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PARAMETERS AND INITIAL CONDITIONS

In the following, we show the detailed parameter values we have used for
presented simulations.
OMC model: Due to the reduced complexness of the used model (e.g.,
curved 2D surfaces instead of real 3D bodies) a direct parametrization by
experimentally determined parameters was not possible. Instead, model
parameters have been chosen such that simulated space and time scales
fit to the experimental results, guided by the behavior of an aggregate of
“ideal size”. Especially, parametrization has been chosen such that symme-
try breaking occurs after five oscillations where tSB = 21.4h is minimal for
a size of r = 138µm (1). By setting vphys = εv vabs, we transformed tem-

poral (v = t) and spatial (v = ~X) abstract dimensionless quantities vabs by
a characteristic unit of measure εv into a physical reasonable variable vphys.
Concretely, we used εt = 173.97h for temporal and εX = 138µm for spacial
scales. Most other variables we have kept dimensionless; especially we have
used (as not otherwise stated): ∆Ceff = 30, α = 1, κ1 = 100, λ = 300,
ξ = 500, κ3 = 1, β = (1.25)2, theal − trupt = 5min, L = 1, DA = 27.5,
CA = 174, D̃B = 5250 and CB = 350. As initial morphogen distribution we
have always set ΦA and ΦB stochastically and uniformly distributed in the
interval [1.0, 1.1].
Turing model: We use c1(r0) = 0.0004362997r0 − 0.0209382395 and
uthreshold = e. For every fit, we generated randomly an initial guess ful-
filling the Turing conditions and use them for MATLABs built-in function
fmincon. We assume that Du < Dv(< Dw) and use the transformation
t̃ = Dut to reduce the parameter space.
Curvature-increasing model: Based on the model presented in Mercker
et al. (2), we have always used the parameters LX = 1.0, κ = 0.01, γ = 0.4,
δ = 1.0 and β = 1.0, where ζ (respectively ζ̃) and system size have been
varied. For all simulations of this model we assumed as the initial tissue
geometry a sphere as well as a stochastic distribution for the morphogen
concentration Φ, uniformly distributed in the interval [0, 0.05].
SOC model: In accordance with the model of Gamba et al. (3) we have
used an average conservation level of C = 0.95. Furthermore, we have con-
sidered the ν → 0 limit as described by Jensen (4). All SOC simulations
were started with an always newly generated stochastic distribution for the
Ks1 -promoting factor, uniformly distributed below the threshold value.
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FITTING PARAMETERS

Here, we present parameters for analytical fitting curves used within differ-
ent figures in the main manuscript.
Fig. 2E : grey solid line: −0.234 ∆Ceff + 0.015.
Fig. 2 F : grey solid line: 10.323 (tanh(0.0117 r0 − 1.680) + 0.747).
Fig. 4 C : grey dashed line: 64.646/(2.551 s0.3 − 1).
Fig. 4 C : grey solid line: 20.+ 34.285/(2s).
Fig. 4 E : grey solid line: linearly interpolated values as a guide to the eye.
Fig. 5 A-C : black solid line: experimental data given by 21.4+152.3(r0/138−
1)2 (taken from Soriano et al. (1)).
Fig. 5 A: Diffusion coefficients Du = 2724, Dv = 4723677, entries of the
Jacobian fu = 0.931, fv = 1, gu = −2fugv, gv = −158.276.
Fig. 5 B : For simulation data we have used ζ = 8.0 with temporal scaling
1.3 tc = t h and spacial scaling 189 rc = r µm (where vc are the abstract
dimensionless variables used within the model).
Fig. 5 C : For simulation data we have used the temporal scaling (1/57) z =
t h, where z is the number of cascades.

CALCULUS OF VARIATIONS

To obtain the detailed dynamic tissue surface equations (eq. 7, main ma-
nuscript), we need to calculate normal variations (i.e., with respect to ~X ·
~n), in the following in the strong formulation denoted by δ⊥

δ ~X
F
[
...
]
, in the

weak formulation by δ⊥[...]. For technical details and further definitions
concerning this approach, we refer to Mercker et al. (5). Since variations
of Fbend can be already found in Mercker et al. (5), here, we restrict our
calculations to normal variations of Fosm and Fcomp, respectively.
Lemma 1 : It holds:

δ⊥

δ ~X

[
Fosm

]
= κ1

( ∫
Ω
d~V − V (t)

)
.

Proof: Using the product rule as well as δ⊥

δ ~X
[c
∫

Ω d~V ] = c for any constant

c (6, 7) yields

δ⊥

δ ~X

[
Fosm

]
= κ1

( ∫
Ω
d~V − V (t)

) δ⊥
δ ~X

[ ∫
Ω
d~V
]

= κ1

( ∫
Ω
d~V − V (t)

)
. �
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Lemma 2 : It holds:

δ⊥

δ ~X

[
Fcomp

]
=
√
gHκ2(

√
g −√g0)/

√
g0.

Proof: Using the product rule as well as δ⊥[
√
g] = H

√
gψ with test function

ψ (7) yields

δ⊥
[
Fcomp

]
=

∫
S2

κ2(
√
g −√g0)/

√
g0δ

⊥[
√
g] d~s. �

TURING CONDITIONS

Here, we describe the conditions for the entries of 2× 2 and 3× 3 matrices
leading to diffusion-driven instability. We denote the eigenvalues of the
Laplacien by µ`(r0) = `(`+ 1)/r2

0.

The matrix J =

(
fu fv
gu gv

)
has eigenvalues with negative real parts iff tr J < 0

and det J > 0. The matrix J`(r0) may have positive eigenvalues if fu > 0 or
gv > 0 holds. For suitable diffusion coefficients this leads for a certain range
of r0 to

det J2
` (r0) = detJ − (fuDv + gvDu)µ`(r0) +DuDvµ

2
` (r0) < 0.

For the 3× 3 matrix J =

(
fu fv fw
gu gv gw
hu hv hw

)
, we define

ΣJ :=det

(
fu fv
gu gv

)
+det

(
fu fw
hu hw

)
+det

(
gv gw
hv hw

)
.

J has eigenvalues with negative real parts, if and only if it holds (8)

tr J < 0, det J < 0 and trJ · ΣJ − det J < 0.

J`(r0) may have eigenvalues with positive real parts if at least one of the
conditions

fu<0, gv<0, hw<0, det

(
fu fv
gu gv

)
>0,det

(
fu fw
hu hw

)
>0 and det

(
gv gw
hv hw

)
>0

is violated. For suitable choices of the diffusion coefficients this leads for a
certain range of r0 to

det J`(r0)=det J−µ`(r0)

(
Dudet

(
gv gw
hv hw

)
+Dvdet

(
fu fw
hu hw

)
+Dwdet

(
fu fv
gu gv

))
+ µ2

` (r0) (fuDvDw + gvDuDw + hwDuDv)− µ3
` (r0)DuDvDw > 0
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or to

tr J`(r0) · ΣJ`(r0)− det J`(r0) = (trJ · ΣJ − det J)

− µ`(r0)
(
(Du+Dv)det

(
fu fv
gu gv

)
+(Du+Dw)det

(
fu fw
hu hw

)
+ (Dv+Dw)det

(
gv gw
hv hw

)
+ (fu + gv + hw)

(
fu(Dv +Dw) + gv(Du +Dw) + hw(Du +Dv)

))
+ µ2

` (r0)
(

2(fu+gv+hw)(DuDv+DuDw+DvDw)

+ fu(D2
v+D2

w)+gv(D
2
u+D2

w)+hw(D2
u+D2

v)
)

− µ3
` (r0)

(
D2
u(Dv+Dw)+D2

v(Du+Dw)+D2
w(Du+Dv)+2DuDvDw

)
> 0.
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