrative approach help to gain insights into novel gene targets in the 
form of regulatory key driver genes that may help to better understand the molecular underpinnings 
of BP and possibly suggest novel targets for therapy.  
 
General remarks  
 
Some of the authors are well established in the systems analysis field and the conceptual steps 
(Fig.1) are largely agreeable and justified. I have, however, some major concerns relating to some of 
these steps that will need careful consideration before the manuscript is sufficiently strong in my 
meaning. In addition, I think the validation using independent biological experiments need to be 
expanded in analyzing some additional KD genes that the authors claim are key regulators for BP.  
Preferably not one of the key drivers already supported by GWAS or other earlier studies but a 
driver that principally was found as a result of the current study.  
 
This said, I think the enriched causal networks for BP (if supported by some more biological 
validation to further reassure their biological relevance) advance our understanding of BP compared 
to previous knowledge particular how some genes previously related to PB are connected in 
networks and KDs. Clearly, the manuscript is of interest to a broad scientific audience and particular 
to those who are focusing on understanding the molecular mechanisms and pathways/networks for 
established SNP found in GWAS for BP.  
 
Major points  
1. Use of adjusted (for 3 major blood cell types) vs. unadjusted whole blood RNA expression data. 
This part is confusing - I think I am to understand that adjusted values were used for all results 
forwarded in the paper? It is however not clearly stated what data was used for the PB-related set, 
eQTLs, coEMs etc . Please state what is used for what in M&Ms. It is also unclear if coEMs related 
to BP were more overlapping (Sup. Figure 1 and 2) than those that were unrelated - or if for 
example, only adjusted coEMs were found to related to BP. As stated below, the author can be much 
clearer on this important point. Clarifying this might support the results as meaningful for BP in my 
meaning (see also minor comment on eQTLs below).  
2. It is unclear to me how the BP-signature set enriches the analysis in a separate way from the 
coEMs. The coEMs are also based on co-expression generating a gene cluster from which an 
eigengene is calculated and associated with BP. To me it is no surprise the BP-signature set genes 
also are part of the coEMs related to BP. The whole point with systems analysis is to avoid single 
gene analysis (like this) and instead focus on multiple genes in networks/clusters. To me it is either 
not surprising most of the BP-signature set genes end up in reactive coEMs as opposed to the two 
causal ones (Table 2). Either exclude them from the analysis altogether or the authors need to 
explain for me how they believe this set contributes differently from the coEMs. Of note, it would 
have been different if there also had been a gene expression dataset from hypertensive patients that 
could have been used to select the most BP-related genes prior to the coEM inference as opposed to 
use all genes as now. As it seems to me, this signature set does not add credibility to the top KDs.  
3. Additional validation experiment as alluded to above. Stating that 2 of 3 genes in a GWA 
indicated BP gene (SH2B3) mouse KO model are differentially expressed in whole blood RNA 
upon inducing hypertension just does not cut it. Are there not other available mouse KO models for 
some of the BP-unrelated KDs of the multi-tissue network in which hypertension can be induced in 
the same way and compared with controls as of the extent of HT/DE? If not, how about inducing HT 
in wild type mice and isolate whole blood RNA before and after and examine specifically the KDs 
(and random background group of genes) to determine if the KDs are the most responsive? Or 
further validate KDs previously unrelated to BP in some other convincing way that the authors can 
think of.  
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Minor points  
-It is (to say the least) annoying that the authors almost seem to purposely avoid clearly stating the 
source of different datasets. Although a minor point (since it can be found after some searching in 
Sup material etc,) this needs to be better stated making the ms much easier to follow. For example, it 
should be mentioned in the Abstract (3rd line; whole-blood-RNA (replace "gene") expression 
profiles), Introduction last Paragraph ".....and transcriptomic data from whole blood (and here also 
state) adjusted for the three major white blood cell types isolated from 3679...."  
- Is the gene expression data from whole blood newly generated or has it been published before?  
- Generally the authors repeat describing the flow of the analytical steps too often- it is sufficient to 
describe this in the Introduction (as now) and be more straight forward in the Result section and 
particular not repeat the steps again in the Discussion but instead discuss possible pros and cons 
with chosen methods, alternative approaches that could have been chosen and why this was not felt 
appropriate.  
- 27 coEMs were constructed when seeking relation to PB using eigengenes for the coEM - where 
these also adjusted for multiple testing?  
-The Chocolate coEM is enriched for immune cell mediated cytotoxicity but later dismissed as 
"reactive" - still the SH2B3 key driver subnetwork claimed to drive BP also was also found to be 
enriched for T-cell activation - seems to me that many genes here could be in common in both sets - 
how do you explain this?  
-The section on how KDs were identified from BNs and PPIs in the results section is hard to follow. 
The sentence "At KD-enrichment p<0.05, we identified 671 KDs" is not clarifying. The main 
principles for calling the KDs need to be better explained.  
- early in the section named "Inferring BP gene regulatory subnetworks driven by top key drivers" 
the authors refer to Table 4 I believe they mean Table 5.  
- As already stated, the Discussion is to repetitive and should instead be used to address cons and 
prons as for example responses to the Major Concerns. Also, in the end of the third paragraph it is 
stated "Besides these top KDs, many of the other KDs (presumably among the 671) may also be 
interesting. For example, WNK1......). I think the authors should at least can give 5 such examples to 
better match their first statement of "many".  
Materials and Methods  
- Please in a new Supplementary Figure show distribution of particular DBP since 80 to 90 is 
considered pre-hypertensive so it would be nice to see how many "normotensive" there actually are.  
- eSNPs I think in a table to declare, which of the eQTL sets that were most informative for each 
coEM related to BP particular for those find to be causal (Light yellow, Turquoise and Blue)- this 
can perhaps be used to support the results and that the whole-blood RNA data is relevant for BP if 
many eQTLs were for the coEM derive from there.  
- There are some spelling and formulation issues in the Supplementary Note.  
 
 

Reviewer #3:  
 
This manuscript presented an integrative analysis, which was designed to identify the key elements 
associated with blood pressure regulation. The authors sampled blood samples from a cohort of FHS 
participants, and identified genes potentially showing differential expression among individuals with 
hypertension. The following co-expression analysis, combined with investigations from other 
functional genomic data, identified several putative key elements potentially involved in blood 
pressure regulation. One candidate gene SH2B3 was then further tested with a mouse model. 
Compared with previous GWAS studies, this study presented a more comprehensive view to further 
understand the disease. While overall this study is interesting, the following issues have to be 
addressed properly.  
 
Major issues -  
1. The paper is a bit hard to follow for two reasons. (a). Too little information is provided in the 
Result section, and there is even no a simple description for the data in which they were generated 
and analyzed. For example, at the beginning, in the section of identifying the differentially 
expressed genes, the authors at least need to describe how many cases and how many control 
subjects in text, not simply directing the audience to a supplementary table. Also it is also important 
to show how the ethnic backgrounds, age/sex, ect. were controlled for this comparison. Part of this 
information can be seen from the Methods section, but it is important to describe the data in the 
result section as well. Most importantly, the authors have made a great effort in profiling gene 
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expression in a large number of FHS participants, but throughout the Result/Discussion, there is 
even no a brief mentioning of the data sources. (b). In the analysis part, the authors seemed to have 
tried many methods on data from different dimensions; however the overall structure was quite 
loose, just like piling up the data without strongly logic connections. Overall, I would strongly 
suggest the authors to rewrite this paper to improve its clarity and logic connectivity. Especially, the 
Result/Discussion section should be substantially re-written to make itself as a complete story.  
 
2. The large fraction of this paper was based on the co-expression analysis, but the authors have to 
give more reasoning for their motivations. (1). It is unclear what Types of data were used for this co-
expression analysis- gene expression in blood across different individuals in the cohort, just cases or 
just control subjects? (2). The expression data were across different individuals, so the co-expression 
analysis identified gene modules showing co-expression in some individuals but were not co-
expressed in some other individuals. So this co-expression essentially tested gene expression 
variability across individuals (as opposed to studying tissue specificity in earlier studies involving 
the same WGCNA: co-expression analysis across different tissue types), where genes within the 
same module are presumably showing consistent variability for a sub-group of the cohort. If this is 
the case, for the modules identified in this study, do they show consistent changes across individuals 
with high blood pressure only, or the effects were just mixed among patients and healthy subjects? If 
the latter is true, how can we explain this and justify the effects of co-expression analysis on 
prioritizing clinically important genes.  
 
3. SSEA analysis identified genes in the co-expression module with significant eSNPs, and how is 
this expected by chance? e.g. "There are 13 genes in the putatively causal BP gene sets (Turquoise, 
Blue, and Lightyellow coEMs) whose eSNPs reached p<5e-8 in the ICBP BP GWAS" - do they 
show an overall enrichment? The authors need to make a logic connection between the above co-
expression analysis down to the SSEA analysis, and justify why they need to perform SSEA in the 
identified co-expression modules.  
 
4. In the section of "Identification of key drivers" , the authors need to disclose more details on their 
analysis, not simply presenting the P-values - how the P-values, how you identified "Key driver 
genes", and why they are the "KEY" driver? As this analysis was only focused on the blood pressure 
phenotype, I cannot see the point using tissue-specificity Bayesian networks. First of all, this dataset 
was just a mixture of data from different sources (including a mouse dataset, Methods section), and 
the substantial heterogeneity will hurt, rather than, improve the robustness of your study. At least the 
authors need to justify this before using the dataset. Second, the BN data were not simply biological 
measurements, but were from predictions, and their confidence needs to be further calibrated. Most 
importantly, the authors are studying blood pressure, why using the BN data based on liver, adipose 
and kidney as well? For the HPRD dataset, the latest update was Apr 13, 2010. The dataset was 
obsolete, and the authors are encouraged to replicate this study on BioGrid interactions.  
 
5. For the gene candidate in SH2B3 in this study, it was great that the authors were able to generate 
a mouse model to test its effects, but disappointingly, the effects were only tested on 3 genes, so it is 
really hard to say if this was a merely a chance finding, or indeed support the authors' hypothesis. It 
is thus strongly recommended that the authors perform a transcriptome study for this mouse model, 
and then examine how many genes in their prediction also showed dys-regulation in the mouse 
model. Moreover, what's the phenotype of the SH2B3 knockout mouse? For MGI, the mouse 
phenotype for SH2B3 knockout is "Mice homozygous for a knock-out allele exhibit severe 
perturbations in hematopoiesis" , how this would be connected with the gene's function in blood 
pressure regulation?  
 
Minor issues -  
1. Statistical robustness- for the WGCNA co-expression analysis, the authors need to perform the 
modular division for at least 100 times, and the estimate the frequency of each gene that is assigned 
with a particular module.  
 
2. The sentence - "The top BP signatures gene set and the Chocolate coEM did not show enrichment 
for BP GWAS eSNPs, suggesting that the gene regulatory structure represented by these gene sets is 
likely reactive (i.e., downstream) rather than causal for BP." The authors need to back up this claim, 
and it is possible that they have nothing to do with the GWAS eSNPs.  
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Overall this manuscript presents an interesting study, but substantial revision is needed to improve 
its writing clarity and technical solidity.  
 
 
1st Revision - authors' response 02 December 2014 

The authors appreciate the insightful and constructive comments from the editor and the three 
reviewers. We have revised the manuscript to address each of the comments. We believe that the 
revised manuscript has improved as a result of the numerous suggestions we received. Major 
changes are highlighted in the revised manuscript. In the paragraphs that follow, the reviewers’ 
comments are highlighted in bold text and our replies in normal font. 

Editor’s comments: 

1. The referees list a series of issues regarding the analyses resulting in the 'identification of 
key-driver genes'. Importantly, they point out that the integration of tissue-specific gene 
expression data with eSNPs from other tissues could result in the identification of false 
positives, that updated information on PPIs should be used for the analysis and that the 
parameters used for defining the clusters need to be carefully considered.  

Reply: We are grateful for the suggestions and have conducted additional analyses to address each 
of these three issues, as detailed below. We are pleased to report that our main findings and 
conclusions did not change after refining the analyses based on the reviewer’s suggestions. 

1a. The integration of tissue-specific gene expression data with eSNPs from other tissues could 
result in the identification of false positives. 

Our previous rationale for including eSNPs from multiple tissues such as kidney, liver, and adipose 
tissue, was to increase the coverage of mapping between functional SNPs and their target genes due 
to the limited number of blood eSNPs available at the time of the analysis. As more blood eSNPs 
have been generated recently (Battle et al, 2014; Joehanes R. et al, 2013; Lappalainen et al, 2013; 
Westra et al, 2013; Wright et al, 2014), it is now feasible to use blood-derived eQTLs without other 
eQTLs from tissues, as suggested by the reviewer. As recommended by the reviewer, we have 
repeated our analysis using only eSNPs from blood and updated the SNP set enrichment analysis 
results in Table 3 in the revised manuscript. The Turquoise, Blue and Red coexpression modules 
(coEMs) that were significant in our previous multi-tissue analysis remained significant in the new 
analysis; the BP gene expression signature remained non-significant. In addition, the use of blood-
only eSNPs identified the Chocolate module as significant.  

Main Text Table 3: SNP set enrichment analysis of BP coexpression modules and BP signature 
gene set. 

 DBP-GWAS SBP-GWAS 
MODULE KS test pval Fisher Test pval KS test pval Fisher Test pval 
BP signature 0.20 1 0.98 1 
Turquoise 1.8e-28 3.0e-39 2.8e-45 7.8e-115 
Blue 1.3e-8 3.4e-15 1.4e-44 7.0e-54 
Red 2.2e-15 6.7e-19 8.0e-5 1.7e-17 
Purple 1 1 0.65 0.58 
Lightyellow 0.12 1 1.6e-3 1 
Chocolate 0.07 1 2.3e-14 5.0e-5 
Highlighted p values pass Bonferroni-correction for multiple testing, at Bonferroni-corrected 
p<0.05. 

We also made corresponding changes to the downstream analyses by focusing on the four putatively 
causal coEMs based on blood eSNP analysis (i.e., Turquoise, Blue, Red and Chocolate coEMs) and 
highlighted the changes in the revised manuscript.  

1b. Updated information on PPIs should be used for the analysis  

Indeed, there are several databases that curate PPI information, including HPRD (Keshava Prasad et 
al, 2009), BioGrid (Chatr-Aryamontri et al, 2013), BIND (Isserlin et al, 2011), DIP (Cotter et al, 
2004), and IntAct (Kerrien et al, 2011). Although HPRD is one of the older databases and has not 
been updated since 2010, it has been widely used by the research community and many findings 
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based on HPRD have been validated (Graham & Graeber, 2014; Network, 2011; Wu et al, 2014). In 
addition, the reliability and reproducibility of the PPIs collected in HPRD appear to be superior to 
those collected in the other databases, as shown in our comparison analysis in Table 1 of this 
response letter (below). HPRD demonstrated the best overall overlap ratios with the other databases, 
with the highest ratio observed being 15% between HPRD and BioGrid. Therefore, we conclude that 
the PPIs in these two databases appear to be more reproducible.  

 

 
 

The numbers in column 4 to 8 indicated the overlap ratio between two databases (db) in the 
respective column and row. The overlap ratio is defined as (PPIdb1 ∩ PPIdb2) / (PPIdb1 U PPIdb2). 

The numbers in column 4 to 8 indicated the overlap ratio between two databases (db) in the 
respective column and row. The overlap ratio is defined as (PPIdb1 ∩ PPIdb2) / (PPIdb1 U PPIdb2). 

 
To evaluate the reliability of key drivers (KDs) identified in HPRD, we also used BioGrid to 
identify KDs. We found that 36% of KDs identified in HPRD replicated in BioGrid for the 4 
putatively causal BP coEMs, and 50% of KDs in the Turquoise module replicated. The details of the 
replication of KDs in the two PPI networks were added to the revised manuscript. 

1c. The parameters used for defining the clusters need to be carefully considered. 

The parameters that we used to construct the gene coexpression network were based on the fitting of 
the coexpression network in a scale-free topological structure, as recommended by the authors of 
WGCNA (Langfelder & Horvath, 2008; Zhang & Horvath, 2005). In our study, the fitting index of a 
scale-free network is 0.99 (the perfect fitting index is 1). The gene clustering tree (dendrogram) of 
each coEM was obtained from an average linkage hierarchical clustering of the adjacency-based 
dissimilarity metric. The dynamic tree-cut algorithm was then used to choose the cut-off for module 
identification (Langfelder et al, 2008).  

To confirm the reliability of the coexpression modules (coEMs) or clusters identified, we conducted 
a robustness test of the coexpression network analysis using a re-sampling strategy. We resampled 
80% of the samples ten times, and built a coexpression network from each re-sampled dataset to 
identify coEMs. To assess the conservation / stability score for a given module M in the original 
network, we used Fisher’s exact test to evaluate the consistency between M and its corresponding 
modules M-1, M-2, … , M-10  in the bootstrapped network to derive the overlap p values P(M-1), 
P(M-2), …, P(M-10). The maximum (note NOT the minimum, to be conservative) overlap p-value 
was used as the final conservation /stability p value for each module. The conservation p values for 
the 6 BP coEMs were all less than 1e-16, supporting the robustness of the coEMs identified in our 
study.  

2. Additional experimentation is required in order to better validate the novel key driver 
genes. Referees #2 and #3 offer constructive suggestions in this regard.  

Reply: We have considered the reviewers’ suggestions and conducted a costly but invaluable 
experiment to validate the SH2B3 KD and its related subnetworks by examining the transcriptome-
level changes in the whole blood of Sh2b3 knockout mice compared with wide-type (WT) mice 
(n=4 in each group) using RNA-Seq. We identified 2240 differentially expressed genes that were 
affected by the knockout of Sh2b3, and found highly significant overlap between the genes affected 
by Sh2b3 knockout in the mouse model and our predicted SH2B3 subnetworks, i.e., the SH2B3 
derived genetic subnetwork and the SH2B3 derived PPI subnetwork (Figure 3 and Table 6 in the 
revised manuscript).  
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Main Text Figure 3:  SH2B3 related genetic and protein-protein interaction subnetworks. A) 
rs3184504, a missense SNP, is located in the third exon of SH2B3; B) SH2B3 genetic subnetwork. 
rs3184504 is associated with 19 genes in a cis or trans manner based on analysis of eQTLs; C) 
SH2B3 protein-protein interaction (PPI) subnetwork. SH2B3 is depicted as a rectangular node. 
Green nodes indicate differentially expressed BP genes at Bonferrroni corrected p<0.05 in the 
Framingham Heart Study (BP Top Sig); turquoise nodes indicate genes in the BP causal coEMs; 
yellow nodes indicate genes that are in both the BP Top Sig set and the BP causal coEMs. The 
nodes marked with a red border indicate differentially expressed genes between wide-type (WT) and 
Sh2b3-/- mice.  
  

 

 

 

 

Main Text Table 6: Summary of the overlap between gene signatures of Sh2b3-/- mice and the 
predicted SH2B3 subnetworks. 

SH2B3 
subnetw
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Number 
of genes 

in the 
subnetw
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Number 
of 

Overlapp
ing genes 

Fold 
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p 
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ue 

Genetic 
subnetwo
rk.  

19 8 2.5 1.2
e-5 

PPI 
subnetwo
rk 

362 78 1.3 2.2
e-
14 

 

These additional validation studies along with our related study, which shows that SH2B3 plays a 
key role in the development of hypertension in mice (Saleh M. et al., under revision in The Journal 
of Clinical Investigation), strongly support the validity of the BP gene networks and the KD SH2B3. 
The detailed experimental methods, new experimental results (under the sub-section “Validation of 
the SH2B3 subnetworks using a Sh2b3-/- mouse model”), and discussion of the validation experiment 
have been added to the revised manuscript.  

The reviewers also suggested that we validate other novel KDs in addition to SH2B3. Given the 
months of time and considerable cost to experimentally validate SH2B3 in a knockout mouse model, 
it is beyond the scope (and budget) of the current study to validate additional novel KDs. We have 
emphasized the need to validate additional novel KDs as future directions 
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3. The manuscript should be carefully re-written and the presented analyses, datasets and 
methods need to be described in better detail.  

Reply: As requested, we have extensively revised our manuscript to provide sufficient rationale and 
methodological details for each analysis and to make the paper easier to follow.  

 

 
 
Reviewer #1: 
Major points  

1.1. Given that gene expression profiles are generally tissue-specific and that the expression 
data set used in this study was derived from whole blood, incorporation of the existing eSNPs 
from any other tissues (adipose, liver, and brain) would significantly decrease specificity and 
increase false positive detection. Several studies have already shown that eQTLs are mostly 
cell-type specific (i.e. Dimas et al., 2009, Science). The same concerns also apply to the 
regulatory/PPI network analysis. Only data from blood or blood-related cells (i.e. eQTLs from 
lymphoblastoid cell lines Lappalainen et al., 2013, Nature) would be useful.  

Reply: As suggested by the reviewer, we have updated our analysis using only eQTLs derived from 
blood or lymphoblastoid cell lines. We are pleased to report that our main findings and conclusions 
did not change appreciably, as detailed in our response to the Editor’s comment 1a on page 1 of this 
response letter.  

1.2. The identified co-regulated modules are suspicious too. For example, 2396, 2151, and 88 
genes are in the putatively causal BP gene sets (turquoise, blue, and lightyellow respectively), 
which consist of approximately 30~40% of genes expressed in a given cell type, and they seem 
to be very loosely correlated, if at all. Also, GO terms associated with these gene sets 
(especially turquoise and blue coEMs) are general and less informative. What are the average 
correlation coefficients? Did authors carry out any cluster stability/robustness analysis? 
Authors should be more careful with the parameters that determine the clusters.  

Reply: As detailed in our response to the Editor’s comment 1c on page 2-3 of this response letter, 
the parameters that we used to construct the gene coexpression network and determine the clusters 
(coexpression network modules [coEMs]) were selected based on the fitting of the resulting 
coexpression network in a scale-free topological structure and applying dynamic tree-cut algorithm, 
a requirement for WGCNA (Langfelder & Horvath, 2008; Zhang & Horvath, 2005). In our study, 
the fitting index of a scale-free network is 0.99 (the perfect fitting index is 1), indicating fulfillment 
of the scale-free topology. As suggested, we also conducted a robustness test of the coexpression 
network analysis using a re-sampling strategy (detailed on page 2-3 under Editor’s comment 1c in 
this response letter). Our results support the robustness of the coEMs identified in our study.  

Although the sizes of several coEMs appear to be large, they are in agreement with those observed 
in many previous coexpression networks constructed from diverse tissue types (Horvath et al, 
2012a; Yang et al, 2010; Zhang et al, 2013). The largest modules typically contain thousands of 
genes, consistent with our finding. The average absolute correlation coefficients among genes in the 
BP coEMs are 0.29 (Turquoise), 0.12 (Blue), 0.10 (Red), 0.12 (Purple), 0.25 (Lightyellow) and 0.30 
(Chocolate), whereas the average absolute correlation coefficient of the non-module genes is 0.04. 
These results suggest a tight correlation among genes within each BP coEM. Even though there are 
2394 genes in the Turquoise module, the correlation strength among genes in this module is actually 
very strong. Similarly, although the GO term annotations for certain coEMs are general, these 
general terms do not undermine the co-regulation structure (defined by data) and the biological 
importance and relevance of these coEMs.  

1.3. Most of the predicted key driver genes also seem unlikely. 530 out of 671 are primarily 
evidenced by PPI, which is well known to suffer from high false positive rates (Cusick et al., 
2005, Hum Mol Gen). Combined with large clusters, the PPI network seems to play a major 
role in providing false predictions of KDs.  

Reply: We agree with the reviewer that the technical limitations of PPI measurements may lead to 
inaccurate PPI predictions and false positives. However, these limitations are difficult to avoid and 
many studies have demonstrated the merit of PPI networks for identification and prioritization of 
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candidate disease genes (Barrenas et al, 2012; Graham & Graeber, 2014; Han et al, 2013; Jia et al, 
2012; Ma et al, 2012; Network, 2011; Wu et al, 2014). 

In our study, we adopted several strategies to reduce false positives in the reported key drivers 
(KDs). First, we chose the human PPI databases carefully. To our knowledge, current PPI databases 
are based on either 1) manual curation of the scientific literature of PPIs with experimental 
evidence, 2) automated text mining of articles, or 3) computational predictions. PPIs from 2) and 3) 
yield much higher false positives than from 1). Therefore, we used HPRD (Keshava Prasad et al, 
2009) where PPIs were manually curated from the literature by biologists and only PPIs with 
experimental evidence were included. As detailed in our response to Editor’s comment 1b on page 
2, the reliability and reproducibility of the PPIs collected in HPRD appear to be comparable to those 
collected in BioGrid (Chatr-Aryamontri et al, 2013) and superior to those in other major databases 
such as BIND (Isserlin et al, 2011), DIP (Cotter et al, 2004), and IntAct (Kerrien et al, 2011). 
Second, to evaluate the reliability of KDs, we also used BioGrid to identify KDs in the revised 
manuscript. We found that 35% of KDs identified in HPRD were replicated in BioGrid for the four 
putatively causal BP coEMs, and 50% of KDs in the Turquoise module were replicated. Third, we 
adopted multiple additional criteria, including BP GWAS results and differential expression values, 
to further rank KDs. We also validated one of the top KDs, SH2B3 and its derived subnetwork by 
examining the transcriptomic changes between wide-type (WT) and Sh2b3 knockout mice using 
RNA sequencing, as detailed in the revised manuscript and the response to Editor’s comment 2. 

Minor points:  

1.4. Reference for PPI should be the latest one "Human Protein Reference Database--2009 
update" (Prasad et al., 2009, Nucleic Acids Res)  

Reply: We corrected the citation of HPRD as suggested by the reviewer. 

1.5. The term "putatively causal BP gene sets" is misleading. Changes in gene expression 
associated with genotypes can still be reactive  

Reply: Although we agree with the reviewer that exceptions may exist, there are numerous studies 
supporting the notion that genes whose expression levels change as a result of genetic perturbations 
(i.e., genes with eQTLs) are more enriched for disease causal genes (Chen et al, 2008; Civelek & 
Lusis, 2014; Li et al, 2014; Schadt et al, 2005; Schadt et al, 2008; Yang et al, 2009; Zhang et al, 
2013). We agree with the reviewer that any strong claims of causality are unfounded without 
experimental validation. We used the phrase “putatively causal” throughout the manuscript to 
indicate they are potentially causal based on statistical inference but the causal nature is in need of 
future experimental validation. In the revised manuscript page 9, we clarified this point as follows: 

 “A BP gene set showing significance in SSEA is referred to as “putatively causal”, because it is 
supported by orthogonal genetic evidence that is unlikely to be confounded by non-genetic factors. 
The term “putatively causal” also implies that further experimental validation is needed to prove 
causality.” 
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Reviewer #2: 
Major points  

2.1. Use of adjusted (for 3 major blood cell types) vs. unadjusted whole blood RNA expression 
data. This part is confusing - I think I am to understand that adjusted values were used for all 
results forwarded in the paper? It is however not clearly stated what data was used for the BP-
related set, eQTLs, coEMs etc. Please state what is used for what in M&Ms.  

Reply: We regret the confusion. In the revised manuscript, we report the results from both cell type 
adjusted and unadjusted data in the main text. As suggested by the reviewer, we have revised the 
manuscript (see “Materials and Methods” page 18) to clearly state what data was used for which 
analysis, as following: 

“To further evaluate how differences in cell type proportions affect the BP-associated genes at the 
level of single genes and the coexpression modules identified in this study, we conducted our overall 
analysis both with and without accounting for cell type effects to capture both cell-type dependent 
and independent BP-associated genes and processes. We report both results but focus our 
discussions on those from the adjusted analyses.” 

The eQTLs identified using our gene expression data were adjusted for cell types. The whole list of 
eQTLs will be reported in a separate publication (Joehanes R, PhD, submitted, 2014) as described in 
the “Materials and Methods” section (page 20) as following: 

“For FHS eSNP identification, a pedigree-based linear mixed model was used to determine the 
association between each gene expression value and the imputed SNP genotypes by adjusting for 
age, sex, technical covariates, cell types and familial relatedness.” 

2.2. It is also unclear if coEMs related to BP were more overlapping (Sup. Figure 1 and 2) than 
those that were unrelated - or if for example, only adjusted coEMs were found to related to 
BP. As stated below, the author can be much clearer on this important point. Clarifying this 
might support the results as meaningful for BP in my meaning (see also minor comment on 
eQTLs below).  

Reply: In the revised manuscript, we clarify the similarities and differences between the results 
from the adjusted and unadjusted analyses. In summary, we identified 6 BP coEMs using the cell 
type adjusted data and 7 BP coEMs using the unadjusted data (Supplementary Figure S2, which 
previously was Supplementary Figure S1). Of these, 3 BP coEMs from the adjusted analysis 
significantly overlapped with 5 BP coEMs from the unadjusted analysis; 3 and 2 coEMs were 
unique to the adjusted and unadjusted analysis, respectively. These comparisons supported the 
presence of both shared and adjustment-specific signals relevant to BP as well as the merit of 
conducting and reporting both types of analysis. We added a subsection in the Results section (page 
6) as follows:  

“Influence of blood cell types on gene expression and BP association 

As mRNA expression levels might be influenced by differences in the proportions of different cell 
types in whole blood, we assessed the correlations between mRNAs and three major cell type 
proportions. We found that approximately 42% of genes were significantly correlated with cell type 
proportions at Bonferroni corrected p<0.05 (Supplementary Table S1), suggesting a major impact 
of blood cell types on gene expression. Although results from both cell type adjusted and unadjusted 
analyses could be biologically relevant (the adjusted analysis may reflect cell type independent 
signals and the unadjusted analysis may represent cell-type dependent signals), we report both sets 
of results but focus our discussion on the adjusted analysis to simplify results interpretation. We 
also report the similarities and differences between the two analyses.” 

In the revised manuscript of Results section (page 7-8), we have clarified the main similarities and 
differences between the coexpression network results from the adjusted and unadjusted analyses as 
follows:  

“Construction of coexpression networks and identification of BP associated gene coexpression 
modules 

…. 

We also constructed coexpression networks using the data that were unadjusted for cell types 
(Supplementary Fig S2). We identified 32 coEMs, of which the eigengenes of 7 coEMs (Green, 
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Greenyellow, Cyan, Magenta, Tan, Midnigtblue, and Lightgreen modules) showed significant 
correlation with SBP or DBP at p<0.05. The Purple and Chocolate coEMs from the cell type 
adjusted network are conserved with the Green and Lightgreen coEMs from the cell type unadjusted 
results, respectively. The Turquoise coEM from the adjusted analysis split to three modules in the 
unadjusted analysis. Other coEMs were unique to the adjusted or unadjusted analysis 
(Supplementary Fig S3). ” 

The details of the comparison of GO enrichment analysis results and SNP set enrichment analysis 
(SSEA) results between the adjusted and unadjusted coEMs have been added to the revised 
manuscript (pages 8-10). 

2.3. It is unclear to me how the BP-signature set enriches the analysis in a separate way from 
the coEMs. The coEMs are also based on co-expression generating a gene cluster from which 
an eigengene is calculated and associated with BP. To me it is no surprise the BP-signature set 
genes also are part of the coEMs related to BP. The whole point with systems analysis is to 
avoid single gene analysis (like this) and instead focus on multiple genes in networks/clusters. 
To me it is either not surprising most of the BP-signature set genes end up in reactive coEMs 
as opposed to the two causal ones (Table 2). Either exclude them from the analysis altogether 
or the authors need to explain for me how they believe this set contributes differently from the 
coEMs. Of note, it would have been different if there also had been a gene expression dataset 
from hypertensive patients that could have been used to select the most BP-related genes prior 
to the coEM inference as opposed to use all genes as now. As it seems to me, this signature set 
does not add credibility to the top KDs.  

Reply: We agree with the reviewer that it is important that we focus on network analysis in our 
systems study. The value of briefly including the differential gene expression signature analysis in 
our study is to complement our systems biology analysis. As the reviewer has pointed out, most of 
the traditional studies focus on identifying differential gene expression signatures of diseases using 
single-gene based analysis; however, how much mechanistic insight these differential expression 
results provide is a matter of debate. By comparing the single-gene based signature gene sets with 
the multi-gene focused coEMs, our results support the notion that coEMs capture more BP-related 
genes and processes than differential expression analysis. This conclusion would not have been 
possible to reach if the BP signature analysis was not included in the manuscript. By the same token, 
coEMs can capture BP-related gene coexpression patterns that either highly overlap with BP 
differential expression signals or are distinct from the BP signatures (Figure 2). If we had pre-
selected BP signature genes from hypertensive individuals and only focused on these genes to 
construct coEMs, we would have missed the coEMs that do not overlap with BP signature genes. 
Therefore, the BP coEM analysis serves as a comprehensive and powerful means to capture BP 
etiology; including the traditional expression signature analysis helps to support and highlight the 
value of our network analysis. In addition, the signature analysis by itself carries more 
straightforward translational value as potential BP biomarkers since their expression levels are 
correlated with BP at an individual gene level, and will be of interest to the readers and scientific 
community. In fact, we have been conducting a thorough differential expression analysis across 
multiple cohort studies to detect reliable biomarkers of blood pressure, which is the focus of a 
separate paper. 

We also agree with the reviewer that many of the BP-signature genes are likely to be reactive rather 
than causal based on available evidence. For instance, our SNP set enrichment analysis (SSEA) 
showed a lack of enrichment with low p value BP GWAS SNPs (Table 3) among the BP-signature 
set, while several coEMs demonstrated significant enrichment. However, this overall behavior of the 
BP signature genes as a set does not necessarily preclude a small subset of signature genes, such as, 
ATP2B1, one of the BP signature gene having cis eQTLs with BP GWAS p<5e-8, from playing a 
causal and regulatory role. Another piece of evidence supporting this conclusion comes from the 
observation that the Red and Chocolate coEMs, which significantly overlap with the BP signature 
genes, demonstrated enrichment for blood eSNPs with low p value associations in BP GWAS. A 
possible explanation for this is that the coEMs captured both causal and reactive genes that are 
functionally correlated. We reason that if a putative KD identified based on gene network topology 
also shows differential expression, the differential expression status could add credibility to the KD 
in terms of its relevance to BP, which may help to reduce false positive discoveries in the KD 
analysis.  
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2.4. Additional validation experiment as alluded to above. Stating that 2 of 3 genes in a GWA 
indicated BP gene (SH2B3) mouse KO model are differentially expressed in whole blood RNA 
upon inducing hypertension just does not cut it. Are there not other available mouse KO 
models for some of the BP-unrelated KDs of the multi-tissue network in which hypertension 
can be induced in the same way and compared with controls as of the extent of HT/DE? If not, 
how about inducing HT in wild type mice and isolate whole blood RNA before and after and 
examine specifically the KDs (and random background group of genes) to determine if the 
KDs are the most responsive? Or further validate KDs previously unrelated to BP in some 
other convincing way that the authors can think of.  

Reply: We have taken the reviewer’s suggestion and carried out further experimental validation of 
the Sh2b3 KD and the corresponding network structure. Going beyond the qPCR-based validation of 
candidate genes in the previous submission, we conducted RNA sequencing to examine the 
transcriptomic changes in the whole blood transcriptome of WT and Sh2b3 KO mice (n=4 in each 
group) to validate the predicted network structure of SH2B3. We identified the differentially 
expressed genes affected by Sh2b3 KO and found a highly significant overlap between the genes 
affected by Sh2b3 KO in the mouse model and our predicted SH2B3 subnetwork. This validation 
study strongly supports both SH2B3 as a KD and the predicted BP gene network.  

Although we appreciate the reviewer’s suggestion to validate additional KDs, given the additional 
months of time and thousands of dollars it has taken to experimentally validate both SH2B3 as a KD 
and the derived gene subnetwork, it is beyond the scope of the current study (and our budget) to 
validate additional KDs.  

 

Minor points  

2.5. It is (to say the least) annoying that the authors almost seem to purposely avoid clearly 
stating the source of different datasets. Although a minor point (since it can be found after 
some searching in Sup material etc,) this needs to be better stated making the ms much easier 
to follow. For example, it should be mentioned in the Abstract (3rd line; whole-blood-RNA 
(replace "gene") expression profiles), Introduction last Paragraph ".....and transcriptomic 
data from whole blood (and here also state) adjusted for the three major white blood cell types 
isolated from 3679...."  

Reply: We thank the reviewer for these constructive comments designed to help us improve the 
readability and clarity of our manuscript. In addition to making the specific changes suggested by 
the reviewer, we have extensively revised our manuscript to be accurate and clear with respect to 
technical and methodological details and to make the paper easier to follow.  

2.6. Is the gene expression data from whole blood newly generated or has it been published 
before?  

Reply: The gene expression data for this project were generated as part of a resource for the 
Systems Approach to Biomarker Research in Cardiovascular Disease (SABRe CVD) initiative for 
which multiple phenotypes are being studied. All gene expression data have been deposited into 
dbGaP to allow further analyses by the outside scientific community. We have been conducting 
collaboration with 5 external cohort studies to detect reliable biomarkers (differentially expressed 
genes) for BP via meta-analysis of results across all 6 studies (including the FHS), which will be the 
focus of a separate paper. The resultant BP meta-analysis paper will cite this Molecular Systems 
Biology paper as the FHS gene expression results for BP.     

2.7. Generally the authors repeat describing the flow of the analytical steps too often- it is 
sufficient to describe this in the Introduction (as now) and be more straight forward in the 
Result section and particular not repeat the steps again in the Discussion but instead discuss 
possible pros and cons with chosen methods, alternative approaches that could have been 
chosen and why this was not felt appropriate.  

Reply: We appreciate this suggestion. We have reduced the redundancies in the Results and 
Discussion sections in the revised manuscript. We have also added discussion of the rationale for 
choosing the analytical approaches and their pros and cons. 

2.8. 27 coEMs were constructed when seeking relation to BP using eigengenes for the coEM - 
where these also adjusted for multiple testing?  
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Reply: When selecting BP coEMs we did not adjust for multiple tests.  Previous coexpression 
studies demonstrated that interesting findings can be discovered even when a less rigorous p value 
threshold is used to identify trait-associated coEMs (i.e. not Bonferroni corrected) (Farber, 2010; 
Leduc et al, 2012; Miller et al, 2008; Miller et al, 2013; Vanderlinden et al, 2013).  An additional 
rationale for using nominal p values to select coEMs is that these coEMs are further integrated with 
multiple levels of additional information including genetic signals, eQTLs, and Bayesian and PPI 
gene networks. Integration of multiple levels of data has been proven to reduce false discoveries. 
Therefore, although the initial selection of coEMs did not involve multiple testing correction and 
was more inclusive, the additional downstream analyses serve to increase the confidence of the 
findings.  

2.9.The Chocolate coEM is enriched for immune cell mediated cytotoxicity but later dismissed 
as "reactive" - still the SH2B3 key driver subnetwork claimed to drive BP also was also found 
to be enriched for T-cell activation - seems to me that many genes here could be in common in 
both sets - how do you explain this?  

Reply: As noted in our reply to Reviewer #1, blood eQTLs are highly relevant to the current study 
because the FHS transcriptomic data are from whole blood. However, due to the limited availability 
of blood eQTLs at the time of our previous SSEA analysis, we utilized eQTLs from multiple tissues 
to increase coverage of functional SNPs and statistical power. The use of multi-tissue eQTLs, 
instead of blood-only eQTLs, could have masked processes important in blood, such as the 
“immune cell mediated cytotoxicity” module. In the revised manuscript, we updated our blood 
eQTL collection by taking into consideration several newly published studies involving very large 
sample sizes and tested the causality of each BP coEM using the updated eSNPs from blood only. 
Indeed, we found that the Chocolate module became highly significant in the updated analysis, 
which reconciles the discrepancy previously observed between the Chocolate coEM and the SH2B3 
subnetwork.  

2.10. The section on how KDs were identified from BNs and PPIs in the results section is hard 
to follow. The sentence "At KD-enrichment p<0.05, we identified 671 KDs" is not clarifying. 
The main principles for calling the KDs need to be better explained.  

Reply: In order to better describe the “key driver analysis”, we made multiple changes to the revised 
manuscript.  

1) In the Methods section, we simplified the language used to describe the KD identification 
algorithm and added a schematic figure (Supplementary Figure S6) to describe “Key driver (KD) 
analysis” to make it easier to follow. The main text changes are on page 21 as follows: 

“Key driver (KD) analysis 

For the putatively causal BP gene sets identified by SSEA, we integrated the genes with molecular 
networks (BNs and PPI networks as described above) to identify key regulators of every BP gene set 
using KD analysis. The objective of KD analysis was to identify the important genes for a gene set 
with respect to a given network structure. A KD of a BP causal gene set is defined as a gene whose 
neighbor genes in the network are significantly enriched for genes in the BP gene set. As illustrated 
in Supplementary Fig S6, in order to test if gene G in a network (a BN or PPI network) is a KD or 
not, first, we identified the subnetwork of G by retrieving its directly connected genes (1st-layer 
neighbor genes), the genes connected by its 1st-layer neighbor genes (2nd-layer neighbor genes), and 
the genes connected by its 2nd-layer neighbor genes (3rd-layer neighbor genes). Next, we used 
Fishers’ exact test to evaluate if the genes in the subnetwork of G (1st – 3rd-layer neighbor genes of 
G) show enrichment for genes in the BP causal gene set to derive a KD-enrichment p value. A G 
that reached a Bonferroni-corrected KD-enrichment p<0.05 was reported as a KD (after correction 
for the number of genes in a network).  

After the identification of KDs for each BP causal coEM in each network (BNs and PPI network), 
KDs were further ranked by leveraging 1) the BP association p values of the eSNPs in the KD based 
on results from the ICBP BP GWAS (Ehret et al, 2011); 2) the differential expression association p 
value for BP from TWAS; and 3) the KD-enrichment p values.” 

2) In the Results section labeled “Identification of key drivers”, we added text to explain the 
definition of KDs on page 10: 
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“A KD is defined as a local network hub whose neighbors in its local subnetwork show enrichment 
for BP genes in the putatively causal gene sets. Due to their central location in the networks, KDs 
may have broad impact on multiple genes related to BP.” 

3) Supplementary Fig S6: A Schematic Figure of Key Driver Analysis. In order to test if gene G 
(shown in red) is a KD or not, the subnetwork of G is first extracted by retrieving its 1st to 3rd-layer 
neighbor genes in the network. Subsequently, the enrichment of genes in a given BP gene set (shown 
in blue) in the subnetwork of G is evaluated. G is defined as a KD if the subnetwork of G is 
significantly enriched for genes in the tested gene set (evaluated by Fisher’s Exact test; the 
significant threshold was Bonferroni-corrected for the number of genes in the gene network used). 

 
2.11. Early in the section named "Inferring BP gene regulatory subnetworks driven by top key 
drivers" the authors refer to Table 4 I believe they mean Table 5.  

Reply: We have corrected the error in the revised manuscript. Thank you for picking this up. 

2.12. As already stated, the Discussion is to repetitive and should instead be used to address 
cons and prons as for example responses to the Major Concerns. Also, in the end of the third 
paragraph it is stated "Besides these top KDs, many of the other KDs (presumably among the 
671) may also be interesting. For example, WNK1......). I think the authors should at least can 
give 5 such examples to better match their first statement of "many".  

Reply: As suggested by the reviewer, we have revised the Discussion section to remove 
redundancies and discuss the pros/cons of our approaches. We have also added more examples, 
including WNK1 on page 15 as follows: 

“Many of  the KDs that we identified have previously been reported to be involved in BP regulation, 
including WNK1 (Choate et al, 2003), BMPR2 (Atkinson et al, 2002; Hamid et al, 2009), 
GPX1(Ardanaz et al, 2010), TAF1 (Koschinsky et al, 2001), GYS1 (Groop et al, 1993; Orho-
Melander et al, 1999), CAST (Kokubo et al, 2006), IKBKAP(Kokubo et al, 2006), MEF2A (Oishi et 
al, 2010), and PPARA (Bernal-Mizrachi et al, 2003; Bernal-Mizrachi et al, 2007), supporting the 
validity of our methods.” 

2.13. Please in a new Supplementary Figure show distribution of particular DBP since 80 to 90 
is considered pre-hypertensive so it would be nice to see how many "normotensive" there 
actually are.  

Reply: As suggested by the reviewer, we have added the distribution of SBP and DBP in the study 
subjects (n=3679) as Supplementary Figure S1. Hypertension is defined as SBP ≥140 mm Hg or 
DBP ≥90 mm Hg, which represents 11% of the study population. The proportion of pre-
hypertensive individuals with SBP 120-139 or DBP 80-89 is 17%.  We have also added a summary 
statement on the data distribution in the revised manuscript on page 6 as follows: 

“The average SBP/DBP was 118/74 mm Hg and 11% of participants had hypertension (HTN; 
defined as SBP ≥140 mm Hg or DBP ≥90 mm Hg). Pre-hypertension, defined as a SBP from 120 to 
139 mm Hg or DBP from 80 to 89 mm Hg, was present in 17% of our participants.” 

Supplementary Fig S1: The distribution of SBP and DBP in the 3679 FHS participates who 
were not receiving anti-hypertensive treatment. A) Histogram of SBP; B) Histogram of DBP. 
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2.14. eSNPs I think in a table to declare, which of the eQTL sets that were most informative 
for each coEM related to BP particular for those find to be causal (Light yellow, Turquoise 
and Blue) - this can perhaps be used to support the results and that the whole-blood RNA data 
is relevant for BP if many eQTLs were for the coEM derive from there.  

Reply: As suggested by Reviewer #1 and discussed in our responses to the Editor’s comment 1a and 
Reviewer 1 comment 1.1, whole blood derived eQTLs are perhaps the most relevant to the current 
study. This is because the transcriptomic data used in the current study are derived from whole 
blood. In the revised manuscript, we repeated the SNP set enrichment analysis (SSEA) using eQTLs 
derived from blood or blood-derived lymphoblastoid cells (Table 3). Comparison of the new SSEA 
results based on blood derived eSNPs with our previous results based on multi-tissues eSNPs 
showed improvement of enrichment signals for the Turquoise, Blue, Red, and Chocolate coEMs, 
supporting the notion that blood eQTLs are indeed more informative in our study. In addition, 
among the 299 eSNPs in the four BP causal coEMs that showed association with BP in the ICBP BP 
GWAS (Ehret et al, 2011) at p<1e-5 from blood, liver, adipose and kidney tissues, 261 were from 
blood, again supporting the notion that blood-derived eQTLs are the most informative in our study. 
This is not surprising given that our transcriptomic data are derived from whole blood RNA. We 
have revised our manuscript to report only results from the blood eQTL analysis. 

2.15. There are some spelling and formulation issues in the Supplementary Note.  

Reply: We have extensively revised the Supplementary Information, and corrected spelling and 
formulation issues. 

 

 
Reviewer #3: 
Major issues  

3.1a. The paper is a bit hard to follow for two reasons. (a). Too little information is provided in 
the Result section, and there is even no a simple description for the data in which they were 
generated and analyzed. For example, at the beginning, in the section of identifying the 
differentially expressed genes, the authors at least need to describe how many cases and how 
many control subjects in text, not simply directing the audience to a supplementary table. Also 
it is also important to show how the ethnic backgrounds, age/sex, etc. were controlled for this 
comparison. Part of this information can be seen from the Methods section, but it is important 
to describe the data in the result section as well. Most importantly, the authors have made a 
great effort in profiling gene expression in a large number of FHS participants, but 
throughout the Result/Discussion, there is even no a brief mentioning of the data sources.  

Reply: We appreciate the reviewer’s suggestions on how to improve the clarity of the paper. We 
have added descriptions of the study cohorts, demographics, and data processing into the Results 
and Discussion sections, and provided more detailed descriptions in the Methods section. In the first 
paragraph of the Results section on page 6 in the revised manuscript, we describe the effort in the 
FHS as below: 

“The FHS recently launched the Systems Approach to Biomarker Research in Cardiovascular 
Disease (SABRe CVD) initiative, which seeks to explore and characterize biomarkers and molecular 
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underpinnings of CVD and its risk factors, including BP. High-throughput gene expression profiles 
from whole blood derived RNA were generated in 5626 individuals of European ancestry from the 
FHS offspring (n=2446) and the third generation (n=3180) cohorts. In order to avoid the 
confounding effects of drug treatment on gene expression levels, the current study was restricted to 
3679 participants who were not receiving anti-hypertensive treatment. 

The clinical characteristics of the 3679 study participants are summarized in Table 1.” 

In the Discussion section on page 13, we highlight the FHS efforts dedicated to the genomic data 
collection as one of the strengths of the study, as follows: 

“This study represents a large, single site transcriptome-wide analysis of BP in 3679 individuals 
who were not receiving antihypertensive drug treatment.” 

3.1b. In the analysis part, the authors seemed to have tried many methods on data from 
different dimensions; however the overall structure was quite loose, just like piling up the data 
without strongly logic connections. Overall, I would strongly suggest the authors to rewrite 
this paper to improve its clarity and logic connectivity. Especially, the Result/Discussion 
section should be substantially re-written to make itself as a complete story.  

Reply: We appreciate the reviewer’s suggestion and have revised our manuscript extensively to 
make it easier to follow. In the beginning of each subsection of the Results section, we now better 
describe the rationale for each analysis to build stronger logical connections across the overall study 
(highlighted in the revised manuscript on page 6-12).  In the Discussion section, we also reorganized 
the paragraphs to improve the flow and provide a stronger story, as follows (page 13): 

“This study represents a large, single site transcriptome-wide analysis of BP in 3679 individuals 
who were not receiving antihypertensive drug treatment. Extending traditional transcriptome-wide 
analysis that target differentially expressed genes at the individual gene level, we also conducted 
higher level coexpression network analysis to identify multiple genes demonstrating co-regulatory 
network structure in the form of coEMs associated with BP. To differentiate causal from reactive 
roles of the BP-related genes/gene sets from transcriptome-wide analysis, we integrated the 
differentially expressed genes and the BP coEMs with SNP association results from BP GWAS. To 
further pinpoint key BP genes and dissect key regulatory mechanisms among the putatively causal 
BP gene sets, we projected genes within these gene sets onto gene/protein networks and identified 
key drivers (KDs). These KDs appear to regulate a large number of interacting genes in gene 
subnetworks and orchestrate multiple biological processes and pathways underlying BP 
regulation.” 

3.2a. The large fraction of this paper was based on the co-expression analysis, but the authors 
have to give more reasoning for their motivations.  (a) It is unclear what Types of data were 
used for this co-expression analysis- gene expression in blood across different individuals in 
the cohort, just cases or just control subjects?  

Reply: We built the gene coexpression network using all 3679 individuals, rather than in 
normotensive and hypertensive individuals separately. We have added this information to the 
Methods section (page 18-19) of the revised manuscript as follows: 

“Construction of gene coexpression networks and identification of BP-associated coexpression 
network modules 

…. 

The coexpression network was constructed using the gene expression data from all 3679 individuals 
who were not on anti-hypertensive treatment, rather than on normotensive and hypertensive 
individuals separately. Inclusion of all individuals across the full spectrum of BP variability 
increased our power to capture co-regulated genes associated with BP variability… The relations of 
coEMs to BP phenotypes were evaluated by correlating the  eigengene (first principle component)of 
each coEM with SBP and DBP across all 3679 participants via Pearson correlation testing; p<0.05 
was considered significant.” 

3.2b. (b) The expression data were across different individuals, so the co-expression analysis 
identified gene modules showing co-expression in some individuals but were not co-expressed 
in some other individuals. So this co-expression essentially tested gene expression variability 
across individuals (as opposed to studying tissue specificity in earlier studies involving the 
same WGCNA: co-expression analysis across different tissue types), where genes within the 
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same module are presumably showing consistent variability for a sub-group of the cohort. If 
this is the case, for the modules identified in this study, do they show consistent changes across 
individuals with high blood pressure only, or the effects were just mixed among patients and 
healthy subjects? If the latter is true, how can we explain this and justify the effects of co-
expression analysis on prioritizing clinically important genes.  

Reply:  The advantage of WGCNA is the ability to fully utilize the variability of gene expression 
across the entire study samples to derived gene modules containing highly coexpressed or 
coregulated genes. The coexpression modules identified by WGCNA, therefore, represent highly 
coregulated or coexpressed genes across the entire population, that is, the expression levels of genes 
within each module vary together between individuals. This type of network demonstrates the 
overall organization of genes across the genome and the modules represent functionally related 
genes for a particular trait or disease, but not all modules have to be important for the disease or trait 
of interest. Similar to our study, a majority of the previous studies utilizing WGCNA focused on 
single tissue coexpression networks, rather than multi-tissue networks (Chen et al, 2008; Ghazalpour 
et al, 2006; Horvath et al, 2012b; Yang et al, 2010; Zhang et al, 2013). The relevance of each 
module to BP in our study was established by correlating the eigengene of each coexpression 
module with SBP and DBP. In other words, we determined whether a module as a whole co-varies 
with BP. If the eigengene of a module is significantly correlated with SBP or DBP, this correlation 
is pertinent to the entire population, not just a subset of the population (e.g., normotensive or 
hypertensive).  

We have revised our manuscript to provide a better explanation and rationale for coexpression 
network analysis in the Introduction section (page 5) as follows: 

“To identify BP coEMs, we first constructed a coexpression network from the gene expression data 
from all 3679 samples in order to capture coexpression modules containing highly co-regulated 
genes across all individuals. We then identified BP coEMs whose eigengenes (representing the 
expression patterns of all genes in each module) demonstrated significant correlations with BP 
measurements. The advantage of a coexpression network approach is that it provides a contextual 
framework to determine the relationship between the phenotype and functionally related genes 
across a population.” 

3.3. SSEA analysis identified genes in the co-expression module with significant eSNPs, and 
how is this expected by chance? e.g. "There are 13 genes in the putatively causal BP gene sets 
(Turquoise, Blue, and Lightyellow coEMs) whose eSNPs reached p<5e-8 in the ICBP BP 
GWAS" - do they show an overall enrichment?  

Reply: SSEA employs two statistical tests to evaluate if a gene set shows enrichment for eSNPs 
demonstrating low p values in BP GWAS (rather than random chance). Several coEMs showed 
statistically significant overall enrichment for eSNPs with low p values in BP GWAS by both the 
KS test and Fisher’s exact test. The extremely low enrichment p values from SSEA indicate the 
significance of the overall enrichment of these coEMs vs. what is expected by chance. For instance, 
the Turquoise coEM showed enrichment p values of 1.8e-28 and 3.0e-39 from the KS-test and 
Fisher’s exact test, respectively in SSEA when blood eSNPs were used. These p values indicate that 
the random chance to observe such overall enrichment is extremely small. In the sentence cited by 
the reviewer, genes with eSNPs at p<5e-8 in the ICBP BP GWAS were listed in Table 3 to highlight 
the top module genes that contributed to the overall enrichment.  

3.4. The authors need to make a logic connection between the above co-expression analyses 
down to the SSEA analysis, and justify why they need to perform SSEA in the identified co-
expression modules.  

Reply: In order to better explain why SSEA was performed after identifying the BP coEMs, we 
have added a paragraph in the SSEA section in the revised manuscript (page 8-9) as follows:  

“Inferring causal modules using SNP set enrichment analysis (SSEA) 

The BP gene signatures and coEMs identified above could either play a causal role in regulating 
BP or just be reactive or independent of BP change. To differentiate these relationships, we used 
SSEA to evaluate whether the BP gene sets demonstrate enrichment for BP GWAS signals. For each 
BP-correlated gene set, we first retrieved the blood eSNPs that showed association with the blood 
expression levels of genes in each BP-correlated gene set, and then extracted the BP association p-
values of the eSNPs in the ICBP GWAS. Lastly, the overall distribution of the BP association p 
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values of the eSNPs representing each BP gene set was compared to the null distribution of all 
blood eSNPs using two statistical tests, the Kolmogorov-Smirnov (KS) test and Fisher’s exact test, 
to test whether the given BP gene set shows significant enrichment for eSNPs with stronger BP 
associations (see the Materials and Methods). A BP gene set showing significance in SSEA is 
referred to as “putatively causal”, because it is supported by orthogonal genetic evidence that is 
unlikely to be confounded by non-genetic factors. The term “putatively causal” also implies that 
further experimental validation is needed to prove causality.” 

3.5. In the section of "Identification of key drivers", the authors need to disclose more details 
on their analysis, not simply presenting the P-values - how the P-values, how you identified 
"Key driver genes", and why they are the "KEY" driver?  

Reply: As discussed in our response to Reviewer #2 comment 2.10 on page 11 of this response 
letter, we have added detailed descriptions and a Supplementary Figure to better illustrate the “key 
driver analysis” in the revised manuscript.  

3.6. As this analysis was only focused on the blood pressure phenotype, I cannot see the point 
using tissue-specificity Bayesian networks. First of all, this dataset was just a mixture of data 
from different sources (including a mouse dataset, Methods section), and the substantial 
heterogeneity will hurt, rather than, improve the robustness of your study. At least the authors 
need to justify this before using the dataset. Second, the BN data were not simply biological 
measurements, but were from predictions, and their confidence needs to be further calibrated. 
Most importantly, the authors are studying blood pressure, why using the BN data based on 
liver, adipose and kidney as well?  

Reply: Our  previous rationale for using Bayesian networks from additional tissues such as kidney, 
adipose, and liver was that these tissues were previously shown to be relevant to blood pressure 
(Després et al, 1988; Diehl, 2004; Hall, 2003; Sandok & Whisnant, 1974). However, we agree with 
the reviewer that blood Bayesian networks are more relevant to the current study. The relevance of 
blood networks was also supported by our observation that a majority of the KDs from Bayesian 
networks were identified from blood networks but not from networks from other tissues. We have 
accepted the reviewer’s suggestion and removed the Bayesian networks from the other tissues and 
have revised the manuscript accordingly.  

3.7. For the HPRD dataset, the latest update was Apr 13, 2010. The dataset was obsolete, and 
the authors are encouraged to replicate this study on BioGrid interactions.  

Reply: Although the latest update of HPRD was in 2010, we found that the reliability of the PPIs in 
HPRD appear to be at least comparable to other PPI databases, as detailed in our response to Editor 
comment 1b on page 2 of this detailed response. As suggested by the reviewer, we repeated the KD 
analysis using BioGrid PPI interactions and found that 35% of KDs identified in HPRD were 
replicated in BioGrid for the three putatively causal BP coEMs, and 50% of the KDs in the 
Turquoise module were replicated. We have included the new results from the BioGrid analysis in 
the revised manuscript. 

3.8. For the gene candidate in SH2B3 in this study, it was great that the authors were able to 
generate a mouse model to test its effects, but disappointingly, the effects were only tested on 3 
genes, so it is really hard to say if this was a merely a chance finding, or indeed support the 
authors' hypothesis. It is thus strongly recommended that the authors perform a 
transcriptome study for this mouse model, and then examine how many genes in their 
prediction also showed dys-regulation in the mouse model.  

Reply: As suggested by the reviewer, we examined the transcriptome-level changes in whole blood 
of 4 wide-type (WT) and 4 Sh2b3 knockout (KO) mice using RNA-Seq. We are pleased to report 
that we observed a highly significant overlap between the differentially expressed genes identified in 
the mouse model and from our SH2B3 related gene subnetwork. The new validation data, methods, 
results, and discussion have been added to the revised manuscript, as detailed in our response to the 
Editor’s comment 2 on page 3-4 of this detailed response.  

3.9. Moreover, what's the phenotype of the SH2B3 knockout mouse? For MGI, the mouse 
phenotype for SH2B3 knockout is "Mice homozygous for a knock-out allele exhibit severe 
perturbations in hematopoiesis" , how this would be connected with the gene's function in 
blood pressure regulation?  
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Reply: The phenotypes of SH2B3-/- mice have been reported in detail in a separate manuscript 
(Saleh M. et al, under revision at Journal of Clinical Investigation). That study did not include the 
results of RNA-Seq analysis that are reported exclusively for this manuscript.  In our revised 
manuscript, we briefly describe the phenotypic results of SH2B3 knockout mice on page 12.   

“In a related study (Saleh M. et al., in preparation), we found that  Sh2b3-/- mice had normal 
baseline BP but  markedly elevated blood pressure in response to a low dose of angiotensin-II (Ang 
II; 140 ng/kg/min) that did not affect BP in wild type (WT) mice. This suggests a key role of Sh2b3 in 
BP regulation, and that loss or changes to this gene exacerbate response to hypertensive stimuli. 

… 

Consistent with our prediction, Saleh et al. also confirmed the exacerbation of inflammation and T 
cell activation in Sh2b3-/- mice (Saleh M. et al., in preparation).” 

 
Minor issues  

3.10. Statistical robustness- for the WGCNA co-expression analysis, the authors need to 
perform the modular division for at least 100 times, and the estimate the frequency of each 
gene that is assigned with a particular module.  

Reply: As requested, we used a resampling strategy to validate the robustness of the coEMs in our 
study. Due to the high computational burden, performing network construction 100 times was not 
feasible. We took an alternative strategy by resampling 80% of samples ten times, and built 10 
coexpression networks to identify coEMs. As detailed in our response to the Editor’s comment 1c 
on page 2 of this detailed response, this robustness analysis supported the reliability of the 
coexpression modules identified in our study.  

3.11. The sentence - "The top BP signatures gene set and the Chocolate coEM did not show 
enrichment for BP GWAS eSNPs, suggesting that the gene regulatory structure represented 
by these gene sets is likely reactive (i.e., downstream) rather than causal for BP." The authors 
need to back up this claim, and it is possible that they have nothing to do with the GWAS 
eSNPs.  

Reply: We agree with the reviewer that this is purely speculation and a gene module that does not 
show enrichment for GWAS eSNPs is not necessarily “reactive”. We have removed the sentence in 
the revised manuscript.  

3.12. Overall this manuscript presents an interesting study, but substantial revision is needed 
to improve its writing clarity and technical solidity. 

Reply: We appreciate that the reviewer recognizes the novelty of our study. We have extensively 
revised our manuscript to improve clarity, established the logic connections between sections, and 
enhance the technical elements. 
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2nd Editorial Decision 13 January 2015 

 
Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the three referees who were asked to evaluate your manuscript. As you will see below, the 
referees think that their main concerns have been satisfactorily addressed. They list however a 
number of remaining issues, which we would ask you to address in a revision of the manuscript.  
 
Moreover we would like to ask you to draw your attention to the following points, related to the 
reference to data that are reported in two other manuscripts (cited as 'in preparation'):  
- We would like to ask you to provide further information regarding the Sh2b3-/- mouse. In 
particular, we would ask you to describe the targeting strategy for generating the mouse, provide 
evidence that the strategy has been successful and include evidence that this is indeed a Sh2b3-/- 
mouse. We understand that you prefer to describe the full characterization of the phenotype in a 
separate manuscript, however considering the that this mouse model is crucial for the validation of 
the SH2B3 controlled sub-networks we think that the above information should also be provided in 
the present work. Moreover, in case the Saleh et al. study has been already accepted, it should be 
cited in the paper.  
- In the Materials and Methods subsection 'Identification and collection of whole blood eSNPs' you 
mention: "The eSNPs of whole blood used in this study were combined from eSNPs identified from 
FHS whole blood gene expression (~18,000 genes) and genotype data (~ 8 million SNPs after 
imputation to the 1000 Genomes reference panel) (Joehanes R, in preparation)....". We would like to 
ask you to include a more detailed and clear description of how these eSNPs were obtained and 
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integrated (i.e. it was not so clear to us how the 8 million SNPs from genotype data were used). 
Moreover, we would like to ask you to clarify whether newly identified eSNPs, if any (and 
especially those that are essential for the presented analyses), have been made available via 
deposition to a database.  

---------------------------------------------------------------------------  
 
Reviewer #1:  
 
The authors did address most concerns raised by the reviewers, but I still have a few more questions.  
 
1) In Fig 2b/c, the authors only presented the significant coEMs. However, the remaining non-
significant modules should also be presented for completeness. It would be useful to add bar plots 
including all 27 modules' p-values (maybe ordered by the p-values?) as supplementary figures.  
 
2) Fisher's exact test is typically used for categorical data. Therefore, when performing SSEA, a 
GWAS p-value threshold must have been applied, but has not been specified. What is the threshold?  
 
3) It seems that Mann-Whitney/Wilcoxon ranked-sum test is more appropriate for SSEA, because 
the rank-sum test is mostly sensitive to changes in the median while KS-test is sensitive to ANY 
differences in the two distributions (i.e. shape, spread, or median). Therefore, I suggest that the 
authors also calculate the rank-sum test p-values.  
 
4) To further strengthen the statistical significance of SSEA, the observed p-values should be 
compared to the distribution of p-values of random gene sets that match the number of genes.  
 
5) In Table 5, how many of these top 20 KDs are also detected by the BioGrid PPI database?  
 
Reviewer #2:  
 
The only remaining concern I have is that I do not agree with the authors that the 32 CoEMs shall 
not be corrected for multiple testing while correlating the eigengene values with hypertension (not 
necessarily bonferroni (P_values divided with 32) but FDR-adjusted). I think this will become 
practice for manuscript in which associations are sought for network modules with phenotypes. I 
agree, however, that the downstream validation now is so convincing that there are little doubt, if 
any, of the true value of the HT causal co_EMs particular for the co-EM subnetwork surrounding 
SH2B3.  
 

 
Reviewer #3:  
 
The manuscript has been substantially improved in this revision, and the newly added analysis and 
experiments (mouse RNA-seq) have served to better support the conclusions from this study. 
Overall, this manuscript presents an interesting study using co-expression network to examine 
genetic factors potentially implicated in BP traits, and also generated a large-scale expression data 
which will be valuable resource for the community. Several issues remain:  
 
1. Multiple-hypothesis correct was not conducted in many places in the text. For example, the 
authors identified 27 coEMs, among which 6 were associated with either SBP or DBP and 2 were 
associated with BP signature gene set. Since the enrichment test was performed across 27 coEMs, 
the uncorrected P values should be adjusted. In the same line, almost all the GO enrichment P values 
in this study were uncorrected. This also includes the enrichment test of KD genes.  
2. SSEA analysis section: the size of each co-expression module should be considered. For larger 
modules with more genes, they may have higher chance to contain expression-SNPs/eQTLs or 
significance GWAS variants. Therefore, the authors need to control for module sizes in their 
statistical test.  
3. The use of "putative causal" throughout the manuscript is too strong. The enrichment at most only 
suggests association, but not putative causal.  
4. The definition of KD genes is unclear. From what described in the text, A KD gene is defined (i) 
a local network hub (ii) its network neighborhood shows BP gene enrichment. It is thus unclear if a 
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KD gene itself is associated with blood pressure or shows differential expression in patients. From 
the definition given, KD genes could have neither, which is more evidenced against than support 
their roles as "driver". More importantly, for many genes causal for human diseases, they do not 
have to be hubs with global impacts on the network; instead, disease might arise by simply ablating 
the peripheral nodes with a highly specified function. Therefore, the authors need to carefully justify 
why the "driver" genes in BP traits should be network hubs.  
5. In the regulatory association network with SH2B3, the authors showed that many known BP-
related genes were involved. Are there any enrichment statistics to support this observation?  
6. The overall co-expression network was constructed using the entire selected participant in this 
study, 28% (11%+17%) with hypertension or pre-hypertension. The author should examine whether 
the sample heterogeneity would affect their conclusions. A recent study using co-expression 
network to study autism (Voineagu, I. et al. 2011, Nature) constructed the networks separately for 
cases and controls, and observed modules showing differences between the two groups. The authors 
might try to divide the samples according to their BP traits and examine the module differences 
between individuals with and without hypertension traits, which is complementary to the differential 
expression study. Given almost ~4000 samples were studied in this study, the sub-division will 
unlikely compromise the statistical power in the comparisons.  
 
Other issues:  
1. In many places, the manuscript cited unpublished results and conclusions. Is it a companion paper 
sent to MSB, or the authors might consider using other alternative sources to support their data.  
2. 83 genes showed differential expression between cases and controls, among which 65 and 8 
showed positive and negative correlations with BP traits, respectively. The authors should provide 
the related statistics (distribution of correlations) in the context and supplementary tables to help the 
audience better understand the relative contribution of each gene to the BP traits.  
3. Overall, this paper shows much "technical development" to uncover the loci or gene groups 
associated with BP traits, but their potential biology remains less discussed. It seems that the authors 
did not give much attention to the 83 differentially expressed genes, and relied more on the GWAS 
signals for eSNPs. It will be useful to discuss their disease implications.  
 
 
 
2nd Revision - authors' response 10 February 2015 

 
We appreciate the constructive comments from the Editor and the Reviewers. We have revised the 
manuscript to address each of the comments. Major changes in the main text are highlighted in the 
revised manuscript. Below are our point-to-point responses, with the reviewers’ comments in bold 
text. 

Editor’s comments: 

1. We would like to ask you to provide further information regarding the Sh2b3-/- mouse. In 
particular, we would ask you to describe the targeting strategy for generating the mouse, 
provide evidence that the strategy has been successful and include evidence that this is indeed 
a Sh2b3-/- mouse. We understand that you prefer to describe the full characterization of the 
phenotype in a separate manuscript, however considering the that this mouse model is crucial 
for the validation of the SH2B3 controlled sub-networks we think that the above information 
should also be provided in the present work. Moreover, in case the Saleh et al. study has been 
already accepted, it should be cited in the paper.  
Reply: Our related manuscript, which shows that SH2B3 (also known as LNK) plays a key role in 
the development of hypertension in mice, has been accepted for publication (Saleh M. et al., 
“Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ 
inflammation”. The Journal of Clinical Investigation. 2015, In press). As requested, we cited this 
paper in the revised manuscript to support our results and also added additional details of the gene 
targeting strategy as described by Takaki et al. (Takaki et al, 2000). To prove that the mouse we 
utilized is indeed a Sh2b3-/- mouse, we provided  RNA-seq evidence  in Supplementary Figure S6, 
which shows the absence of RNA reads of exons 3-8 of Sh2b3 in the Sh2b3-/- mice,  in complete 
agreement with the design of the targeting construct used to produce these mice (Takaki et al, 2000). 
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Supplementary Figure S6: Screenshot of RNA reads mapped to Sh2b3 in a WT mouse and a 
Sh2b3-/- mouse. The RNA reads of exon 3-8 of Sh2b3 are absent in the Sh2b3-/- mouse as expected. 
This picture is draw by Integrative Genomics Viewer (IGV) (Thorvaldsdóttir et al, 2012) .  
 

 
 
2. In the Materials and Methods subsection 'Identification and collection of whole blood 
eSNPs' you mention: "The eSNPs of whole blood used in this study were combined from 
eSNPs identified from FHS whole blood gene expression (~18,000 genes) and genotype data (~ 
8 million SNPs after imputation to the 1000 Genomes reference panel) (Joehanes R, in 
preparation)....". We would like to ask you to include a more detailed and clear description of 
how these eSNPs were obtained and integrated (i.e. it was not so clear to us how the 8 million 
SNPs from genotype data were used). Moreover, we would like to ask you to clarify whether 
newly identified eSNPs, if any (and especially those that are essential for the presented 
analyses), have been made available via deposition to a database.  
Reply: Because the eQTLs generated in Framingham data have not been published yet (Joehanes R, 
et al. under review in Nature Communications), we included more details in the methods section to 
describe the newly identified eQTLs (page 21). The newly generated eQTL results will be released 
on the NCBI Molecular QTL Browser (http://preview.ncbi.nlm.nih.gov/gap/eqtl/bioprocess/) when 
the paper is published. The text of our revised manuscript has been modified as follows: 
“The FHS blood eQTLs were generated using data from 5257 FHS participants with genome-wide 
genotype data and gene expression profiling. DNA isolation, and genotyping with the Affymetrix 
500K mapping array and the Affymetrix 50K gene-focused MIP array have been described 
previously (Levy et al, 2009). Imputation of ~36.3 million SNPs in 1000 Genomes Phase 1 SNP data 
was conducted using MACH (Li et al, 2010). For the eQTL identification, we used the 1000-genome 
resource imputed SNPs with minor allele frequency (MAF) >0.01 and imputation ratio >0.3, 
yielding approximately 8 million SNPs for eQTL analysis. A pedigree-based linear mixed model was 
used to determine the association between each gene expression value and the imputed SNP 
genotypes by adjusting for age, sex, technical covariates, cell types, and familial relatedness. The 
cis eSNPs (or eQTLs) were constrained by a 1 megabyte (Mb) window on either side of the 
transcription start site (TSS). The remaining eSNPs were defined as trans eSNPs. Genomic 
coordinates were based on NCBI human reference genome build 37/hg19. The Benjamini-Hochberg 
method (BH) (Benjamini & Hochberg, 1995) was used to calculate false discovery rates (FDR) of 
cis and trans eQTLs separately.” 
 
 
Reviewer #1:  
 
1.1 In Figure 2b/c, the authors only presented the significant coEMs. However, the remaining 
non-significant modules should also be presented for completeness. It would be useful to add 
bar plots including all 27 modules' p-values (maybe ordered by the p-values?) as 
supplementary figures.  
Reply: As suggested, we have added Supplementary Figure S3 (below) to show all 27 modules and 
their correlation with BP: 
Supplementary Figure S3. Co-expression modules and their correlation with BP. A) The 
correlation of eigengenes of each BP coexpression module (coEM) with SBP; B) The correlation of 
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eigengenes of each BP coEM with DBP; C) The enrichment of BP top signature genes in each BP 
coEM. The y-axis is the –log10 transformed p value. 

 
 
1.2 Fisher's exact test is typically used for categorical data. Therefore, when performing 
SSEA, a GWAS p-value threshold must have been applied, but has not been specified. What is 
the threshold?  
Reply: In this study, we used a GWAS p-value threshold of p<0.05 for the Fisher’s exact test in 
SSEA. We have added this information in the methods section if the revised manuscript (page 22): 
 “In order to perform Fisher’s exact test, we categorized all eSNPs into significant and non-
significant categories based on their association with BP using a BP GWAS p-value threshold of 
p<0.05.” 
 
1.3 It seems that Mann-Whitney/Wilcoxon ranked-sum test is more appropriate for SSEA, 
because the rank-sum test is mostly sensitive to changes in the median while KS-test is 
sensitive to ANY differences in the two distributions (i.e. shape, spread, or median). Therefore, 
I suggest that the authors also calculate the rank-sum test p-values.  
Reply: We chose to use KS and Fisher’s exact tests to specifically test whether there is significant 
deviation (toward lower p values) in the disease association p values of the eSNPs of BP-associated 
gene sets from the expected random distribution. Therefore, our intention was to test for differences 
in the distribution, not the mean or median p values. This approach has been used consistently in all 
our previous studies utilizing SSEA (Chan et al, 2014; Huan et al, 2013; Mäkinen et al, 2014). 
We recognize that testing the median differences using the Mann-Whitney/Wilcox test will also be 
supportive of our findings. As suggested by the reviewer, we used the Mann-Whitney/Wilcoxon 
ranked-sum (Wilcox) test to repeat our SSEA analysis. As shown in the Response Table 1 below, 
the new results using the Wilcox test are highly consistent with those from the KS and Fisher’s exact 
tests, further confirming our results. However, we feel that reporting results from three separate tests 
may be confusing, especially with regard to small differences in the results from different tests. We 
therefore opted to keep our original results in the revised manuscript.  
 

 SBP GWAS DBP GWAS 
MODULE KS Test 

Pval 
Fisher Test 

Pval 
Wilcox p 

val 
KS Test Pval Fisher Test 

Pval 
Wilcox p 

val 

BP signature 0.98 1 1 0.29 1 1 

Turquoise 2.8e-45 8.0e-115 5.2e-52 1.8e-28 3.0e-39 9.5e-24 

Blue 1.4e-44 7.0e-54 1.9e-34 1.3e-8 3.4e-15 9.8e-6 

Red 8.0e-5 1.65E-17 7.8e-3 2.2e-15 6.7e-19 1.0e-13 

Purple 0.65 0.58 1 1 1 1 

Lightyellow 1.6e-3 1 0.96 0.12 1 1 
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Response Table 1: SNP set enrichment analysis of BP coexpression modules and BP signature gene 
set 
 
1.4 To further strengthen the statistical significance of SSEA, the observed p-values should be 
compared to the distribution of p-values of random gene sets that match the number of genes.  
Reply: We thank the reviewer for this suggestion. In the revised manuscript, we carried out 1000 
permutations for each gene set to compare the observed p-values with those of random gene sets 
(matched for the number of genes). Permutation-based p values were derived using the formula 
(number of p values from random gene sets that are smaller than the observed p value/1000). The 
new results are shown in Table 3 on page 41 of the revised manuscript (also shown below). We are 
glad to report that the results from the suggested permutation analysis are highly consistent with our 
original results. The Turquoise, Blue, Red and Chocolate coEMs remained significant in the 
permutation-based analysis.  

Chocolate 2.2e-14 5.0e-5 1.3e-12 0.07 1 1 
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Main Text Table 3: SNP set enrichment analysis of BP coexpression modules and BP signature 
gene set 
Highlighted p values pass Bonferroni-corrected p<0.05; 
*Permutation-based p is empirically derived based on 1000 permutations (see Methods). <0.001 
indicates none of the 1000 random gene sets of matching size had p values lower than the observed 
test p values. 
In the revised manuscript, we revised the SSEA methods on page 22: 
“… For each gene set and each statistical test (KS or Fisher’s exact test), we computed empirically 
derived enrichment p values based on 1000 permutations. Each permutation involved random 
sampling of equal number of genes matching the gene set being tested. Each permutation gene set 
was subject to the same KS or Fisher’s exact test as was used for the testing gene set. The 
empirically derived p value was estimated as the number of permutation gene sets with p values less 
than the observed p value of a given gene set/1000. ” 
 
1.5 In Table 5, how many of these top 20 KDs are also detected by the BioGrid PPI database?  
Reply: Among the top 20 KDs, 13 were detected as KDs using the HPRD PPI database and the 
other 7 were from Bayesian networks. Six of the 13 (46%) HPRD PPI KDs were replicated using 
the BioGrid PPI database. Considering that the direct PPI overlap between the two databases is only 
15% (as shown in our previous response letter), a replication rate of 46% for the top KDs supports 
stronger reliability of the top KDs. Since our comparison analysis between PPI databases revealed 
better performance of the HPRD PPI database (as reported in our previous response letter), we kept 
the top KDs from HPRD PPI in Table 5. 
 
Reviewer #2:  
 
The only remaining concern I have is that I do not agree with the authors that the 32 CoEMs 
shall not be corrected for multiple testing while correlating the eigengene values with 
hypertension (not necessarily bonferroni (P_values divided with 32) but FDR-adjusted). I 
think this will become practice for manuscript in which associations are sought for network 
modules with phenotypes. I agree, however, that the downstream validation now is so 
convincing that there are little doubt, if any, of the true value of the HT causal co_EMs 
particular for the co-EM subnetwork surrounding SH2B3.  
Reply: In the revised manuscript, we used the Benjamini-Hochberg method to correct for multiple 
tests and estimated the FDR. All 6 significant modules (at p<0.05) passed FDR<0.2, and the 
Chocolate module passed FDR<0.05. We included this information in the revised manuscript on 
page 7:  
“We identified 27 coEMs (Fig 2A and Supplementary Fig S2; the names of the coEMs are 
represented by different colors). Six coEMs (Turquoise, Blue, Red, Purple, Lightyellow, and 
Chocolate modules) were associated with either SBP or DBP at p<0.05 and passed FDR<0.2 (Fig 
2B). The Chocolate module passed FDR<0.05.” 
Although p<0.05 or FDR<0.2 is arguably not a stringent cutoff, several previous coexpression 
network studies have demonstrated that interesting findings can be discovered when a less rigorous 

 SBP GWAS DBP GWAS 
MODULE KS  P Permutaion-

based KS 
P* 

Fisher 
P 

Permutation-
based Fisher 

P * 

KS  P Permutation-
based KS P* 

Fisher 
P* 

Permutation-
based Fisher 

P* 
BP signature 0.98 0.96 1 1 0.20 0.23 1 1 

Turquoise 2.8e-45 <0.001 7.8e-
115 

<0.001 1.8e-28 <0.001 3.0e-39 <0.001 

Blue 1.4e-44 <0.001 7.0e-54 <0.001 1.3e-8 <0.001 3.4e-15 <0.001 
Red 8.0e-5 <0.001 1.7e-17 <0.001 2.2e-15 <0.001 6.7e-19 <0.001 

Purple 0.65 0.71 0.58 0.61 1 1 1 1 
Lightyellow 1.6e-3 0.004 1 1 0.12 0.16 1 1 
Chocolate 2.3e-14 <0.001 5.0e-5 <0.001 0.07 0.06 1 1 
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statistical threshold is used to identify trait-associated coEMs (i.e. not  corrected for multiple testing) 
(Farber, 2010; Leduc et al, 2012; Miller et al, 2008; Miller et al, 2013; Vanderlinden et al, 2013). An 
additional rationale for using nominal p values to select coEMs is that these coEMs are further 
integrated with multiple levels of additional information including genetic signals, eQTLs, and 
Bayesian and PPI gene networks. Integration of multiple levels of data has been proven to reduce 
false discoveries. Therefore, although the initial selection of coEMs did not involve extremely 
stringent cutoffs and was more inclusive, the additional downstream analyses serve to increase 
confidence in the findings. Last but not least, we were able to experimentally validate SH2B3 as a 
key driver of the Turquoise coEM, which only passed p<0.05 and FDR<0.2. This experimental 
proof further supports the notion that coEMs that show only nominal association with a trait can still 
be biologically valid and meaningful. 
 
Reviewer #3:  
 
3.1. Multiple-hypothesis correction was not conducted in many places in the text. For example, 
the authors identified 27 coEMs, among which 6 were associated with either SBP or DBP and 
2 were associated with BP signature gene set. Since the enrichment test was performed across 
27 coEMs, the uncorrected P values should be adjusted. In the same line, almost all the GO 
enrichment P values in this study were uncorrected. This also includes the enrichment test of 
KD genes. 
Reply: As detailed in our response to Reviewer 2 comment, we have added the Benjamini-
Hochberg method to correct for multiple testing and estimated FDR for the selection of BP coEMs.   
For the GO enrichment analysis, we previously provided all GO biological process terms meeting 
nominal p<0.01 and marked those passing Bonferroni correction (0.05/825 unique GO biological 
process terms is p<6e-5) in Table 2. We only focused on reporting the GO terms passing Bonferroni 
correction in the main text of the Results and Discussion sections. In the revised manuscript, we 
deleted GO terms that did not pass Bonferroni correction in Table2 and changed all p values to 
Bonferroni-corrected p values.  
For the Key Driver analysis, as described in the Methods section, the reported KD enrichment p 
values were already corrected by the number of genes (i.e., all potential KD candidates) in the gene 
network. Therefore, all KDs reported have passed Bonferroni-corrected p<0.05. We have clarified 
this in the Methods section (page 23) of the revised manuscript as follows: 
“A G (gene) that reached a Bonferroni-corrected KD-enrichment p<0.05 was reported as a KD 
(after correction for the number of genes in the 3rd-layer expanding network of the tested BP causal 
gene set).” 
 
 3.2. SSEA analysis section: the size of each co-expression module should be considered. For 
larger modules with more genes, they may have higher chance to contain expression-
SNPs/eQTLs or significance GWAS variants. Therefore, the authors need to control for 
module sizes in their statistical test.  
Reply: As detailed in our response to Reviewer 1 (Comment 1.4), in the revised manuscript, we 
have added permutation-based analyses that control for module size. The new results are shown in 
Table 3 (page 41) of the revised manuscript (also shown below). We are glad to report that the 
results from permutation testing are highly consistent with our original results. The Turquoise, Blue, 
Red and Chocolate coEMs remained significant after controlling for module size.  
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3.3 The use of "putative causal" throughout the manuscript is too strong. The enrichment at 
most only suggests association, but not putative causal.  
Reply: We agree with the reviewer that any strong claims of causality are unfounded without 
experimental validation. We and others have used the phrase “putatively causal” to refer to gene sets 
that are inferred to play a putative causal role in diseases based on genetic evidence. Our enrichment 
analysis considered genetic association, and genetic variation is upstream of disease events based on 
the central dogma. This concept forms the basis of Mendelian randomization analysis, which helps 
to tease out causal mechanisms of disease. Therefore, the results from our SSEA enrichment 
analysis do not simply imply association, but carry “putatively” causal information. Our validation 
experiments in the SH2B3 knockout mouse further support the “putatively” causal nature of coEMs 
and their key drivers. Taken together, we feel that it is important to reflect the nature of the SSEA 
analysis that is designed to infer potential causality. Based on the reviewer’s objections to the word 
“putative”, we have reworded “putative causal” to “genetically inferred causal” throughout the 
manuscript to indicate they are potentially causal based on statistical inference, but the causal nature 
is in need of future experimental validation. In the revised manuscript (page 9), we clarified this 
point as follows: 
 “A BP gene set showing significance in SSEA is referred to as “genetically inferred causal”, 
because it is supported by orthogonal genetic evidence (i.e. association of its eSNPs with BP in 
GWAS) that is unlikely to be confounded by non-genetic factors. The same term also implies that 
further experimental validation is needed to establish causality with certainty.” 

3.4. The definition of KD genes is unclear. From what described in the text, A KD gene is 
defined (i) a local network hub (ii) its network neighborhood shows BP gene enrichment. It is 
thus unclear if a KD gene itself is associated with blood pressure or shows differential 
expression in patients. From the definition given, KD genes could have neither, which is more 
evidenced against than support their roles as "driver". More importantly, for many genes 
causal for human diseases, they do not have to be hubs with global impacts on the network; 
instead, disease might arise by simply ablating the peripheral nodes with a highly specified 
function. Therefore, the authors need to carefully justify why the "driver" genes in BP traits 
should be network hubs.  

Reply: We defined KDs as key regulatory genes of disease-related networks based on network 
topology, but not from disease association information of the KDs themselves. As pointed out by the 
reviewer, a KD is a hub of a gene network that is enriched for BP genes. Due to the “hub” properties 
of the KDs, perturbations in KDs are more likely to modulate a large number of BP-associated genes 
in a BP-related gene subnetwork, which in turn affect BP. Therefore, these genes possess properties 
of key regulators or drivers of BP. In this context, “driver” genes and “causal” genes are two 
separate concepts: causal genes can be either hub or peripheral nodes as long as their perturbations 
lead to disease phenotypes regardless of the magnitude of effect, whereas driver genes can only be 
hub nodes whose perturbations, if induced, may cause strong phenotypic effects due to their 
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potential to regulate many disease associated genes. The importance of KD genes has been 
supported by a number of recent high impact studies (Chan et al, 2014; Goh et al, 2007; Mäkinen et 
al, 2014; Wang et al, 2012; Zhang et al, 2013). 
 
3.5. In the regulatory association network with SH2B3, the authors showed that many known 
BP-related genes were involved. Are there any enrichment statistics to support this 
observation? 
Reply: In the revised manuscript, we systematically checked the overlap of known BP-related genes 
with genes in the SH2B3 derived PPI network. We used the latest version of GeneRif 
(http://www.ncbi.nlm.nih.gov/gene/about-generif; downloaded in Jan 2015) and searched for BP-
related genes using keywords “hypertension” and “blood pressure”. We found 657 genes as 
suggestive BP-related genes in GeneRif (GeneRif collected literature descriptions of 14,069 unique 
human genes). Among the 657 BP-related genes, 41 were present in the SH2B3 derived PPI 
subnetwork comprised of 362 genes. Comparison of the two ratios 656/14,069 and 41/362 yielded 
p=5.5e-8 (by the hypergeometric test) and 2.43-fold enrichment. This result indicates that the 
SH2B3 derived PPI subnetwork is enriched for known BP-related genes (based on literature 
support). We have included this information in the revised manuscript (page 12).  
 “In order to systematically check if the SH2B3 derived PPI subnetwork showed any enrichment for  
literature-based BP-related genes, we created a list of 657 BP-related genes by searching GeneRif 
(http://www.ncbi.nlm.nih.gov/gene/about-generif; downloaded in Jan 2015) using the keywords 
“hypertension” and “blood pressure”. GeneRif includes literature descriptions of 14,069 unique 
human genes in total. We found that 41 of the 657 genes were present in the SH2B3 derived PPI 
subnetwork, which consisted of 362 genes in total, including PLCE1 (Ehret et al, 2011), BAT2 
(Ehret et al, 2011), ADRB2 (Lou et al, 2010), RHOA (Connolly & Aaronson, 2011), and SOCS1 
(Satou et al, 2012). Comparison of the two ratios 656/14,069 and 41/362 yielded p=5.5e-8 (by the 
hypergeometric test) and 2.43-fold enrichment. This result indicates that the SH2B3 derived PPI 
subnetwork is enriched for known BP-related genes.” 

 

3.6. The overall co-expression network was constructed using the entire selected participant in 
this study, 28% (11%+17%) with hypertension or pre-hypertension. The author should 
examine whether the sample heterogeneity would affect their conclusions. A recent study using 
co-expression network to study autism (Voineagu, I. et al. 2011, Nature) constructed the 
networks separately for cases and controls, and observed modules showing differences 
between the two groups. The authors might try to divide the samples according to their BP 
traits and examine the module differences between individuals with and without hypertension 
traits, which is complementary to the differential expression study. Given almost ~4000 
samples were studied in this study, the sub-division will unlikely compromise the statistical 
power in the comparisons. 
Reply: The method suggested by reviewer is suitable for categorical or dichotomized traits (i.e., 
cases vs controls). As the reviewer pointed out, the study of autism (Voineagu, I. et al. 2011, Nature) 
constructed and compared coexpression networks between cases an controls, and identified discrete 
coexpression modules associated with autism. We have also recently utilized a similar approach to 
identify the disrupted coexpression network modules in 188 coronary heart disease case-control 
pairs (Huan et al, 2013).  
In this study, however, the traits of interest are continuous blood pressure traits (systolic and 
diastolic BP) that follow a normal distribution. The most suitable coexpression network 
methodology for continuous traits is the type of analysis we have implemented in the current study. 
The same coexpression network approach has been employed by the developers of coexpression 
network methodology when studying continuous traits such as mouse weight (Ghazalpour et al, 
2006) and age (Horvath et al, 2012). 
The suggestion that we compare coexpression networks in hypertensive cases vs. normotensive 
controls might be of interest, but transforming quantitative/continuous traits into 
categorical/dichotomized traits will result in a loss of statistical power and will be a very different 
design that is beyond the scope of this study. 
 
3.7. In many places, the manuscript cited unpublished results and conclusions. Is it a 
companion paper sent to MSB, or the authors might consider using other alternative sources 
to support their data.  
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Reply: Our related study, which shows that SH2B3 (also known as LNK) plays a key role in the 
development of hypertension in mice, has been recently accepted by The Journal of Clinical 
Investigation (Saleh et al, 2015). We cited this paper in the revised manuscript to support our results.  
 
3.8. 83 genes showed differential expression between cases and controls, among which 65 and 8 
showed positive and negative correlations with BP traits, respectively. The authors should 
provide the related statistics (distribution of correlations) in the context and supplementary 
tables to help the audience better understand the relative contribution of each gene to the BP 
traits.  
Reply: In Supplementary Data 1 and 2, we included beta coefficients (estimates) of differentially 
expressed BP genes, with a positive value indicating a positive correlation, and a negative value 
indicating a negative correlation.  
 
3.9. Overall, this paper shows much "technical development" to uncover the loci or gene 
groups associated with BP traits, but their potential biology remains less discussed. It seems 
that the authors did not give much attention to the 83 differentially expressed genes, and relied 
more on the GWAS signals for eSNPs. It will be useful to discuss their disease implications. 
Reply: We have expanded the discussion of the top signature genes in the revised manuscript on 
(page 14) as follows: 
“By first applying a traditional approach that focused on differentially expressed individual genes, 
we identified a gene signature set comprised of 83 genes whose expression levels were correlated 
with BP traits. The 83-gene BP signature gene set did not show significant enrichment for biological 
processes or pathways suggesting that the traditional single-gene approach lacks power to capture 
high-order organization of genes underlying BP regulation. Subsequent SNP set enrichment 
analysis (SSEA), which incorporates genetic signals, did not support an overall causal role of the 
top BP signature genes. Although this lack of overall significance in SSEA does not exclude a small 
subset of genes being causal -- for example, a top signature gene ATP2B1 has been previously 
detected as a GWAS signal in ICBP GWAS at p<5x10-8. ATP2B1 (ATPase, Ca2+  transporting, 
plasma membrane 1) is known to be responsible for Ca2+ transportation in plasma membrane and 
a BP-associated ATP2B1 SNP has been linked to ATP2B1 expression in umbilical artery smooth 
muscle cells (Tabara et al, 2010). Ca2+ is critical for muscle contraction (Marks, 2003) and defects 
or altered expression of ATP2A1 will likely induce changes in artery smooth muscle contraction 
which may in turn affects blood pressure variability. Another top signature gene, FOS (known as c-
fos), has been found to be associated with hypertension (Cunningham et al, 2006; Minson et al, 
1996). The c-fos gene is considered to be a useful marker of neuronal activity in different sites, 
including those important in BP control. In the rat, c-fos expression in the brain is likely to be 
important for BP control; and the blockade of c-fos expression in this region attenuates resting and 
stimulated BP levels. Inhibition of local neuronal activity acutely increased both BP and 
immunoreactivity to Fos, the protein product of the c-fos gene. Intravenous infusion of sodium 
nitroprusside induced hypotension and the number of Fos-positive spinal sympathetic neurons 
increased (Minson et al, 1996). Several additional BP signature genes have been reported to be 
involved BP-related diseases or processes such as cardiovascular disease (e.g., ABCA1 (Tang & 
Oram, 2009), AHR(Zhang, 2011), and GZMB (Joehanes et al, 2013)), type II diabetes (e.g., ABCA1 
(Tang & Oram, 2009), ANXA1 (Lindgren et al, 2001), and PTGS2 (Shanmugam et al, 2006)), and 
inflammation (e.g., GZMB (Hiebert & Granville, 2012) and KLRD1 (Choi et al, 2012)). We 
speculate that these genes may play important roles in BP regulation, but further mechanistic 
studies are necessary.” 

 

References: 
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological): 
289-300 
 
Chan KHK, Huang Y-T, Meng Q, Wu C, Reiner A, Sobel EM, Tinker L, Lusis AJ, Yang X, Liu S 
(2014) Shared Molecular Pathways and Gene Networks for Cardiovascular Disease and Type 2 
Diabetes Mellitus in Women Across Diverse Ethnicities. Circulation: Cardiovascular Genetics 7: 
911-919 
 



Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 35 

Choi HJ, Yun HS, Kang HJ, Ban H-J, Kim Y, Nam H-Y, Hong E-J, Jung S-Y, Jung SE, Jeon J-P 
(2012) Human transcriptome analysis of acute responses to glucose ingestion reveals the role of 
leukocytes in hyperglycemia-induced inflammation. Physiological genomics 44: 1179-1187 
 
Connolly MJ, Aaronson PI (2011) Key role of the RhoA/Rho kinase system in pulmonary 
hypertension. Pulmonary pharmacology & therapeutics 24: 1-14 
 
Cunningham JT, Fleming T, Penny ML, Herrera-Rosales M, Mifflin SW (2006) Increased c-Fos in 
medullary cardiovascular nuclei in acute and chronic renal wrap hypertension. The FASEB Journal 
20: A1205-A1206 
 
Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, 
Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O'Reilly PF, Amin N, Bragg-Gresham JL, 
Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y et al (2011) Genetic variants in novel 
pathways influence blood pressure and cardiovascular disease risk. Nature 478: 103-109 
 
Farber CR (2010) Identification of a gene module associated with BMD through the integration of 
network analysis and genome‐wide association data. Journal of Bone and Mineral Research 25: 
2359-2367 
 
Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake 
TA, Lusis AJ, Horvath S (2006) Integrating genetic and network analysis to characterize genes 
related to mouse weight. PLoS Genet 2: e130 
 
Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L (2007) The human disease 
network. Proceedings of the National Academy of Sciences 104: 8685-8690 
 
Hiebert PR, Granville DJ (2012) Granzyme B in injury, inflammation, and repair. Trends in 
molecular medicine 18: 732-741 
 
Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den Berg LH, Ophoff RA 
(2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 
13: R97 
 
Huan T, Zhang B, Wang Z, Joehanes R, Zhu J, Johnson AD, Ying S, Munson PJ, Raghavachari N, 
Wang R, Liu P, Courchesne P, Hwang SJ, Assimes TL, McPherson R, Samani NJ, Schunkert H, 
Meng Q, Suver C, O'Donnell CJ et al (2013) A systems biology framework identifies molecular 
underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol 33: 1427-1434 
 
Joehanes R, Ying S, Huan T, Johnson AD, Raghavachari N, Wang R, Liu P, Woodhouse KA, Sen 
SK, Tanriverdi K (2013) Gene expression signatures of coronary heart disease. Arteriosclerosis, 
thrombosis, and vascular biology 33: 1418-1426 
 
Leduc MS, Blair RH, Verdugo RA, Tsaih S-W, Walsh K, Churchill GA, Paigen B (2012) Using 
bioinformatics and systems genetics to dissect HDL cholesterol levels in an MRL/MpJ x SM/J 
intercross. Journal of lipid research: jlr. M025833 
 
Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC, 
Johnson AD, Aspelund T, Aulchenko Y, Lumley T, Kottgen A, Vasan RS, Rivadeneira F, 
Eiriksdottir G, Guo X, Arking DE, Mitchell GF, Mattace-Raso FU et al (2009) Genome-wide 
association study of blood pressure and hypertension. Nat Genet 41: 677-687 
 
Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to 
estimate haplotypes and unobserved genotypes. Genetic epidemiology 34: 816-834 
 
Lindgren CM, Nilsson A, Orho-Melander M, Almgren P, Groop LC (2001) Characterization of the 
annexin I gene and evaluation of its role in type 2 diabetes. Diabetes 50: 2402-2405 
 



Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 36 

Lou Y, Liu J, Huang Y, Liu J, Wang Z, Liu Y, Li Z, Li Y, Xie Y, Wen S (2010) A46G and C79G 
polymorphisms in the β2-adrenergic receptor gene (ADRB2) and essential hypertension risk: a 
meta-analysis. Hypertension Research 33: 1114-1123 
 
Mäkinen V-P, Civelek M, Meng Q, Zhang B, Zhu J, Levian C, Huan T, Segrè AV, Ghosh S, Vivar J 
(2014) Integrative genomics reveals novel molecular pathways and gene networks for coronary 
artery disease. PLoS genetics 10: e1004502 
 
Marks AR (2003) Calcium and the heart: a question of life and death. Journal of Clinical 
Investigation 111: 597 
 
Miller JA, Oldham MC, Geschwind DH (2008) A systems level analysis of transcriptional changes 
in Alzheimer's disease and normal aging. The Journal of Neuroscience 28: 1410-1420 
 
Miller JA, Woltjer RL, Goodenbour JM, Horvath S, Geschwind DH (2013) Genes and pathways 
underlying regional and cell type changes in Alzheimer's disease. Genome Med 5: 48 
 
Minson J, Arnolda L, Llewellyn-Smith I, Pilowsky P, Chalmers J (1996) Altered c-fos in rostral 
medulla and spinal cord of spontaneously hypertensive rats. Hypertension 27: 433-441 
 
Saleh MA, McMaster WG, Wu J, Norlander AE, Funt SA, Thabet SR, Kirabo A, Xiao L, Chen W, 
Itani HA, Michell D, Huan T, Zhang Y, Titze J, Levy D, Harrison DG, Madhur MS (2015) 
Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. 
The Journal of Clinical Investigation In press 
 
Satou R, Miyata K, Gonzalez-Villalobos RA, Ingelfinger JR, Navar LG, Kobori H (2012) 
Interferon-γ biphasically regulates angiotensinogen expression via a JAK-STAT pathway and 
suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells. The FASEB Journal 26: 
1821-1830 
 
Shanmugam N, Todorov I, Nair I, Omori K, Reddy M, Natarajan R (2006) Increased expression of 
cyclooxygenase-2 in human pancreatic islets treated with high glucose or ligands of the advanced 
glycation endproduct-specific receptor (AGER), and in islets from diabetic mice. Diabetologia 49: 
100-107 
 
Tabara Y, Kohara K, Kita Y, Hirawa N, Katsuya T, Ohkubo T, Hiura Y, Tajima A, Morisaki T, 
Miyata T (2010) Common Variants in the ATP2B1 Gene Are Associated With Susceptibility to 
Hypertension The Japanese Millennium Genome Project. Hypertension 56: 973-980 
 
Takaki S, Sauer K, Iritani BM, Chien S, Ebihara Y, Tsuji K, Takatsu K, Perlmutter RM (2000) 
Control of B cell production by the adaptor protein lnk. Definition Of a conserved family of signal-
modulating proteins. Immunity 13: 599-609 
 
Tang C, Oram JF (2009) The cell cholesterol exporter ABCA1 as a protector from cardiovascular 
disease and diabetes. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 
1791: 563-572 
 
Thorvaldsdóttir H, Robinson JT, Mesirov JP (2012) Integrative Genomics Viewer (IGV): high-
performance genomics data visualization and exploration. Briefings in bioinformatics: bbs017 
 
Vanderlinden LA, Saba LM, Kechris K, Miles MF, Hoffman PL, Tabakoff B (2013) Whole brain 
and brain regional coexpression network interactions associated with predisposition to alcohol 
consumption. PLoS One 8: e68878 
 
Wang I, Zhang B, Yang X, Zhu J, Stepaniants S, Zhang C, Meng Q, Peters M, He Y, Ni C (2012) 
Systems analysis of eleven rodent disease models reveals an inflammatome signature and key 
drivers. Molecular systems biology 8 
 



Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 37 

Zhang B, Gaiteri C, Bodea L-G, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, 
Dobrin R (2013) Integrated systems approach identifies genetic nodes and networks in late-onset 
Alzheimer’s disease. Cell 153: 707-720 
 
Zhang N (2011) The role of endogenous aryl hydrocarbon receptor signaling in cardiovascular 
physiology. Journal of cardiovascular disease research 2: 91-95 
 
 
 
 
 
3rd Editorial Decision 02 March 2015 

Thank you for sending us your revised manuscript. I apologize for the somewhat delayed response, 
which was due to the fact that last week I was out of the office for a few days, performing lab visits. 
We are now satisfied with the modifications made and we think that the study is suitable for 
publication.  
 
Before we formally accept the manuscript we would like to ask you to provide some further 
information regarding the newly identified eSNPs (the full list of which will be published in 
Joehanes et al., in preparation) in order to facilitate the use of this new data by those interested, until 
the related paper is accepted for publication. In particular, we would ask you to mark in 
Supplementary Dataset S3 the newly identified eSNPs/eQTLs (i.e. by an asterisk) and to provide 
information i.e. on the allele that is affected and how it is linked to the expression of the related 
gene.  
 
3rd Revision - authors' response 08 March 2015 

Thank you for the encouraging decision! We have revised our manuscript in accordance with your 
suggestions as detailed below.  

 
Comment #1: Before we formally accept the manuscript we would like to ask you to provide some 
further information regarding the newly identified eSNPs (the full list of which will be published in 
Joehanes et al., in preparation) in order to facilitate the use of this new data by those interested, 
until the related paper is accepted for publication. In particular, we would ask you to mark in 
Supplementary Dataset S3 the newly identified eSNPs/eQTLs (i.e. by an asterisk) and to provide 
information i.e. on the allele that is affected and how it is linked to the expression of the related 
gene. 

 
Response: We have included the details of newly identified eSNPs (Joehanes et al., in preparation) 
in Supplementary Dataset S3 but specifying the eSNP sources. If the eSNPs are from the 
unpublished FHS study, we added columns detailing the allele affected and the direction of 
association with the expression of the related gene. 
 

 
 
 
 
 


