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ABSTRACT Synaptic transmission requires that vesicles filled with neurotransmitter molecules be docked to the plasma mem-
brane by the SNARE protein complex. The SNARE complex applies attractive forces to overcome the long-range repulsion be-
tween the vesicle and membrane. To understand how the balance between the attractive and repulsive forces defines the
equilibrium docked state we have developed a model that combines the mechanics of vesicle/membrane deformation with
an apparently new coarse-grained model of the SNARE complex. The coarse-grained model of the SNARE complex is cali-
brated by comparison with all-atom molecular dynamics simulations as well as by force measurements in laser tweezer exper-
iments. The model for vesicle/membrane interactions includes the forces produced by membrane deformation and hydration or
electrostatic repulsion. Combining these two parts, the coarse-grained model of the SNARE complex with membrane me-
chanics, we study how the equilibrium docked state varies with the number of SNARE complexes. We find that a single SNARE
complex is able to bring a typical synaptic vesicle to within a distance of ~3 nm from the membrane. Further addition of SNARE

complexes shortens this distance, but an overdocked state of >4—-6 SNARESs actually increases the equilibrium distance.

INTRODUCTION

The soluble n-ethylmaleimide-sensitive-factor attachment
protein receptor (SNARE) (1,2) complexes are the core
protein machinery involved in synaptic vesicle docking
and fusion. SNARE proteins form a link between vesicles
and the plasma membrane, providing a mechanism for
zippering the two together. The transmembrane vesicle-
associated protein synaptobrevin (Syb or v-SNARE) forms
a four-helix bundle with the proteins SNAP-25 and the
transmembrane protein syntaxin (Syx), which are attached
to the neuronal plasma membrane and termed the
“t-SNARE”. SNAP-25 contributes two helices (SN1 and
SN2) to the bundle, while both Syx and Syb contribute
one helix each (3,4). During exocytosis the vesicles are first
tethered or targeted toward the plasma membrane (>25 nm
(5)), then they are docked at the plasma membrane with the
help of the adhesive forces provided by SNAREs. After
docking, priming occurs, which finally leads to vesicle-to-
membrane fusion (1). The zippering of the SNARE bundle
is thought to provide the necessary force to bring the vesicle
in proximity to the plasma membrane by overcoming the
hydration or electrostatic repulsion between the two.

The process of synaptic vesicle docking and fusion can be
viewed as deformation of a mechanical system, in which a
synaptic vesicle, a nearly spherical lipid bilayer shell, is
brought in proximity to the plasma membrane, a nearly
flat lipid bilayer, under the influence of the attractive forces
exerted by the SNARE complex. Key structural characteris-
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tics of the SNARE bundle have been determined experimen-
tally, including its x-ray crystal structure (6) and the location
of the layers thought to be essential to SNARE’s function
(7), which have been confirmed through single molecule
force experiments (8). All-atom simulations have been per-
formed to analyze the structural aspects of the SNARE
bundle including detailed interactions between the different
helices (9) as well as to investigate the effects of oxidation
and reduction of the SNAP25 linker domain on the forma-
tion of the SNARE bundle (10). Some all-atom simulation
work has been done on the unzippering of the SNARE
bundle (11), but time constraints prevent simulations for
large displacements and longer timescales. In an effort to
overcome timescale limitations, some coarse-grained (CG)
simulations have been performed (12,13). Force fields for
CG simulations have been developed (14). However, to
suit a wide range of applications, these force fields still
need to be refined (15). Relatively little has been done on
coupling the SNARE unzipping process to the vesicle-
plasma membrane behavior to address questions including
that of how docking depends on the number of SNAREs.
This problem is difficult because it must capture large
length-scale deformations and electrostatics in the vesicle-
plasma membrane system as well as the amino-acid-level
chemical specificity essential to the functioning of the
SNARE bundle.

There is significant debate about how many SNARE com-
plexes are required to make synaptic fusion happen. Earlier
studies suggested that 5-8 SNARE complexes form the
fusion pore (16). However, recent studies suggest a smaller
number of SNARE complexes. Thus, it was suggested
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recently that a single SNARE complex can trigger fusion
(17), while stating the fact that the fusion rate increases
with the number of SNARESs. In Sinha et al. (18), it has
been proposed that two Syb units are required for fusion,
based on fluorescence response of tagged Syb. The work
done in Mohrmann et al. (19) suggests that three SNARE
units are needed to carry out the fusion, on the basis of
fusion rate. At the same time, studies performed on model
systems in vitro suggest numbers ranging between 5 and
11 (20).

To investigate how the number of SNARE complexes
affects vesicle docking, we developed a continuum model
of the lipid bilayers and combined it with a CG model for
the SNARE that includes chemical specificity. Specifically,
the proteins in the SNARE bundle are represented by an
a-carbon-based CG model that includes both structural
and chemical specificity by employing an elastic network
model (ENM) (21,22) and Miyazawa and Jernigan
(23-25) contact energies, respectively. The SNARE CG
model is calibrated to match the peak unzipping force
determined by Gao et al. (8), and is used to calculate a force
displacement curve for the unzipping process, along with
snapshots of corresponding structures that provide informa-
tion about the unzipping pathway. The continuum model for
bilayer deformation is based on lipid membrane theory
developed in Jenkins et al. (26) and is an extension of
work done in Long et al. (27). It computes the force required
to counter the vesicle-membrane repulsion, bringing the
vesicle to a given distance from the membrane while taking
full account of the vesicle and membrane deformation.
Balancing the SNARE-induced attraction against the
vesicle-membrane hydration or electrostatic repulsion pro-
vides us with information on the equilibrium gap between
the two membranes for a given number of SNAREs. Based
on this information, we study the effect of the number of
SNAREs from the point of view of the mechanics of the
process.

MATERIALS AND METHODS
All-atom simulations

We conducted all-atom molecular simulations of SNARE helices in order to
obtain some of the parameters for the SNARE CG model. All-atom (AA)
simulations of the four individual helices as well as the full SNARE bundle
were performed using the GROMACS molecular simulation package (28)
and the CHARM?22 force field (29). The starting structures for the four
individual helices and the full SNARE bundle were extracted from the final
timestep of a 40-ns AA simulation with initial configuration given by
the high-resolution x-ray structure PDB:1N7S (7,11). (See the Supporting
Material for a discussion.) For each set of runs, the corresponding structure
was solvated in a waterbox (70 x 150 x 70 A), and potassium ions were
added to neutralize the overall charge. Additional potassium and chloride
ions were added so that there was a 150-mM concentration of KCI to mimic
physiological conditions (30). All bonds were constrained. Dynamics were
run at 300 K first using an NVT ensemble for 100 ps followed by NPT for
100 ps using the Parrinello-Rahman barostat. Five sets of 40-ns-long runs
were conducted with a timestep of 2 fs for Syb, Syx, SN1, SN2, and the
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SNARE bundle. Computations were performed at the Texas Advanced
Computing Center (Austin, TX) through Extreme Science and Engineering
Discovery Environment (XSEDE) resources.

SNARE coarse-grained model

A principal result of this work is the development of a CG model for the
SNARE complex. Our goal has been to make it as simple as possible while
retaining the identity of individual residues. As shown in Fig. 1 A, in our
SNARE model every residue is represented by a bead located at the
a-carbon of that residue.

The size and mass of each bead are equivalent to the van der Waals radius
and mass (31) of the bead’s corresponding residue. Two major types of in-
teractions were accounted for in this CG model—those within individual
helices, and those between them. An ENM (21,22) is used to represent
the intrahelical bonds and interactions that maintain the individual helical
structure as shown in Fig. | A. Pairs of beads within the cutoff distance,
R, on the same helix are said to be in contact and are connected by a har-
monic spring with the energy potential

1
Uspring = Eks(r - "0)27 (D

where k; is the spring constant, r is the distance between the two beads, and
ro is the natural length of the spring. From the 40-ns-long individual helix
AA simulations, it was observed that the natural state of each individual
helix was a relatively straight conformation compared to the helices
in the SNARE x-ray crystal structure. (The mean curvature of the helices
in the SNARE bundle (3.11 x 107 I/m) is three times as large as that of
the individual helices (1.03 x 107 1/m; see the Supporting Material.))
Because these straightened-out conformations represent the natural or
relaxed state of the helices, they were used to construct the ENM. This is
important because, as the helices unzip from the main bundle and break
their helix-helix contacts, they revert to their natural straight conformation,
releasing elastic energy.

The values of k, for the ENM were chosen by matching the spectrum of
fluctuations of the AA simulations and the CG model for each helix inde-
pendently. For the analysis of individual AA helix simulations, the positions
of the a-carbons were extracted every 10 ps. For each a-carbon a time series
of distance from its average location was calculated. The fast Fourier trans-
form was then computed for each bead’s time series and averaged over all
beads, yielding a single spectrum per helix. In order to make this compar-
ison of the fluctuations, CG simulations were conducted for the four indi-
vidual helices using Langevin dynamics at 300 K for a range of values of
k. (Details on numerical implementation of the CG simulation are provided
in the Supporting Material.) The same fast Fourier transform analysis was
conducted for individual helix CG simulations as the AA simulations. The
time length of simulations required was determined by conducting a normal
modes analysis on the CG model of the crystal structure, PDB:1N7S, for all
helices individually using different values of k,. AA simulations were run
for 2 ns, which is considerably longer than the characteristic time given
as the inverse of the lowest natural frequency (see Table S1 in the Support-
ing Material). In order to best match the fluctuations, the root-mean-squared
deviation between the AA and CG spectra was found for each run. An
example of the comparison of both spectra is shown in Fig. 1 B for Syb
with k; value of 0.0963 N/m. For all helices, k; was varied between
0.00009 N/m and 0.4816 N/m and the resulting root-mean-squared devia-
tions for all values of k; are shown in the Supporting Material. Based on
these data, a value of 0.0963 N/m was chosen for k for all four helices.

The second main category of interaction in the CG model is the helix-he-
lix interaction, which requires chemical specificity. These interactions are
implemented by utilizing the contact energies from Miyazawa and Jernigan
(23-25), which provide a scalable reference for residue-residue interactions
(23-25). Any beads on separate helices interact if they are within the
Miyazawa and Jernigan (23-25) cutoff distance, R, yy. To avoid checking
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(A) The AA (left) and CG (middle) representations of the SNARE bundle are shown. Both models include helices Syb, Syx, SN1, and SN2 with

each helix contributing one residue to the ionic layer (beads): R56, Q226, Q53, and Q174 respectively. The C-terminal ends of Syb and Syx play an integral
role in the fusion process in that they attach to the vesicle (Syb) and plasma membrane (Syx). The ENM spring network (right) that maintains the individual
helical structure is shown for Syb and Syx. (Thick lines) C, backbones; (thin lines) ENM springs. The Miyazawa and Jernigan (23-25) contacts between Syb
and Syx are also represented (dotted lines). (B) The spectra used to compare the fluctuations of the AA and CG models are shown for Syb. Values for &, of
0.0963 N/m and R, of 20 A were used for the CG model. (Inser) Ten snapshots of Syb during the corresponding AA simulation. (C) Mean distance for
different values of parameter A along with snapshots of the SNARE bundle. (Black line) Original crystal. (Black circle) Version chosen for simulation.

To see this figure in color, go online.

the distance between every bead during every timestep, a neighbor list is
built every 1000 steps. Any beads on different helices that are within
1.5%R. wmy of each other are added to the neighbor list. Contacts are deter-
mined from the pairs already chosen by the neighbor list.

Following Kim and Hummer (32), the interaction energy e; between
residues i and j of the SNARE structure is scaled from the Miyazawa and
Jernigan (23-25) contact energies e;; (32):

gj = }k(e,-j — eo). 2)

Note that there is no self-interaction, i.e., Eq. 2 applies only for i # j. Also,
these interactions operate only between residues on different helices, intra-
helical interactions being already represented by the ENM. There are two
tunable parameters—a scaling parameter, A, and a shifting parameter, e.
Throughout the tuning of parameters, e, was set to 0. Although it was
available as an extra parameter, it was not found necessary to match the
SNARE structure and hence was not used in order to minimize the number
of adjustable parameters.

Forces corresponding to the contact energies from Miyazawa and Jernigan
(23-25) are implemented using a slightly modified 6-12 LJ potential. The
format of this potential varies depending on whether there is attraction or
repulsion between these residues as well as if the distance between beads
is greater than or less than that the distance at which the potential minimum
occurs, r;”. The sign of &; determines whether the interaction between
the residues is attractive (negative) or repulsive (positive). The modified
Lennard-Jones potentials (32) are as follows:

ifg; <0,

- (%) ] : 3
r
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if g5 > 0and r < r,-jo,

o 12 g 6
u(r) = 4ley| {(Tj) - (71) } + 2ey;

and if & > O and r > r,°,

ui(r) = —4ley [(%)12 - (%)6]’ ©®)

where r is the distance between the two beads and ¢; is the interaction radii.
Eq. 4 contains a shift in the potential that ensures that repulsive pairs of
beads will always repel each other.

The interaction radii is defined as the average of the van der Waals radii
of residues i and j,

)

O','+0'j
* — %

O'I:/':A 2 s

(6)

where A is available as a tuning parameter and o; and o; are the van der
Waals radii of residues i and j. In order to match both CG and AA behavior
and structure, A was adjusted to match the SNARE bundle width, defined as
the diameter of the tube-shaped space inside the bundle that can be seen if
one looks along the center axis of SNARE. The reference bundle width was
found by computing the mean distance of all of the nearest contacts of
Miyazawa and Jernigan (23-25) from the SNARE crystal structure deter-
mined from PDB:IN7S. These 21 nearest contacts represent the distances
between the inner residues of the bundle and therefore the bundle width.
Fig. 1 C shows the mean distance for a few cases. The value of A is directly
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related to bundle width, and from Fig. 1 C we chose a value of A as 0.8 to
produce a similar mean bundle width to the crystal structure. This value of A
corresponds to interaction radii ranging from 3.6 A for Gly-Gly and 5.44 A
for Trp-Trp (32).

The remaining parameter, A, controls the strength of interhelical
interactions and was determined by calibrating the results of simulated
force-extension behavior of the SNARE complex by the recent experi-
mental study by Gao et al. (8), which provided characteristic forces for
the unzipping of the 4-helix SNARE bundle pulled apart in an optical
tweezer experiment. The value of A was calibrated to match the measured
peak force of 14—19 pN (specifically, 17.2 pN). For our unzipping simula-
tion, the C-terminal residues of Syx and Syb were each attached to a fixed
bead by a spring with a spring constant kqp. Displacement control was used
on the bead attached to the C-terminal Syb bead as opposed to the actual
Syb C-terminal bead, to allow for rotation of the SNARE bundle.

To see how much the orientation of the pulling force on the SNARE
matters, the simulations were performed in two ways: by applying a
displacement to pulling beads attached to Syb89 and Syx256 through a
spring (as shown in the article); and by directly applying displacements
to Syb89 and Syx256. (The pulling beads allow for rotation of the SNARE
bundle during the simulation and are hence less restrictive.) The results of
these simulations were quite similar. To mimic the experimental setup in
which the N-termini of Syx and Syb are connected, a FENE bond connect-
ing the N-terminal residues of Syb and Syx was incorporated in the model
to represent the additional residues, and the N-terminal disulfide bridge
from the experiment of Gao et al. (8) is included. The potentials used to
implement the FENE bond are as follows:

if (1) < re_reng,

2
MFENE(t) = —%kprg In{ 11— (r(t)_A> ; (7)

and if r(#) > r._pene
1
upene(t) = _EkF(r(t) - A)27 3

where r is the distance between two bonds at #; r is the maximum bond
length; A is the resting bond length or, in this case, the original distance
between the two beads (33); and 7. png 18 0.9%A. The value of ry was deter-
mined by the number of residues that the spring represents, eight for Syb
and five for Syx, times the maximum extension per residue, 3.65 A (8).
The FENE spring constant, kz, used was the same as k; for the ENM of
0.0963 N/m.

Before beginning the CG displacement control simulations, the SNARE
structure was relaxed for 10° timesteps under quasi-static conditions, i.e., at
0 Kelvin. This relaxation was performed on the SNARE structure extracted
from the final timestep of the 40 ns AA simulation in order to ensure that the
initial structure was fully equilibrated. After this relaxation period, the
C-termini beads were separated under displacement control using the two
pulling beads that were discussed previously. The bead attached to the
Syx C-terminus was held fixed, and all displacements were applied to the
bead attached to the C-terminal Syb bead. For each displacement, this
bead was moved 1 A along the vector between the two pulling beads. After
each displacement was applied, the structure was relaxed for 10° timesteps
in order to allow it to equilibrate. At the end of the relaxation period, the
forces on both pulling beads were nearly identical, and these forces were
recorded as a function of displacement (see Fig. S4 in the Supporting
Material).

Displacement control runs were conducted with 11 different values of A
between 0.16 and 0.72. This parameter directly adjusted the magnitude of
the force, so it was used to match the peak unzipping force reported by
Gao et al. (8) of between 14 and 19 pN. On this basis, a value of 0.3 was
chosen to produce a peak force in the experimentally measured range of
17.2 pN.
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Continuum model of the vesicle and plasma
membrane

The vesicle and plasma membrane are subjected to forces from the
SNARE complex drawing them together, and distributed distance-depen-
dent electrostatic and hydration repulsion. During this process, the vesicle
and plasma membrane both deform considerably and the task of the
continuum model is to obtain a consistent solution of the deformed shape
subject to these forces. The continuum calculations are based on the
formulation of Jenkins et al. (26) and its extension to SNARE-mediated
fusion by Long et al. (27). Our axisymmetric continuum model extends
these formulations to include concentrated forces due to the SNARE
molecules and the electrostatic forces due to the charges on the membranes
or hydration repulsion.

The axisymmetric geometry is shown schematically in Fig. 2. We use a
cylindrical coordinate system (r,0,z), where 6 is the angle of revolution
about the z axis. Owing to the axisymmetric assumption, the forces exerted
by the zipping of the SNARE complexes are represented by a circle of line
force of magnitude F on a spherical vesicle of radius R (see Fig. 2 B) as well
as on the plasma membrane. This line force counters the repulsive forces
between the vesicle and the plasma membrane. As shown in Fig. 2 B, the
line force acts along a latitude of the undeformed vesicle and is constrained
to remain normal to the deformed surface. The location of the latitude is
specified by the arc length S, of a cross section in the reference configura-
tion, which is taken to be a spherical vesicle. Because the plasma membrane
is very large compared to the vesicle radius, its reference configuration is
taken to be a flat circular membrane of radius L under pre-tension, 7.
The SNARE forces act on a circle of radius Sy in the reference configura-
tion, have the same magnitude F, and are always directed opposite to the
force on the vesicle (Fig. 2, B and C).

In our model, the repulsive force depends only on the local separation d,
as shown schematically in Fig. 2. Following Bykhovskaia et al. (11),
electrostatic and hydration repulsion between the vesicle and plasma
membrane are calculated using Derjaguin’s approximation (34) in which
interaction between curved surfaces is estimated assuming that the surfaces
are locally flat. This approximation is valid if the length scale over which
forces decay is much smaller than the radius of curvature of the vesicle.
The applicable range of separations before vesicle to membrane fusion is
2—-4 nm. In this range, the principal repulsive forces are due to electrostatics
and hydration.

The functional form of both the electrostatic and hydration repulsion is
approximately the same, an exponential decay. Electrostatics has the large
decay length (typically 1 nm under physiological conditions) and smaller
prefactor (34). The decay length for hydration repulsion is in the 1-4 A
range (34-37). Consequently, hydration dominates for small separation
and electrostatics for larger separation. Much of the previous work suggests
that the cross-over distance beyond which electrostatics dominates is
~1.5 nm (34,36). However, recent work of Aeffner et al. (35) suggests
that hydration repulsion exceeds electrostatic repulsion for distances up
to ~3 nm. Based on the work of Aeffner et al. (35), we have performed cal-
culations taking hydration repulsion to be the dominant repulsive interac-
tion. However, given some uncertainty regarding the relative importance
of electrostatics and hydration, we have also computed results for the
case where electrostatic repulsion is assumed to dominate. The hydration
pressure takes on the form of an exponential decay,

P(d,) = Poexp(—dy,/A), ©)

where d,, is the lipid bilayer separation, P, is the hydration pressure
amplitude, and 4, is the decay length. According to Aeffner et al. (35),
the prefactor, P, ranges from 0.24 to 4.13 GPa and 4, ranges from 2.3 to
3.7 A. We chose to use a value of 0.43 GPa for Py and a A;, of 3.22 A based
on the parameters suggested for a synaptic vesicle corresponding to
experiments performed in a physiologically relevant DOPC/Chol 70:30
mixture (35).

Biophysical Journal 108(9) 2258-2269
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FIGURE 2 (A) A schematic of the axisymmetric
model in the undeformed configuration showing
the location of SNARE and direction of force
applied. (B) The repulsive forces (shown by the
dotted lines) act on the deformed configuration of
the vesicle, as does the SNARE force, F. (C) The

— deformed
__unde formed

Local electrostatic interaction is determined by solving the Debye-
Huckel equation for two infinite parallel planes separated by 6. We consider
two limiting scenarios.

1. The membranes have fixed charge density throughout the process of
docking, which corresponds to the case when the lipid molecules are
completely ionized and have a fixed charge.

2. The membranes have fixed surface potential, which is achieved by
adjusting the surface charge density of the ions in the Stern layer of
the membrane or by varying the degree of ionization of the polarizable
lipid molecules.

For the constant surface charge densities, the repulsive force along the z
direction per unit area is given by

07 + 03 + 20,0, cosh(6/1p)
2ee sinh*(6/1p)

Fo = ; (10)

where ¢, ando, are the surface charge densities of the vesicle and neuron
base, respectively; /p is the Debye length; € is the relative permittivity of
water; and & is the permittivity of vacuum. The choice of surface charge
o is based on the force-displacement measurement by Marra (37) and
the electrophoretic measurement by Ohsawa et al. (38). The reported value
of surface charge is in the range 0.01-0.03 C/m?. Also, assuming the same
surface charge density on the outer leaflet of the plasma membrane and
based on the observation by Pekker and Shneider (39) that a charge density
difference of only ~0.0001 C/m? between the inner and outer leaflet is
necessary to maintain the resting potential difference of 70 mV for the
neuron cell, we choose the value of o = 0> = —0.025 C/m>.
For the case of constant surface potential, the force per unit area is

B —¢l — @3+ 29,0, cosh(6/1p)

F, =
sinh*(6/1)

2egg

)

When the two membrane structures are far away from each other, they have
charge density given as o, = g, = —0.025 C/m>. The potentials on an iso-
lated surface and charge density are related by

I (12)

€gy
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figure shows the convention for shear force (Q)
in-plane tension (7) and moment (M) acting on
the cross section of the membrane at location
£(S), where ¢(S) is the tangent angle in the unde-
formed configuration measured from the vertical.
(D) Example of a deformed vesicle-plasma mem-
brane complex for a 20-nm diameter vesicle
docked by 15 SNARE:s. To see this figure in color,
go online.

The value of surface potential for the bilayers, ¢, = ¢, = —25 mV, is eval-
uated using Eq. 12. As the vesicle approaches the membrane, the surface
potential is held constant and Eq. 11 is used to obtain the force between
the membranes. A similar approach was followed in Bykhovskaia et al.
(11). However, in that work the mechanics of SNARE opening was not
coupled to the electrostatic repulsion, and the SNARE-end opening was
picked at 1 nm, whereas here the minimum separation of SNARE-ends is
taken to be 2 nm. Primarily for this reason, the repulsive electrostatic forces
in this work are in the range of tens of picoNewtons instead of the hundreds
of picoNewtons quoted in Bykhovskaia et al. (11). Relevant parameters for
modeling electrostatic forces are listed in Table S3.

Governing equations for the continuum membrane model and
their solution

The vesicle-membrane system has been modeled under axisymmetry in an
(r,0,2) coordinate system. In the undeformed configuration, the vesicle is
modeled as a sphere with radius R, whereas the undeformed plasma mem-
brane is a circular disk of radius L >> R. As shown in Fig. 2, S refers to
the undeformed arc length, whereas in the deformed configuration, the arc
length is denoted by £. The tangent to the membrane makes an angle ¢ with
the z axis and the mean curvature of the membrane surfaces is denoted by H.

The forces in the membranes are shear force, Q and the in-plane tension,
T as shown in Fig. 2 C. The osmotic pressure inside the synaptic vesicle is
represented by po. As shown in Fig. 2 B, the repulsive electrostatic force per
unit area, F, in Eqs. 9 and 10, acts on both membranes, along the z direction.
The force due to SNARE bundles is represented as line loads acting on the
circles over the undeformed geometry of vesicle and plasma membrane
(denoted by vectors F and —F, as shown in Fig. 2 B). On the vesicle, the
radius of this circle, r, is determined by the geometrical compatibility con-
dition, which is based on the width of SNARE helix, d and number of
SNARE bundles, as

(number of SNAREs) x d
27 '

13)

o =

The assumption here is that the packing of SNARE:S is limited by steric hin-
drance between them and Eq. 13 represents the smallest radius that would
accommodate the given number of bundles. The equivalent arc length value
for load application is given by S, = sin™~'(r¢/R). This arc length is same for
both the vesicle and the membrane.
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We assume that the strain energy density W of both membranes is given
by (40)

W = ¢ H? (14)

and by variation of total energy, the governing equations for the vesicle-
membrane system are obtained in Eq. S11 in the Supporting Material.
These equations represent equilibrium in the normal (Eq. S11 a in the Sup-
porting Material) and tangential (Eq. S11 f in the Supporting Material)
directions at each point on the membranes. The geometrical constraints
can be used to obtain Eqs. S11, b-e, in the Supporting Material. These
governing equations form a nonlinear system of ordinary differential equa-
tions (ODEs). By specifying the input geometric parameters (R,L) and the
force parameters (F, Sy, F,, and p), this system of ODEs can be solved
numerically to obtain an equilibrium configuration of the membrane
system. We use the nonlinear boundary value problem solver BVP4C in
the software MATLAB (The MathWorks, Natick, MA) to solve the ODEs.

RESULTS AND DISCUSSION

Force-displacement response of the vesicle-
membrane interaction

The equal and opposite forces on the Syx and Syb C-termini
are transmitted to the plasma membrane and vesicle,
respectively, as forces attracting them. Below separations
of ~2.5 nm, attractive forces are resisted primarily by hydra-
tion repulsion. A characteristic force-separation curve can
be obtained for the vesicle-membrane system using the
formulation described in Continuum Model of the Vesicle
and Plasma Membrane. By specifying the number of
SNARE bundles attached to the vesicle-membrane system,
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the location of the line load can be determined using Eq.
13. The effect of zipping of the SNARE bundle is simulated
by varying the strength of the line load in small steps. For
each increment in force, an equilibrium configuration of
the membrane system is obtained, and hence we determine
the separation between the two load points on vesicle and
plasma membrane, respectively. This separation is the dis-
tance between residues Syb89 and Syx256. By varying the
number of SNAREs, a series of force-separation curves
can be obtained as shown in Fig. 3 A.

SNARE force-separation curve

Fig. 3 B shows the results of a simulation in which the
SNARE bundle has been pulled apart for a total end-to-
end separation of 20 nm between the C-terminal Syb and
Syx end-beads.

Each drop in the force-displacement plot (Fig. 3 B) repre-
sents the system overcoming a barrier where there is a
strong interaction between the SNARE bundles. Two exam-
ples are the snapshots at 10.9 and 11.9 nm in Fig. 3 B. With
an increase of only 1.0 nm in displacement and little visible
change in structure, there is a significant (5.1 pN) increase in
force to a peak value of 17.2 pN, after which the force
immediately drops to ~2 pN. (Because a significant amount
of the linker domain was not present in the crystal structure
of SNARE that was used to build the CG model, the first
force jump seen by Gao et al. (8) at 3 nm and 813 pN is
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FIGURE 3 (A) Force versus SNARE end separa-
tion for the vesicle-membrane system for different
numbers of SNAREs for the hydration repulsion
case. (B) The force during separation of the ends
of the SNARE bundle using A of 0.30 for the CG
model of SNARE along with snapshots of the
SNARE bundle at the corresponding C-terminal
end separation. The end separation is defined as
the distance between the Syb and Syx C-terminal
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not present in these results.) The CG model is able to cap-
ture the experimentally determined precipitous force-drop,
after which the remaining interactions holding the SNARE
bundle together are relatively weak and are therefore not
measurable in a force-controlled experiment.

The subsequent increase in force is associated with
stretching of the linkage between the N-termini of Syx
and Syb, and presumably would not be present in a physio-
logical setting. It is included here because this feature is also
present in the experiments of Gao et al. (8). For simplicity,
in the version of the elastic network model used here, we do
not allow the helices to unravel, justified by the following
facts. As the results of the next section show, the equilibrium
separation for all the cases studied in this article is ~3 nm or
less. At these separations, the force on each SNARE is <5
pN. Based on the work of Gao et al. (8), the first unwinding
event occurs at ~10—12 pN. Thus our simplifying assump-
tion (which will be relaxed in future work) that helices
remain unfolded, is justifiable for the range of openings
and displacements representative of the equilibrium docked
state. We have checked the sensitivity of our results to this
assumption by allowing small portions of the unzippered
region to unfold, as shown in the Supporting Material.

Combined SNARE and vesicle-membrane results

In the previous two sections we have independently obtained
force-separation results for the vesicle-membrane system
(Fig. 3 A) and for the SNARE (Fig. 3 B). Before combining
the two results, we first accounted for the fact that the dis-
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tance between outer surfaces of the membranes is larger by
~2 nm than the distance between Syb89 and Syx256, the
SNARE residues that we move apart (see the Supporting
Material). Specifically, we shifted the SNARE force-
displacement curve to the right by 2 nm to obtain this consis-
tency. Clearly, in the combined SNARE-vesicle-membrane
system there is a single force and corresponding displace-
ment. Applying this consistency condition between the two
results determines equilibrium. Moreover, we can determine
how equilibrium depends on the number of SNARES.

For systems with 1, 2, and 3 SNAREs, the information
from Fig. 3, A and B, is combined to produce Fig. 3 C.
Because it has been shown that SNAREs mediate vesicle
to membrane fusion in a synchronous way, we assume
that the force required to unzip two SNAREs would simply
be twice the force required to unzip one SNARE, and so on
(41,42). In all three cases, the curves intersect at an equilib-
rium SNARE end separation of between 2 and 3 nm, sug-
gesting that even 1-3 SNARESs are sufficient to overcome
hydration repulsion and allow the vesicle to dock at the
plasma membrane. The corresponding structures for the
intersection points for all three cases, shown in Fig. 3 C,
also suggest there is no important conformational difference
between the three structures other than a difference in the
number of residues that have been unzippered.

It is instructive next to consider the energy landscape cor-
responding to the force-separation results shown in Fig. 3.
For this purpose, the SNARE (positive) and vesicle-mem-
brane (negative) force-separation results are integrated
numerically. Fig. 4 B shows the results corresponding to

0.95 FIGURE 4 (A) Energy as a function of SNARE
end separation when repulsion between the vesicle
and plasma membrane is dominated by hydration
repulsion. The energetic contributions from
SNARE (attractive), hydration (repulsive), and
the total (their sum) are shown. The hydration
repulsion has been shifted vertically by —17 kT
for clarity. (B) Contour plot of total energy as a
0.99 function of SNARE end separation distance for

different numbers of SNAREs under hydration
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Number of SNAREs

1 repulsion. (Circles) Global energy minima repre-
senting the equilibrium SNARE end separation
for a given number of SNAREs. Vesicle radius is
20 nm. (C) Contour plot of total energy as a func-
tion of SNARE end separation distance for
different numbers of SNAREs under electrostatic
SN1 repulsion for a fixed charge of —0.025 C/m? on
the vesicle and the membrane in the limit of high
tension in the vesicle and plasma membrane. For
this case, minimum lateral separation between
the SNARE bundles has been increased from 3 to
4 nm. (D) The structure of SNARE corresponding
to the case shown in (B), number of SNAREs = 1.
Syb, Syx, SN1, and SN2 are shown with the ionic
layer residues indicated as large beads. (E) The
same structure as in (D) but showing only Syb
and Syx for clarity. (Thin lines) All contacts for
residues within 2¢ of each other. To see this figure
in color, go online.

Syb
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the force-separation results shown in Fig. 3. Note that
because the SNARE force-displacement response contains
unstable jumps, the entire energy landscape is not repre-
sented in Fig. 4, B and C. Because of the nature of the
displacement control simulations, there are several instabil-
ities present in the original SNARE force-separation curve.
An example of one of these instabilities is the drop at
7.5 nm, as shown in the SNARE curves in Fig. 3 C. Inte-
grating across these instabilities makes the total energy of
the system slightly more negative than it should be (see
the Supporting Material). Fig. 4, B and C, shows contour
plots of interaction energy as a function of the number of
SNAREs and end-to-end separation. Fig. 4 B shows the
results for a vesicle with radius of 20 nm, representing a syn-
aptic vesicle. The gray circles represent the global energy
minimum for each value of number of SNARES, corre-
sponding to force equilibria in Fig. 3.

An example of how these minima were determined is
shown in Fig. 4 A. This was used to determine the global
energy minimum for one SNARE for the hydration repul-
sion case. It is striking that a single SNARE produces a
distinct energy minimum at ~3 nm. As the number of
SNARESs increases to four SNAREs, the equilibrium
SNARE end-separation decreases. For 4-8 SNARE:s, there
is little difference in the equilibrium separation. For five
SNAREs, the total energy per SNARE is ~—17 kT, which
is quite consistent with the 13-27 kT range reported by
Zorman et al. (43). With increase in the number of SNARESs
over 8, the equilibrium SNARE separation slowly increases;
the minimum separation (~2.1 nm) is achieved with four
bundles. Thus, we may conclude that 4-8 SNARESs are suf-
ficient to complete the zippering process and to bring the
membrane and the vesicle at a distance of 2.1 nm. Impor-
tantly, a larger number of SNARE bundles does not bring
the vesicle closer to the membrane, because steric hindrance
pushes them out to a larger radius.

We next explored how electrostatics would affect the
vesicle-to-plasma membrane repulsion. We recalculated
the continuum model results using a fixed surface charge
of —0.025 C/m? on the vesicle and the membrane with elec-
trostatic repulsion as shown in Fig. S9 B. For this case for
one SNARE, the end separation is ~2.4 nm, which is smaller
than the 3 nm seen for the hydration repulsion case. How-
ever, when more than one SNARE is added to the system,
the equilibrium SNARE end separation is constant at
~2 nm for 2-13 SNARESs. In this case, the equilibrium
configuration of the SNARE bundle would be a nearly
completely zipped conformation. For this case with four
SNARES the total energy per SNARE is ~—14 kT, which
again is within the range of 13-27 kT reported by Zorman
et al. (43).

We next explored how the vesicle size would affect the
number of SNAREs required to dock a vesicle to the mem-
brane. Fig. S10, B and D, shows the results for the case of a
vesicle that is 100 nm in radius, corresponding to vesicles in
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neurosecretory cells. For the hydration repulsion case, there
is a considerable difference between the 20- and 100-nm
vesicles. For the 100-nm case the minimum separation is
also reached with four SNARES, but that minimum separa-
tion is ~2.5 nm as opposed to ~2.1 nm for the 20-nm vesicle.
For the case of electrostatic repulsion with a constant sur-
face charge, the only difference between the two cases is
for one and two SNAREs. For the 100-nm vesicle case,
the equilibrium separation is ~3.4 nm as opposed to
~2.4 nm for the 20-nm vesicle. Additionally, for two
SNARESs, there is also a larger separation for the 100-nm
vesicle of 3 nm as opposed to 2 nm for the 20-nm vesicle.
However for three or more SNARES, there is little difference
between the two vesicle sizes because both SNARE config-
urations are nearly completely zippered.

Fig. 4, B and C, represents results for an optimized set of
parameters describing molecular details and electrostatic
forces. To judge the robustness of the conclusions gleaned
from these results, we explored several variations of param-
eters, including: 1) allowing a portion of Syb to melt with
the surface charge held constant; 2) holding the surface
potential constant instead of surface charge; 3) high osmotic
pressure in the vesicle and low pre-tension in the plasma
membrane; and 4) the limit of high tension in both the
vesicle and plasma membranes. These variations in the
modeling assumptions generally make little difference in
the conclusions drawn from Fig. 4 (see the Supporting
Material for details). The main conclusion that 4—8 SNAREs
bring the vesicle to the minimum distance away from the
membrane still holds. Because the equilibria of interest for
the problem addressed in this work occur at relatively small
separation and forces, in our model we have not allowed the
helices to unravel. In order to see the potential effect of un-
raveling, the first two helical turns of Syb were melted and
the force-displacement curve for SNARE was calculated
from Fig. 3 B. The resulting energy surface for this case
for a 20-nm vesicle with hydration repulsion is shown in
Fig. S11 A. A quantity of 4-10 SNARESs brings the vesicle
within a minimal distance of the plasma membrane. How-
ever, that minimal distance is ~2.4 nm as opposed to the
~2.1 nm for the case where Syb is not permitted to unravel.

In an effort to compare to the experimental prefusion
structures of the vesicle and plasma membrane as shown
by Malsam et al. (44) and Hernandez et al. (45), the contin-
uum model was calculated using high osmotic pressure in
the vesicle and low pre-tension in the plasma membrane.
However, the resulting energy surface for this modification
to the base cases shown in Fig. 4 has little effect on the re-
sults because the repulsive force is dominated by hydrostatic
repulsion as shown in Fig. S14.

The limit of high tension in both the vesicle and plasma
membrane was studied using an analytical model described
in the Supporting Material. In order to test the sensitivity of
the solution to the location of the SNARE:S, calculated using
Eq. 13, the diameter of the SNARE bundle was varied from
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2 nm, Fig. S17 A, to 4 nm, whereas the base case used 3 nm.
This variation seems to have the most significant effect on
the solution. Decreasing the size of the SNARE bundle still
yields similar results, in that for more than one SNARE, the
bundle is nearly completely zipped shut. On the other hand,
when the size of the SNARE bundle is increased, instead of
having a nearly fully zippered bundle, there is a minimum
separation that occurs at four SNAREs. With the addition
of more than five SNARESs the equilibrium separation again
begins to increase all the way up to ~3 nm with 13 SNAREs.

Fig. 4, D and E, shows the equilibrium structures of
SNARE at a 2.1-nm separation for the case shown in
Fig. 4 B. SN1 and SN2 were removed from the structure
for clarity in Fig. 4 E, and the residues of Syb and Syx
that were in contact were determined. Because the forces
from Miyazawa and Jernigan (23-25) greatly decrease after
a separation of ~2*g, that distance was used as the criteria
for two residues being in contact. At the start of the
displacement control simulation, Syb and Syx had 574
contacts between them. After a 2.1-nm separation, only
449 contacts remained. The removed contacts begin to
create a cracklike defect separating the helices. After the
2.1-nm separation, residues 89 (Trp) of Syb and 256 (Lys)
of Syx were still in contact. These residues are still far
away from the ionic layer, showing that the SNARE bundle
had not yet unzipped to that point.

CONCLUSIONS

The docking of vesicles onto the plasma membrane of a
neuron involves interplay between the SNARE complexes
that provide attractive forces, long-range repulsion between
the vesicle and membrane, and deformation of all three
components. Although each of these components has
previously been investigated in detail, to understand the
biophysics and mechanics of vesicle docking, it is impera-
tive to combine them. To our knowledge, we report the first
model to couple chemical specificity of the SNARE com-
plex with hydration, electrostatic, and mechanical forces
imposed on the vesicle and plasma membrane. Such a model
can serve as a tool to investigate how mutations in the
SNARE complex could affect the docking and fusion
process.

We have developed separate coarse-grained models for
the deformation of the SNARE complex and of the
vesicle-membrane assembly. The vesicle-membrane model
is based on a continuum description of membrane deforma-
tion subjected to either hydration or electrostatic repulsion
and forces from the SNARE complexes. The fusion of lipid
bilayers has been extensively modeled (46) to capture the
intermediate states of fusion, including stalk formation,
and to understand their energetics. Our goal in this study
was to understand the forces produced by membrane
bending and hydration or electrostatic repulsion that need
to be overcome by the SNARE complexes to dock a vesicle
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to the membrane. The continuum membrane model was
coupled with a coarse-grained model of the SNARE com-
plex. The SNARE forces are represented in the continuum
membrane model as an axisymmetric line force, an assump-
tion that is increasingly accurate for increasing number of
SNARESs. (A single SNARE at the axis of symmetry also
presumably results in axisymmetric deformations of the
vesicle/membrane.) For a given number of SNARES, the
model holds fixed their anchor points in the vesicle and
plasma membrane. This constraint potentially affects our
results. However, we note that the position of the SNARE
anchor points does vary as we change the number of
SNAREs (Eq. 13). The number of SNAREs was varied
from 1 to 13. Usually, for two or more SNAREs there is little
difference in the equilibrium separation, suggesting that the
model results probably will not vary much if we remove the
constraint of holding the positions fixed.

The CG SNARE model is based on an elastic-network
representation of each of the helices combined with poten-
tials from Miyazawa and Jernigan (23-25) to capture inter-
helical interactions. It is a minimalistic model that still
represents residue-specificity. Its few parameters are cali-
brated either by comparison with all-atom MD simulations
of individual SNARES, or by comparison to experimentally
measured forces to separate a single SNARE complex (8)
Specifically, we match the experimentally observed peak
force of 17.2-pN force. Each of the two models separately
yields a force-separation relationship. Enforcing consis-
tency between the two yields equilibrium configurations
for the SNARE-vesicle-membrane complex for a given
number of SNARESs.

As the first application of our model, we explored here
the effect of the number of SNARE complexes on the
mechanics of vesicle docking and the prefusion state of
the SNARE complex. It is still a matter of debate as to
how many SNARE complexes need to assemble before
the fusion process. High concentration of Syb on the vesicle
(~70 copies (47)), as well t-SNARE clusters at docking sites
(48) suggest that in vivo fusion may be mediated by multiple
SNARE complexes. At the same time, experiments and
model systems suggest that one (49), two (18), or three
(19,50,51) could be sufficient. Other studies, however, sug-
gest a larger number of SNARE complexes per fusion,
ranging between 5 and 11 (16,20,52). Finally, recent studies
suggest that the number of assembled SNARE complexes
may determine the release efficiency (53) and that it may
vary (54). Thus, how vesicle docking might depend on the
number of SNARE complexes remains an open question,
previously not addressed from the biophysical and biome-
chanical point of view.

We find that one SNARE complex is sufficient to dock the
vesicle onto the membrane. As few as 2-3 SNARESs are suf-
ficient to bring the distance between the membrane and
vesicle to the minimum and thus to complete the docking
process. Interestingly, there is a point of diminishing returns
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such that a larger number of SNAREs (i.e., an overdocked
state) does not further reduce the vesicle-membrane separa-
tion. The corresponding predicted SNARE end-to-end sepa-
ration is in the range 2-3 nm (55,56), but one can expect
significant fluctuation about the equilibrium state because
the energy profile is relatively shallow (Fig. 4 A). This pic-
ture of a partially zippered docked state is consistent with
the conclusions of an in vivo toxin cleavage assay in crayfish
neuromuscular junctions. In this work, we only model dock-
ing, not fusion. That is, we calculate the equilibrium separa-
tion between the vesicle and plasma membrane during
docking. The lower bound of ~2-nm separation between
the vesicle and plasma membrane is based on the steric hin-
drance of having to fit the SNARE bundles between the two
surfaces. This distance is probably a bit too large for fusion
to occur, which suggests that some additional mechanism
other than SNARE zippering must act for fusion.

Several variations in the model including calculations
under fixed charge, fixed surface potential, high vesicle
pressure, high membrane tension, and varying vesicle
radius, have all shown similar results.

Our results are consistent with the view that a prefusion
state involves a partially assembled SNARE complex
(57-59), which keeps the vesicle at a short distance from
the plasma membrane in anticipation of Ca”"-induced
fusion rather than the alternative view that SNARE zipper-
ing represents a final step of exocytosis and rapidly pro-
gresses once nucleated (60). Specifically, our model
robustly predicts an equilibrium separation between the
vesicle and the membrane to be of ~2.0-3.0 nm correspond-
ing to opening of, at most, layer 8.
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SUPPORTING MATERIAL

1. Coarse grain simulations: solution procedure

CG simulations were conducted for the 4 individual helices using Langevin dynamics at 300 K
for a range of values of ks. The Langevin equation (1) includes an inertial term, a viscous term, a
random force term, and a potential energy term, respectively, in the form

mi(t) = —yx(t) + R(t) — VE (S1)

where m is the mass of each bead, X(t) is the bead’s acceleration at time t, y is the damping
constant, x(t) is the bead’s velocity at t, R(t) is a random force that represents the protein’s
interaction with the surrounding fluid, and E is the potential energy governing the solute that
includes ENM forces. The fluctuation-dissipation theorem (2) connects the random force and
viscous drag

(R(t)-R(t") =67k, TS(t —t") (S2)

where kg is Boltzman’s constant, T is temperature, R(t") is the random force applied at t’, and
6(t —t") is the Dirac delta function. Written as a system of equations for all beads, the
Langevin equation takes the form

[MI{G(t)} =—pAG(t)} +{R(t)} - [KKu(t)} (S3)
where [M] is a diagonal mass matrix, {ii(t)}, {u(t)}, and {u(t)} are column vectors containing
the accelerations, velocities, and positions in the X, y, and z directions for each bead, {R(t)} is a
column vector containing the random force in the x, y, and z directions for each bead, and [k] is

a stiffness matrix.
The standard deviation of the random force is derived from Eqs. S2 and S3 to be

SD= }M (S4)
At

where At is the timestep. The friction coefficient is dependent on the bead type as well



_ 6zna (S5)
m

where a is the Van der Waals radius of the bead and n is the viscosity of water. The timestep
used for Langevin dynamics was based on the characteristic time, t, that is defined as

(S6)

<
Il
mkls

where m is the maximum bead mass. The timestep was adjusted to match the diffusion of a bead
attached to a spring. Using this technique, the timestep was determined to be 43.4 fs or 1/20.

In order to model the dynamics of the coarse-grained model, the Langevin dynamics equation
was solved using a generalized Verlet algorithm (1)

. . 4 At .

XM =x"+m™ 7[—VE(X” )— yMx" + R”} (S7)
Xn+1 :Xn +At)-(n+1/2 (88)
cn+l _ +-n+l/2 -1 At n+1 . n+1 n+1

X" =x"" e m 7[—VE(X )—yMx"™ +R } (S9)

where n is the timestep. The position is calculated from the half velocity, and then the position
and half velocity are both used to calculate the full velocity.

2. ENM Reference State

—

FIGURE S1 A model showing two beams. The reference or zero energy state for both beams is
when they are separated from each other. When the beams form a bundle, mutual interactions
deform them into some shape with associated stored energy that will be released when the beams
are separated.

For each of the helices there exists a relaxed, natural, or reference state, and we maintain that the
relaxed state of the springs that comprise the elastic network model should be defined in this
reference state. This idea is illustrated in the figure above. Say we have two helices (orange and
blue) with two different reference states (bent and straight). When the two helices come into
contact with each other, they will both deform to form an equilibrium structure. If we assume the
energy of the system to be 0 on the left, some energy is required to bend both helices to form the
combined structure on the right. In our model we use our references states, like those on the left,
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to help us calculate the energy stored in the bundle that can be released as the bundle is pulled
apart.

The existence of such a reference state is not contingent upon its viability as a stable state
for an actual isolated helix. Although Syb by itself is largely unstructured, we can still define the
Syb helix by itself, i.e., removed from the other SNARE helices. It is a notional state used
merely to obtain the frozen or stored elastic energy in the SNARE bundle. That is, all that is
required is that the helical forms be stable as a bundle and that we have a systematic procedure
by which to define springs on a relaxed state, again, regardless of whether the relaxed state
actually exists.

We recognize that in many sources in the literature it is noted that Syb is largely
unstructured when not in the presence of the SNARE bundle. We conducted 40 ns all-atom
simulation of the individual SNARE helices, starting with a configuration extracted from the
crystal structure. We found that this timescale was more than sufficient to allow all of the
helices to straighten into relatively straight rod-like conformations. It was also short enough that
each rod retained its helical structure. Because of this separation of time scales — time to relax an
individual helix << time required for it to lose it structure — we were able to define the natural or
reference state of each helix on which to construct the elastic spring network.

3. Determining the cut-off distance and spring constant in the elastic network model for

SNARES

Coordinates from the straightened out helical structures were extracted from the individual
AA simulations, and the connectivity and natural length of the ENM springs for each helix were
determined based on these structures. If the cutoff distance is too small, the proteins will
denature. If it is too large, simulation speed will be compromised with no significant
improvement in representation. In order to find an optimal value, this distance was adjusted and
a histogram was created for each helix to show the total number of springs that were connected
to each bead. The minimum criterion for the number of springs was that each bead should be
connected by a spring to all of its nearest neighbors. It was concluded that a cutoff distance of a
minimum of 10 A yielded at least 4 springs per bead, which satisfied this criteria. After further
investigation, it was determined that R, was required to be at least 20 A in order to maintain the
helical structure of each helix during AA simulations. The histogram for the final value of R, 20
A, for the helix Syb is shown in Fig. S2. The histograms for the other three helices are similar.
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FIGURE S2 A histogram for the number of ENM springs per bead is shown for Syb with a
value of 20 A for R..

The values of ks for the ENM were chosen by matching the spectrum of fluctuations of the
AA simulations and the CG model. For the analysis of individual AA helix simulations, the
positions of the alpha carbons were extracted every 10 ps. For each alpha carbon a time series of
distance from average location was calculated. The fast Fourier transform (FFT) was then
evaluated for each bead’s time series. The average was taken over all beads yielding a single
spectrum per helix. In order to make this comparison of the fluctuations, CG simulations were
conducted for the 4 individual helices using Langevin dynamics at 300 K for a range of values of
ks. The time length of simulations required was determined by conducting a normal modes
analysis (NMA) on the CG model of the crystal structure, 1N7S, for all helices individually
using different values of ks. AA simulations were run for 2 ns, which is considerably longer than
the characteristic time given as the inverse of the lowest natural frequency. The results for Syb
are shown in Table S1.



TABLE S1 The lowest natural frequencies and characteristic times for Syb determined are
shown below for different values of kg

Ks Lowest Natural Time
(N/m) Frequency Squared (ns)
(1/ns)?
0.0963 4.53 4.70E-01
0.1926 9.05 3.32E-01
0.2889 1.36 2.71E-01
0.3853 1.81 2.35E-01
0.4816 2.26 2.10E-01

For Syb, as was seen for all helices, the characteristic times are significantly less than 1 ns.
As a result the AA simulations were analyzed for the first 2 ns of the trajectories, and the CG test
simulations were conducted for 2 ns and analyzed with data collected every 2 ps. In order to best
match the fluctuations, the root mean squared deviation (RMSD) between the AA and CG
spectra was found for each run. An example of the comparison of both spectra is shown in Fig.
S3 for Syb with ks value of 0.0963 N/m. The RMSD for all helices for all values of ks are shown
in Table S2 with the minimum RMSD values shaded in grey.
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FIGURE S3 The spectra used to compare the fluctuations of the AA (blue) and CG (red) models
are shown for Syb for 2 ns. Values of ks as 0.0963 N/m and R; of 20 A were used for the CG

model. An RMSD of 4.7E-10 was found.



TABLE S2 The RMSD values between the AA and CG fluctuation spectra are shown below for

all helices for a range of values of k;. The minimum RMSD values are shaded in grey.

ks (N/m) Syb RMSD | Syx RMSD | SN1RMSD | SN2 RMSD
0.00009 9.6450e-09 1.0532¢-08 | 1.2658e-08 | 9.5905€-09
0.0009 4.9432¢-09 55075e-09 | 6.7327e-09 | 4.6640e-09
0.0096 1.4341¢-09 1.1056e-09 | 1.5941e-09 | 1.7538e-09
0.0481 7.4334¢-10 1.4651e-09 | 8.5729e-10 | 1.6778e-09
0.0963 4.7077e-10 4.3346e-10 | 1.3671e-09 | 2.3080e-09
0.1444 7.2271e-10 9.9229¢-10 | 1.5680e-09 | 1.1604e-09
0.1926 1.4341e-09 1.1064e-09 | 1.5941e-09 | 1.7539¢-09
0.2889 1.2019¢-09 15654e-00 | 2.7382e-09 | 3.0644e-09
0.3853 1.7372e-09 2.0310e-09 | 3.2207e-09 | 3.3413e-09
0.4816 2.4969e-09 2.8429e-09 | 3.2951e-09 | 3.5652e-09

Based on the data in Table S2, a value of 0.0963 N/m was chosen for ks for all four helices. For
Syb and Syx, this corresponds to the value of ks with the smallest RMSD. For SN1 and SN2
however, the minimum RMSD occurs either a little above or below ks of 0.0963 N/m. Because
the RMSD is still very small for these two helices with that value of ks, it was chosen to use a
consistent value of ks for all helices.

4. Calibration of A and displacement orientation

As described in the SNARE CG model portion in the methods section, the value of A was
adjusted in order to match the peak force reported by Gao et al. (3) of 14 — 19 pN. We
conducted a series of displacement control simulations at OK for a set of A values ranging from
0.30 to 0.72. Displacement was applied in steps and the system allowed to relax. Relaxation to
equilibrium was monitored by tracking the forces acting on the C-terminal beads of Syb and Syx
as shown in Fig. S4. Each force spike corresponds to a displacement being applied to the C-
terminal bead of Syb. After 10° timesteps, both forces relax to nearly the same value, which is
taken as the equilibrium force for that displacement, and the next displacement step is then
applied.
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FIGURE S4 The force as a function of timestep is shown for a displacement control run with A
set to 0.30. The forces on the C-terminal beads of Syb (blue) and Syx (red) are shown. Each
spike in the Syb force corresponds to application of a new displacement step. A total
displacement of 20 nm is shown.
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The resulting force displacement curves for a few of these runs for varying A are shown in
Fig. S5.
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FIGURE S5 Force displacement curves are shown for displacement control simulations done
using A values of 0.16 (red), 0.24 (blue), 0.30 (black), and 0.40 (magenta).

It was clear that as A was increased, the peak force increased as well. By choosing its value to
be 0.3, we attained a peak force of 17.2 pN that lies in the experimentally measured range.

5. SNARE Force Displacement Instabilities and Their Effect on Energy
There are several mechanical instabilities in the force-separation curve of the SNARE, for

example at 7.5 nm in Fig. 3 C. These usually correspond to “breaking” of one of the layers.
When the system jumps from one stable point to the next, it does not follow the equilibrium
force-separation relationship between these two points; instead, it lies above it. When we
integrate the force-separation curve to obtain energies, we consequently compute a slightly larger
magnitude (more negative) than it should be. This does not affect any of the predictions about
stable equilibria.

6. Continuum Governing Equations and Their Solution
The axisymmetric deformation of the vesicle-membrane system can be reduced to the solution of
a set of ordinary differential equations. The undeformed configuration of the vesicle is a sphere

of radius R with arc-length in a cross-section denoted byS whereas, the plasma membrane
occupies the interior of a circle of radiusL ] R. We introduce the notation ¢ to denote the
angle made by the tangent to a point on the cross-section of the deformed membrane in the (r, z)
plane with the z axis (see Fig. S5 A). Briefly, the equations describing the deformation involve
the shear force Q , the angle ¢ , the mean curvature H , the deformed arc length &, the deformed
coordinates of a generic material point (r,Z)Which has an arc length coordinate S in the

undeformed configuration. To expedite the analysis, we introduce the following normalized
variables:

s_:§, r=L 7-%X H=rH, Ezé,
R R R R
2 2
_ OR% -
g-R™ F_dR% (S10)
c c
5 poR> = _RR® - R _RR®
0 ¢ ¢ ¢ Tt e
where,

P, IS the osmotic pressure of the vesicle,

d is an integration constant resulting from integrating the tangential force equilibrium equation
(see supplementary information for details),

F, is the electrostatic force per unit area of the membrane and is always along z direction,



F, is the tangential component of the concentrated load at the material pointS, in the deformed

membrane,
F,is the normal component of the concentrated load at the material pointS, deformed

membrane.

— deformed
—unde formed

-
.......

o
FIGURE S6 (A) Arc length and tangent angle over the membrane, (B) Forces and moment along
the cut in the membrane.

As shown above non-dimensionalization of all the length scales is done by the radius of the
undeformed vesicle, R . As C has units of energy, we use it to non-dimensionalize force per unit

length quantities i.e. in-plane tension, T and out of plane shear, Qbyc/R?. Also force per unit
area quantities, p,, F. , F, and F, are made dimensionless byc/R®.
Also, in both the loading conditions it has been assumed that the F, for vesicle is always

zero. There are six ordinary differential equations governing the deformation of the vesicle
membrane, they are:



(S11a-S11f)

where, the dot denotes differentiation with respect to the normalized undeformed arc length S,
and

g=sins (S11g)

The normalized normal force acting on the deformed membrane surface, p in Eq. S11a is related
to the osmotic pressure of the vesicle, p,, the electrostatic force per unit area, F, and the normal

component of the concentrated load applied at S =S, , F, by,
p=p,+F,sing+ ﬁn5(s‘—§o) (S11h)

where, 5(S —S,) is the Dirac delta function.
These differential equations are supplemented with the boundary conditions:

¢(S'=0)=%,
Q(§=0)=0,
r(S=0)=0,

#S=m)=-7,

QS =7)=0,
r(S=x)=0,

(S12a-S12f)

The boundary conditions defined above essentially represent the symmetry in the vesicle
geometry. About the symmetry axis, the curve has zero slope and out of plane shear Q is zero, at

bothS =0 and 7 . Also, for the continuity of the geometry, we impose F =0 at both S=0 and

.
The notation for positive shear force and tension is described in Fig. S6. Finally, the expression
for the in-plane tension in both the vesicle and plasma membrane is given by,
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The governing equations for the deformation of the plasma membrane is very similar, except that
Eq. S11g must be replaced by,

(S14)

=l | )

£ =

This change is due to the difference between the reference configurations. The boundary
conditions are:

HS=0)=7,
Q(S=0)=0,

¢[s =FLJ=72’, (S15a-S15f)

The boundary conditions at S =0is due to axisymmetry. Eq. S15f states that the tension in the
plasma membrane approaches the pretension at the boundary. This boundary condition allows
the neuron membrane to deflect. Had we replaced this boundary condition with a clamped
condition, the deflection everywhere would be zero because of area incompressibility.

The coupled ODE’s in Eqgs. S11 - S15 with the boundary conditions are solved using the
MATLAB® bvp4c solver. The input parameters for the solver are the osmotic pressure p, across
the vesicle membrane which remains fixed throughout the deformation, SNARE-machinery
force parameters (S, and magnitude F ), electrostatic force and pretension (T,) in the plasma

membrane.

7. Example problem of continuum model
Here we show an example of the results of the calculation of vesicle-membrane interaction. In

this example, the location of force application is fixed at S, = s on both the vesicle and neuron

base, as shown in Fig. S7. This location of load application corresponds to the number of
SNAREs of 21. Parameters used in the continuum model are shown in Table S3.

TABLE S3 Parameters used for the continuum model of the vesicle and plasma membrane

Parameter Value Comment

Permittivity of vaccum, &, 8.85 x 10 Fm™

11



Dielectric constant of water, . 80 dimensionless

lon concentration inside neuron, c, 200 mM (4) (1-1) electrolyte
ge kT
Debye length, 1 . I, = /0—‘3
y g o 0.67nm b 20°2°C,
Synaptic vesicle radius, R 20nm (5)
Surface charge of vesicle and inside of | -0.025 Cm™, -0.025 Cm? (5-
plasma membrane, o, and o, 7)
Surface potential of vesicle and inside of
plasma membrane, ¢, and ¢, -25mV, -25 mv
Bending rigidity of lipid bilayer, . ~20 kgT (8) 8.28 x 10°°J

The strength of the line force is varied in the range of 5—20 in dimensionless terms, which
is equivalent to a net force between 66 —266 pN. Fig. S7 shows the deformed shapes of the

membranes for four different values of F. The inset on the right shows the calculated
relationship between applied force and separation between load application points. The force
decreases rapidly with increasing separation, reflecting the steep decay of the electrostatic
repulsion.

P 0.3 : : : : :
3~ F=o 250} 1
------ F=10
——F=15 .
—F =20 _-1 Z200¢
< 150+
2]
e -
S 100
s
I} _
2
50¢
0 ‘ ‘ ‘ ) ‘ _
1 2 3 4 5 6 7
0.6 vertical separation between SNARE
end points (in nm)
0 —vesicle |
=——plasma membrane | | |
0 1 2 3 4 5

FIGURE S7 Deformed geometry for different force magnitudes. The thick lines represent the
neuron base and the thin lines represent the vesicle. The inset on the left shows the zoomed in
section of the load application point (shown as e ) and the inset on the right shows the vertical
separation between the two ends of SNARE-machinery versus the net SNARE force. The
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parameters are for the analysis are: load application point,S,=~/6, pretension in plasma
membrane, T,=1 and vesicle pressure. p,=1 .

8. SNARE Force Separation Curve Shift

To compare the attractive force imposed by the SNARE bundle to the repulsive force on the
vesicle, we need a consistent definition of separation. The distance connecting the final residue
beads (Syb89 and Syx256) is shorter than the distance between the outside membrane surfaces
due to the presence of other parts of the SNARE. To address this issue, we created a static
coarse grained structure of a 20 nm vesicle and plasma membrane with a partially opened
SNARE at its equilibrium configuration as shown in the figure below. We found that distance
between the outer surface of the membranes is actually about ~1nm further apart than the
distance between Syb89 and Syx256. We have therefore added this distance when comparing
the attractive force on the SNARE to the repulsive force on the vesicle. Adding the initial
separation between Syb89 and Syx256, the minimum distance allowed between the membranes
at the point of force application is about 2nm. Another related effect is that inter-SNARE-bundle
repulsion can increase the minimum lateral separation. We have considered two additional cases
where we take lateral SNARE bundle width to be 2 and 4 nm (an additional Debye screening
length increase in radius in the latter case). The larger lateral spacing makes the effect of number
of SNAREs significantly stronger but the minimum separation and the number of SNARES
needed to achieve it does not change much.

Figure S8. Drawing of a vesicle near a plane along with a model for the SNARE bundle.

9. Choice of SNARE Model

The CG simulation model was built using the SNARE X-ray crystal structure 1N7S that includes
Syb (27-89), Syx (189-256), SN1 (5-83), and SN2 (139-204). We recognize that this structure
only includes part of the Syb linker domain (85-95) and none of the linker domain of Syx (256-
266). However, we believe that our choice of placing the membrane outer surface at residues 89
and 256 is correct. Our choice is based on the following papers (9, 10) that show Syb insertion
in the membrane starts at Trp 89. Specifically, they show that 89-94 is unstructured but is
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inserted in the membrane. Similarly, the following paper shows that for Syx, residues after 261
are in the lipid bilayer. Specifically, 261-266 are unstructured but inside the lipid bilayer (11).
The following study (12) also concludes that the linker domains (256-266) and (85-95) are
buried in the top layer of the membrane. Because the reference distance from the hydration
repulsion is the outer surface of the membrane, to be consistent we believe that it is quite
appropriate to define SNARE displacement from 88 for Syb to 256 for Syx, within some
uncertainty of a just a few residues.

Whether or not the linker domains have unraveled is debatable. It was shown in Gao et
al’s optical tweezer experiment that the Syb linker domain unravels at 10-13 pN. Because the
equilibrium SNARE end-end distances of interest in this work are <~ 3nm), our maximum force
only reaches (<5pN) and neglecting helix unraveling in our model is justifiable. Nevertheless, in
order to check the robustness of our solution against unraveling, we did melt two helical turns of
Syb (including up to residue 91). The principal effect is that the minimum equilibrium
separation increases from 2 nm to 2.5 nm for both hydration and electrostatic repulsion with a
constant charge.

10. Robustness of Model Results

To judge the sensitivity of our main conclusions on the various assumptions we have made, we
carried out a number of other simulations. Our main conclusion is that the principal results of
our model are quite robust with respect to uncertainty in the assumptions made.

10.1. Electrostatics: We explored how electrostatics would affect the vesicle to plasma
membrane repulsion. Fig. S9 shows results for the case where hydration repulsion is replaced by
electrostatics using a fixed surface charge of -0.025 C/m? on the vesicle and the membrane.
Evidently, with these parameters the electrostatic repulsion is weaker than the hydration
repulsion. For one SNARE the end separation is ~2.4nm, which is smaller than the 3 nm seen
for the hydration repulsion case (Fig. 4 B). However, when more than 1 SNARE is added to the
system, the equilibrium SNARE end separation is constant at ~2 nm for 2-13 SNAREs, that is, it
would be completely zippered shut.
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FIGURE S9 (A) The force in the membrane/vesicle system is shown as a function of SNARE
end separation for a vesicle radius of 20nm with electrostatic repulsion with a fixed surface
charge. (B) The corresponding contour plot of total energy as a function of SNARE end
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separation distance and the number of SNAREs. Gray circles correspond to global energy
minima representing the equilibrium SNARE end separation for a given number of SNAREs.

10.2. Larger vesicles:Although our primary interest is in the smaller synaptic vesicles, the
model can also be applied to study larger vesicles. Fig. S10 shows results for the case of a 100
nm vesicle.
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FIGURE S10 The force in the membrane/vesicle system is shown as a function of SNARE end
separation for a vesicle radius of 100nm with (A) hydration repulsion and (C) electrostatic
repulsion with a fixed surface charge. Contour plots of total energy as a function of SNARE end
separation distance and the number of SNAREs are shown for a vesicle radius of 200nm with (B)
hydration repulsion and (D) electrostatic repulsion with a fixed surface charge. Gray circles
correspond to global energy minima representing the equilibrium SNARE end separation for a
given number of SNARES.

For the hydration repulsion case the minima are significantly larger than those found for the
20nm case shown in Fig. 4 B. For four or more SNAREs the equilibrium separation is ~2.5nm
which is different from the 20nm case where the separation is ~2nm and the SNARE bundle can
be nearly fully zippered. For the case of electrostatic repulsion, for larger number of SNARES
the repulsion is still insufficient to open the SNARE except when there is are three or fewer
SNAREs.
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10.3. Fixed Potential: We also carried out computations assuming a fixed potential of -25 mV
on the vesicle and on the membrane as opposed to the fixed surface charge case that was
assumed in the majority of the paper. The resulting force separation curves for the 20nm and
100nm vesicle cases are very similar to the case of fixed charge. This is not unexpected because
the electrostatic force for fixed charge versus fixed potential cases becomes nearly the same for
separations greater than the Debye screening length.

10.4. Unraveling of Syb: Several other modifications were made to the cases shown in Fig. 4.
There is some question about whether part of the syb helix unravels. We have argued that the
forces are small enough that the helical structure should be preserved. However, to test the effect
on our prediction of potential unraveling, we allowed 2 helical turns to unravel and be
represented by elasticity of a worm-like chain coil. Because the Syb helix touches the membrane
at residue 91 and the CG model only contains up to residue 89, an extra 2 residues were added to
the unraveled portion of Syb. The force displacement curve for the melted portions of Syb were
modeled using a worm like chain model following Gao et al.(3) The force extension relationship
was calculated using the Marko-Siggia formula

— kBT 1 + Xmelt _1

Pmelt 4[1 _ Xme/t jz Lmelt 4
L

'melt

F

(S16)

where P,,.;; is the persistence length of the melted segment (0.6 nm) and x,,,.;; is the end to end
distance of the melted segment. L,,.;:, the maximum end to end distance of the melted segment,
was calculated assuming a 0.365 nm contour length per residue (3) which totaled to 1.3 nm due
to ~2 helical turns being melted. The master force displacement curve was slightly adjusted by
deleting the portions of the curve that corresponded to the 7 residues that are now accounted for
using the WLC model. The SNARE end separation, xsy4re, Was defined by

XSNARE (F) = Xmelt (F) + Xbundle (F) + BW (817)

where x,,.;; 1S the end to end distance of the melted portion of Syb, xpyna1e 1S described using
the manipulated master force curve described in this section, and BW is the width of the SNARE
bundle or the distance between the Syb and Syx C-termini when no external force is being
applied. The corresponding results are shown is shown in Fig. S11 A for a 20nm vesicle with
hydration repulsion and Fig. S12 A for a 20nm vesicle with electrostatic repulsion and a fixed
surface charge.
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FIGURE S11 For a 20nm vesicle with hydration repulsion, contour plots of normalized total
energy as a function of SNARE end separation distance and the number of SNARES are shown.
Gray circles correspond to energy minima representing the equilibrium SNARE end separation
for a given number of SNAREs. Several cases are shown: (A) 2 helical turns unraveled, (B) Syx
frozen, (C) SNAP25 frozen, and (D) Syx and SNAP25 frozen.
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FIGURE S12 For a 20nm vesicle with electrostatic repulsion assuming a fixed surface charge,
contour plots of normalized total energy as a function of SNARE end separation distance and the
number of SNAREs are shown. Gray circles correspond to energy minima representing the
equilibrium SNARE end separation for a given number of SNAREs. Several cases are shown:
(A) 2 helical turns unraveled, (B) Syx frozen, (C) SNAP25 frozen, and (D) Syx and SNAP25
frozen.

In both cases, the results differ from those seen in Fig. 4 when unraveling was not permitted. For
the case of hydration repulsion, the minimum separation is somewhat larger (~2.4 nm) than that
shown in Fig. 4 B (~2.1 nm). There is a similar difference for the case of electrostatic repulsion.
10.5. Freezing SNAP25 or Syx: In our simulations we allowed SNAP25 helices to be free to
adjust their orientation. This mimics the optical tweezers experiment used to calibrate our
model. However, the situation in vivo is likely different with SNAP25 and/or Syx constrained
against motion. In order to see the effects of the positioning of SNAP25 in relation to the
SNARE bundle we studied three variations: freezing Syx, freezing SNAP25, and freezing both
Syx and SNAP25. When Syx was frozen, SNAP25 still remained associated with Syb. Anytime
that SNAP25 was frozen at all, it remained associated with Syx. The energy calculations were
repeated for the hydration repulsion case (Fig. S11) and the electrostatic repulsion case with
fixed surface charge (Fig. S12). The freezing of helices in all of these cases has little effect on
the minimum distance and number of SNAREs. The principal difference occurs for the one-
SNARE case where the equilibrium distance reduces significantly.
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10.6. High Osmotic Pressure and Low Pretension Limit

Figs. 2 and S7 show cases of low osmotic pressure and plasma membrane tension where
the plasma membrane bulges near the axis of symmetry because the attractive forces draw the
two membranes to each other at their point of application but near the axis of symmetry only
repulsion acts. Experiments suggest that prior to vesicle to membrane fusion, the vesicle retains
its spherical shape while the plasma membrane surface conforms when the two are in contact
(13, 14). The continuum model was recalculated using high osmotic pressure in the vesicle and
low pretension in the plasma membrane with constant potential. The resulting structures are
shown for 10 and 15 SNAREs in Fig. S16.
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FIGURE S13 For a 20nm vesicle with high osmotic pressure and low pretension in the plasma
membrane with constant potential the vesicle and plasma membrane structures are shown
including their bilayer thickness for (A) 10 SNAREs and (B) 15 SNAREs.

Under the conditions of high osmotic pressure and low pretension when 10 SNARES are present
there is little bulging of the plasma membrane and the vesicle remains spherical when the vesicle
and plasma membrane are brought together. The separation is relatively constant which is
consistent with the Malsam et al.(13) and Hernandez et al. (14). As the number of SNAREs is
increased to 15, there is some bulging in the plasma membrane at the axis of symmetry. The
vesicle has retained its spherical shape while the plasma membrane bends to conform to it.

The energy surface for this case is shown in Fig. S14. We note that there is little
difference between these and those of Fig. 4 B. This suggests that our model is robust with
respect to this uncertainty. (In particular, the value of vesicle osmotic pressure is difficult to
estimate.)
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FIGURE S14 Contour of normalized total energy as a function of SNARE end separation and
number of SNAREs for a 20nm vesicle with high osmotic pressure and low pretension in the
plasma membrane, and with constant potential on the vesicle and plasma membrane. White
circles correspond to energy minima representing the equilibrium SNARE end separation for a
given number of SNAREs.

10.7. High Vesicle Pressure, High Membrane Tension Vesicle-Membrane Model

In order to display the effects of the deformation considered in the continuum model, a more
simplified analytical model of the Vesicle-Membrane system based on Bykhovskaia et al.(15)
was calculated. The parameters used in the analytical model were consistent with those used in
the continuum model as described in Section 2.3. Consider the case in which vesicle pressure P,
and the membrane tension T are sufficiently large such that neither the vesicle nor the membrane
deform as they approach each other. In this case Bykhovskaia et al.(15) have shown that the
force between the vesicle and membrane is given by

o2 200 g can{ 21 o
lo sinh(aj b

D

for fixed surface potential and

_7b| 20102 +U§)(Coth(£]_1j (519)
EE . a Ib
0 smh(j

D

for fixed charge. The force separation curves are shown for the vesicle-plasma membrane for
several cases using this model in Figs. S15 and S16.
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FIGURE S15 For the high vesicle pressure high membrane tension limiting case, the net applied
force in the membrane/vesicle system is shown as a function of SNARE end separation for a
vesicle with a (A) 20nm radius with fixed charge, (B) 20nm radius with fixed surface potential,
(C) 100nm radius with fixed charge, and (D) 100nm radius with fixed surface potential.

21



200 200
E‘ i Increasing
F Inc reasing F N umber
T 100y Hmber E 100 ShARES
= SNARES o
- - 13 SNARES
2 50| 13 SNAREs = 50
z z,

Pl
2 SNAREs 2 SNAREs
0 : 0 .
0 2 4 6 0 2 4 6
SNARE End Separation (nm) SNARE End Separation (num)

FIGURE S16 For the high vesicle pressure high membrane tension limiting case, the net applied
force in the membrane/vesicle system is shown as a function of SNARE end separation for a
radius for a vesicle with a 20nm radius with fixed charge when (A) the SNARE bundle diameter
is 2nm and (B) the SNARE bundle diameter is 2nm.

10.8. Effect of Lateral Bundle Width: Figure S17 shows results of a test of the sensitivity of the
solution to the location of the SNAREs when the lateral size of the SNARE bundle was varied
from 2nm in Fig. S17 A to 4nm in Fig. S17 B (the base case used is 3nm, Fig. 4 B). Increasing
the lateral width of the SNARE bundle seems to have a significant effect on the solution. There
IS a minimum separation at 4 SNAREs. With the addition of more than 5 SNAREs the
equilibrium separation again begins to increase all the way up to ~3nm with 13 SNAREs.
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FIGURE S17 For the high pressure high tension limiting case, contour plots of normalized total
energy as a function of SNARE end separation distance and the number of SNAREs are shown.
Gray circles correspond to energy minima representing the equilibrium SNARE end separation
for a given number of SNAREs. Several cases are shown for the vesicle with a radius of 20nm
and fixed charge. The size of the SNARE bundle was varied to (A) 2nm and (B) 4nm.
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