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Mechanochemical Symmetry Breaking in Hydra Aggregates
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ABSTRACT Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed
underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical
morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining
step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven
shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback
loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare
different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results
suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of
mechanochemical symmetry breaking in Hydra.
INTRODUCTION
During embryogenesis the organism develops from a single
cell to a complex entity composed of tissues showing
different types of patterns (1). Chemical patterns are pat-
terns of diffusing signaling molecules involved in tissue
development, called morphogens (2–4). In contrast, me-
chanical patterns are related to shape/geometry and
(visco-)elastic properties of cells or tissues, which are ex-
pressed in terms of geometry, strain, stress, or stiffness
(5,6). During many developmental steps, chemical and me-
chanical patterns appear simultaneously, and it is frequently
difficult to distinguish cause from effect.

However, the traditional view of morphogenesis is domi-
nated by a purely chemical approach, where mechanical pat-
terns are regarded as simple consequences of chemical
prepatterns (7). According to this theory, morphogenesis is
a hierarchical sequence of chemical patterning processes,
where each pattern depends critically on the previous one.

Increasing amounts of experimental data show that me-
chanical or geometric cues can actively influence morpho-
genetic processes and cell differentiation (for review, see
Chanet and Martin (8) and Farge (9)). This suggests that
the interplay between chemical and mechanical processes
could lead to pattern formation in many cases (10,11).
Moreover, purely chemical models propose the existence
of morphogens behaving in a certain way (e.g., long-range
inhibitors for Turing (4) or the Gierer-Meinhardt (12)
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models), but these morphogens have not been identified
after several decades of research (13). Finally, at least
some developmental processes do not critically depend on
the existence of chemical prepatterning; from lower animals
(14) to organs of mammals (15,16), it has been shown that
they may evolve from dissociated and randomly aggregated
cells.

For these reasons, the need for fresh modeling ap-
proaches, integrating mechanical and chemical processes
during development, has been recently stressed (17).
Although the number of mechanical models of morphogen-
esis has strongly increased during the last decade (18), ap-
proaches considering mechanochemical processes during
tissue development are still in the early stages (10,19,20).

To study the mechanochemistry of development, the
Hydra polyp is a suitable organism. Hydra is an established
biological model organism for morphogenesis (21,22) and it
has been traditionally used to apply purely chemical pattern
formation models—such as in the seminal article of Alan
Turing (4) and in related approaches (3,12,23,24). Hitherto,
several morphogens involved in early pattern formation
(i.e., axis formation) have been identified in Hydra: Mem-
bers of theWnt signaling pathway are locally expressed dur-
ing early head formation, withWnt3 constituting the earliest
marker of this signal cascade (25,26). Furthermore, produc-
tion of the permanently expressed Ks1 morphogen appears
to be upregulated in response to early signals of head forma-
tion (27,28) whereas its graded expression inversely corre-
lates with the head-forming potential in adult Hydra
polyps (29).

However, these molecules are not good candidates for
morphogens in Turing-type models; note that the long-range
inhibitors are still elusive in Hydra (13,30,31). It has also
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been recently shown that in this organism, tissue mechanics
is indispensable during early pattern formation (19), sug-
gesting that purely chemical models are insufficient.

Hydra is attractive from a modeling point of view. It has a
simple body plan and the complexity can be reduced by
studying the so-called Hydra aggregates (14). Here, de
novo pattern formation and regeneration of polyps can be
observed from a bulk of randomly mixed and aggregated
cells. Initially, these cells form a hollow tissue sphere, which
exhibits osmotically driven shape oscillations: Due to water
influx, the tissue sphere swells until tissue rupture takes
place, which is followed by a rapid collapse and tissue
healing; then the process starts again (32). After several
oscillations (phase I), aggregates suddenly change their
homogeneous structure to a chemically and mechanically
inhomogeneous system (phase II), which defines the first
axis-defining step in Hydra called symmetry breaking
(19,25,32). In contrast to recent findings in yeast (33), the
location of tissue rupture in Hydra aggregates does not
seem to determine the final body axis: Before symmetry
breaking, the rupture point of each cycle occurs at a
different location (19).

In some systems, there is evidence that pattern forma-
tion is driven by motile cells (34), which can explain
why corresponding molecular species are not found.
However, experimental observations exclude such a mech-
anism in Hydra. Cellular patterning requires a range of cell
populations with distinct properties (34). In contrast,
pattern formation and symmetry breaking in Hydra can
be achieved in aggregates with varying cell composition
(14) and axis formation can be induced by purely chemical
cues (35).

Thus, in this article, we investigate possible mechano-
chemical processes underlying symmetry breaking inHydra
aggregates. We propose a model combining osmotically
driven shape oscillations (19,36) and morphogen dynamics
and test its ability to reproduce recent experimental results.
Furthermore, we compare previously proposed models for
symmetry breaking, such as diffusion-driven instability
(the Turing model (12,19)), self-organized criticality (i.e.,
SOC (27,37)), and curvature-increasing mechanisms (10)
with respect to their predictions of dynamics of this process.
Our results are discussed in the context of morphogens asso-
ciated with symmetry breaking and head formation, such as
Ks1 and Wnt (25,26,28).
FIGURE 1 Proposed interactions among morphogens, tissue mechanics,

and osmotic processes during symmetry breaking in Hydra aggregates.

(Left-hand side) OMC model (presented within this study); (right-hand

side) model of Soriano et al. (19). (Continuous arrows) Experimentally

motivated model assumptions; (dotted arrows) physical relationships.
MATERIALS AND METHODS

Model

In this section, based on experimental data, we develop an osmomechano-

chemical (OMC) model for symmetry breaking in early Hydra aggregates.

This model combines osmotic processes with tissue mechanics and

morphogen dynamics. Because the exact mechanism of morphogen clus-

tering during body axis formation in Hydra is unknown, we focus on

the activator-inhibitor model exhibiting Turing instability. However, we
consider and compare different alternative mechanisms proposed previ-

ously in the literature (such as SOC and curvature-increasing models),

which we investigate for simplicity on spheres of fixed radius without tissue

mechanics.

The osmomechanochemical model

The OMC model describes dynamics of two interacting and diffusing

morphogen species in an elastically deforming tissue surface which un-

dergoes osmosis-driven shape oscillations.

Dynamics of tissue deformations are based on a gradient flow mini-

mizing the free energy, accounting for osmotic pressure, tissue stretching,

bending, and local morphogen concentrations. Together with Turing-type

morphogen dynamics, we obtain a model in the form of coupled nonlinear

partial differential equations of fourth-order.

Most importantly, we propose the following feedback loop between mor-

phogens and tissue mechanics (see Fig. 1): There exists a morphogen that

locally lowers the resistance to lateral tissue stretch (MC1), and patterning

of this morphogen critically depends on lateral tissue stretch (MC2).

These assumptions on the mechanochemical coupling are based on the

observation that symmetry breaking in Hydra spheres involves formation

of an early head, having a head-organizer in the center (13). The early

head can be characterized in different ways: mechanically as a weak spot

in the tissue (19,25,27) (i.e., a lower resistance to lateral tissue stretching),

or chemically as the local expression of characteristic morphogens, such as

multiple Wnt (25,26) or Ks1 (28) molecules. Furthermore, mechanochem-

ical symmetry breaking requires the shape oscillations mentioned above,

leading to periodic tissue stretch (19).

The OMCmodel constitutes an extension of the reaction-diffusion model

proposed by Soriano et al. (19) for Hydra symmetry breaking, but differs in

the following points (Fig. 1).

1. Soriano et al. (19) consider influence of tissue stretch on morphogen

patterning instead of a feedback loop.

2. We explicitly model tissue deformations, whereas Soriano et al. (19) in-

corporates the shape oscillations more phenomenologically.

3. In contrast to Soriano et al. (19), the OMC model does not require the

assumption of viscoelasticity to reproduce experimental results.
Biophysical Journal 108(9) 2396–2407
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Mathematical modeling framework

To describe mathematically the dynamics of a Hydra aggregate, we use a

continuous approach, which is justified by the large number of cells

(z104) in the system (19). The cell bilayer forming a hollow tissue sphere

is at any time t approximated by a closed two-dimensional surface G(t),

embedded in three-dimensional space. The evolution of G(t) is given by a

diffeomorphic time-dependent representation ~X, parameterized over the

unit sphere S2 3 ℝ3. Thus, G(t) is the image of ~Xð,; tÞ with
~Xð~s; tÞ : S2 � ½0; T�/ℝ3 for a T ˛ ℝ>0.

Local concentrations of the morphogens A and B at time t are given by

continuous functions FA, FB on the deforming tissue surface G(t), defined

as morphogen concentrations per cell volume, Fi(t): G(t)/ ℝR0, i ˛
{A,B}. In order to achieve a consistent formulation with chemical processes

being defined on S2 rather than on G, we redefine Fi accordingly. This can

be done by using the fact that we can identify material points~Xð~s; tÞ on G(t)
with ~s˛S2, because ~X is smooth and bijective. Thus, for each ~s˛S2, t ˛
[0,T], and i ˛ {A,B}, we define the function fi: S2 � ½0;T�/
ℝR0 by fið~s; tÞ ¼ Fið~Xð~s; tÞÞ:
Energy terms describing elastic behavior

In this study we treat the tissue as purely elastic and not viscoelastic.

Although corresponding timescales are within the range of viscoelastic

processes, previous studies showed that purely elastic models reproduce

Hydra tissue behavior (e.g., Krahe et al. (38), Mombach et al. (39),

and Kücken et al. (36)) and can be used as an approximation. Further-

more, we will show that effects that have been previously ascribed to

viscoelastic properties of Hydra can be explained by elastic tissue

behavior.

Elastic tissue deformations are based on minimization of free energy F,

composed of energy terms related to tissue bending, stretching, and osmotic

pressure. Free energy formulations are expressed in terms of surface inte-

grals,
R
G. d~S, or volume integrals,

R
U. d~V, whereU is the domain inside,

i.e., G ¼ vU. We will abbreviate G ¼ G(t) and U ¼ U (t). In the parametric

formulation, due to the divergence theorem, these time-dependent integrals

are given by
R
G. d~S ¼R

S2.
ffiffiffi
g

p
d~s and

R
Ud

~V ¼ ð1=3ÞRS2~X,~n ffiffiffi
g

p
d~s,

respectively. Here, ~n is the outer unit normal vector and
ffiffiffi
g

p
is a surface

measure, the latter representing the local area of the tissue and depending

on the parametric function ~X.

Osmotic processes and pressure

It has been previously shown that early Hydra aggregates undergo

osmotically induced shape oscillations, consisting of repeated tissue

swelling, rupture/collapse, and healing cycles (32,36). These oscillations

appear to be required for symmetry breaking (19). To integrate this

aspect, we follow the approach of Fütterer et al. (32), assuming a

Darcy-type law for the temporal development of the total water volume

V(t) inside the tissue shell. This is (in the absence of elastic resistance)

given by

dtV ¼ �A0 a ðCout � CinÞ; (1)

Here,A0 ¼
R
S2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðt ¼ 0Þp

d~s is the initial (unstressed) total tissue area, a is

a constant depending on temperature and water permeability, and (C –
in

Cout) is the difference in ion concentrations per unit of volume from the in-

side to the outside of the Hydra shell (36). Although Cin depends on time, it

has been shown that it does not change appreciably after an initial equilibra-

tion (36). Hence, for the sake of simplicity, we use a constant for effective

ion concentration difference between the inside and the outside of the

aggregate, DCeff :¼ Cout(t >> 0) – Ctn(t >> 0). With Eq. 1, it follows

for the preferred aggregate volume that

VðtÞ ¼ �A0 a DCeff t þ
Z

Uðt¼ 0Þ

d~V: (2)
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We include Eq. 2 in an energy term elastically penalizing a possible

overpressure in the interior of the aggregate, the latter quantified by devia-

tions of this volume
R
U d~V from the preferred value V(t). This energy is

given by

F osm ¼ k1

2

0
@Z

U

d~V � VðtÞ
1
A

2

; (3)

where k1 balances osmotic pressure with elastic tissue resistance. Further-

more, Eq. 3 is only valid if the tissue sphere is intact. For consideration
of tissue rupture and pressure release, we refer to the next subsection.

Tissue stretching, rupture, and healing

Lateral tissue stretching is assumed to play a major role during symmetry

breaking in Hydra spheres (19). Hence, unlike in the previous approaches

(10,40), we consider a locally compressible surface. We introduce the

energy term

F comp ¼
Z
G

k2

2

� ffiffiffi
g

p � ffiffiffiffiffi
g0

p �2
ffiffiffiffiffi
g0

p ffiffiffi
g

p d~S; (4)

which is a generalization of the Hook energy for a spring (41). Deviations of

the local tissue area
ffiffiffi
g

p
from the initial (relaxed) value

ffiffiffiffiffi
g0

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðt ¼ 0Þp
are elastically penalized, weighted by the stretch rigidity k2.

The osmotically induced swelling of the Hydra tissue shell G ends due to

local tissue rupture, where pressure is released from a small hole until

healing takes place, and the swelling process starts again (19,27,32).

Because topological changes of G are difficult to handle mathematically

(and are not the primary aim of this study), we introduce the effect of

tissue rupture and healing on a more phenomenological level: If local

tissue stretch exceeds a certain threshold b, i.e.,
ffiffiffi
g

p
=

ffiffiffiffiffi
g0

p
>b, we set the

osmotic pressure to zero by setting VðtÞ ¼ R
Uðt¼0Þ d~V for a certain time

period t ˛ [trupt, theal[, and

VðtÞ ¼ �A0 a DCeff ðt � thealÞ þ
Z

Uðt¼ 0Þ

d~V

afterwards. Hence, we obtain a pressure release in the moment of tissue

rupture trupt, and a pressure regeneration starting from the moment of
completed tissue healing theal. In the following, we have set b ¼ (1.25)2,

which matches the experimental observation that rupture occurs, if, for

the relative radius R ¼ (r – r0)/r0, it holds R > 0.25, where r0 is the initial

and r this aggregate radius (36).

To account for point (MC1) of the mechanochemical coupling, we set

k2 ¼ k2(FA, FB), i.e., we assume that the resistance to stretching depends

on local morphogen concentrations. However, a simple linear relationship

between tissue stiffness and morphogen concentrations would be unrealis-

tic, because we expect saturation for high morphogen concentrations.

We set

k2 ¼ k2ðFAÞ ¼ �l tanhðFA � 2Þ þ x; (5)

where FA has been chosen over FB for simplicity. The interpretation of

Eq. 5 is that the stretch rigidity k2 decreases with increasing morphogen
concentration FA and then shows a saturation, i.e., k2 / (x � l) for

FA/N. Using the parameter values in the Supporting Material, we obtain

a maximum effective reduction of k2 due to FA by a factor of ~0.4, which

could be achieved in vivo by locally lowering the cell-cell-contacts.

Bending

To describe the resistance of the tissue surface to bending, we use the

Helfrich free energy (42), which is given by
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F bend ¼
Z
G

k3

2
H2 d~S: (6)

Here, H is the mean curvature and k3 is the bending rigidity (40). Because

tissue curvature effects are assumed to play a minor role within this model,
we neglect modifications of F bend due to tissue compressibility, which

would include changes in bending stiffness k3 due to local stretching or

compression.

Evolution equations for the deforming tissue surface

The total energy F ¼ F bend þ F comp þ F osm of the Hydra tissue shell is

given as sum of the energy terms Eqs. 3, 4, and 6. Within this study, we

assume that k1 >> k2,k3, because the swelling rate appears to have only

a weak dependence on the elasticity of the Hydra shell (36). However,

the energy terms for bending and stretching are not negligible even for

high values of k1 (the latter leading to a global volume constraint), because

k2 and k3 are connected to local curvatures and stretches, which are not

uniquely determined by a prescribed volume.

Evolution of the deforming Hydra shell up to time T > 0 is now given by

the L2-gradient flow of the total energy

dt
�
~X ,~n

� ¼ �L
dt

d~X

�F�
~X;FA;FB

��
; (7)

where dt(.) is the total time derivative, L is a kinetic coefficient,~n is the sur-

face normal vector, and ðdt=d~XÞð:Þ denotes the strong formulation of the
variation perpendicular to the deformed surface G. Thus, we simplify our

system considering only normal surface deformations. This is motivated

by the fact that the main deforming force resulting from osmotic pressure

acts purely normally. The gradient flow Eq. 7 leads to the minimization

of the free energy F, hence to the mechanical equilibrium. However,

gradient flows may also describe realistic dynamics of deforming surfaces

when we consider overdamped systems, e.g., biological surfaces embedded

in a fluid (40,43–45). For more details in corresponding definitions, further

information on the calculation of gradient flows, detailed calculation of var-

iations, and technical remarks, we refer to the Supporting Material and to

Mercker et al. (40).

Morphogen dynamics

Instead of using gradient flows of F to derive dynamics of chemicals (10),

the evolution of morphogens is assumed to be independent of F . This is

motivated by the fact that morphogen molecules are not part of the mechan-

ical surface itself, but only may indirectly influence tissue mechanics.

Hence, morphogen dynamics do not, per se, depend on F .

For the chemical patterning during symmetry breaking in Hydra aggre-

gates, we follow the ideas of Soriano et al. (19) using a reaction-diffusion

equation for morphogen patterning. In particular, we modify the minimum

model of Koch and Meinhardt (46), considering pattern formation of an

activator FA and an inhibitor FB on a deformed sphere, given by the

equations

dtFA ¼ DAD
GðFAÞ þ CA

�
F2

A

�
FB � FA

�
; (8)

d F ¼ D DGðF Þ þ C
�
F2 � F

�
: (9)
t B B B B A B

Here, DA and DB are diffusion rates; DGð:Þ is the surface Laplace operator;
and C and C are reaction rates, comprising production and removal.
FIGURE 2 Three alternative mechanisms for morphogen patterning

within the context of the OMC model, i.e., coupled to tissue stretch and

leading to symmetry breaking in Hydra.
A B

Equations 8 and 9 are strongly related to those presented by Plaza et al.

(47), because we also incorporate tissue curvature and advection, where

the latter is in our case naturally given due to the Lagrangian description

of G (10). However, we additionally consider tissue stretch instead of

growth processes.
To include point (MC2) of the mechanochemical coupling, according to

Soriano et al. (19), we assume that diffusion rates depend on lateral tissue

stretch. We set

DB ¼ DA þ ~DB log
� ffiffiffi

g
p � ffiffiffiffiffi

g0
p �

; (10)

i.e., diffusion of the inhibitor FB is accelerated if the tissue is laterally

stretched, but shows a saturation effect. Alternatively, one could reduce
activator diffusion as a response to tissue stretch (19). Using the parameter

values as presented within the Supporting Material, local tissue stretch

leads to a maximal effective increase of DB by a factor of ~100. In vivo,

underlying mechanisms could be selective channels, which close and

open depending on tissue stretch (19).

Possible morphogen patterning mechanisms

The mechanochemical coupling (i.e., the mutual coupling of morphogen

dynamics with tissue stretch) is the most important part of the OMC

model. We emphasize that the choice of a Turing mechanism for

morphogen pattern formation is somewhat arbitrary within this model,

because we primarily focus on the mechanochemical aspects of

Hydra symmetry breaking, with less attention to the exact chemical mech-

anism. Thus, Eqs. 8 and 9 could be replaced by alternative mechanisms

(Fig. 2).

To shed more light on the underlying chemical patterning mechanisms,

we compare Turing models with two alternatives (SOC and curvature-

increasing models) that have been also proposed to explain symmetry

breaking in Hydra-aggregates (4,37,40). In particular, we concentrate on

the dependence of the symmetry breaking time tSB on the initial aggregate

radius r0. To reduce complexity, at this stage we do not couple those models

with tissue deformations.

Turing patterning

Turing models have been used to explain morphogen pattern formation and

axis development in Hydra for more than 60 years (4,19,23,48), and

have been numerically studied on different tissue geometries including

spheres (47,49). We investigated if these models are able to reproduce

different experimental data. A Turing model is a nonlinear reaction-diffu-

sion system with diffusion-driven instability (DDI), in which the system

admits a spatially homogeneous steady state us that is 1) stable with respect

to spatially homogeneous perturbations, but 2) unstable with respect to

spatially nonhomogeneous perturbations.

Considering the nonlinear system on spheres of radius r0 for initial

conditions being a small perturbation of us, the solution is well

approximated by the solution of the linearized system, whose maximum

grows like c‘e
l‘ t. Here, l‘ is the largest eigenvalue of the linearized

system and c‘ is a coefficient depending on the initial condition. We

observed that for the same initial condition, c‘ grows linearly with the

radius r0.

Defining the symmetry breaking time as the moment where a certain

threshold u is exceeded, we obtain tSBðr0Þ ¼ logðu=c‘ðr0ÞÞ=l‘ðr0Þ:
Biophysical Journal 108(9) 2396–2407
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Tissue curvature-driven patterning

Recently, an alternative to Turing models has been proposed, where the

patterning of only one diffusing morphogen type is driven by a simple pos-

itive feedback loop between tissue curvature and morphogen production

(40). The morphogen is assumed to drive tissue bending in one direction

(e.g., outward curving by apical constriction), and tissue curvatures are

assumed to drive local morphogen production in turn. Thus, the interplay

between morphogen production and actively generated and passively adapt-

ing tissue curvatures leads to pattern formation without reliance on molec-

ular long-range inhibitors (40). Although there is so far no experimental

evidence for this mechanism in Hydra, mechanisms using mechanical

cues as long-range inhibitors might explain why the identification of appro-

priate molecular (Turing-) inhibitors still fails. Hence, we investigated if the

model of Mercker et al. (40) reproduces the experimental data for the sym-

metry-breaking time tSB. For details concerning the tested parameter space

and the definition of tSB in this context, we refer the reader to Computational

Methods.

SOC-driven patterning

The morphogen Ks1 has been shown to be a molecular marker for early

head formation in Hydra (28). Further studies have documented that fractal

expression patterns of Ks1 in Hydra aggregates show behavior of SOC.

Based on these observations, Gamba et al. (37) proposed a certain SOC

mechanism for Ks1 expression, originally used in the modeling of earth-

quakes (50). Here, Ks1 patterning is based on nearest-neighbor interactions

of cells. Gamba et al. (37) demonstrated that this model reproduces

different experimental observations, such as fractal appearance and size-

distribution of Ks1-positive cell clusters and their localization depending

on temperature gradients. Thus, we investigated whether the temporal

behavior of this model can also reproduce different experimental data.

For further details regarding corresponding techniques and the definition

of tSB, we refer the reader to the next subsection.
Computational methods

In this subsection, we present computational methods for the investigation

of the models. For details concerning the parameterization, we refer to the

Supporting Material.

General computation schemes

For simulations of the OMC model and the curvature-increasing model, we

used the finite-element library GASCOIGNE 3D (51), approximating the

fourth-order partial differential equations in a mixed formulation. For

spatial discretization, we used biquadratic elements with R8659 grid

points; for time discretization, a semi-implicit Euler scheme. For further

details of the computation scheme we refer to Mercker et al. (10,40). Com-

putations of the SOC model and of the inverse eigenvalue functions related

to the Turing pattern are carried out in Cþþ and MATLAB 7.11 (The

MathWorks, Natick, MA), respectively.

Data analysis of the OMC model

Most of the following definitions are based on the experimental methods as

described in Soriano et al. (19). The radius r of (deformed) simulated aggre-

gates G ¼ vU is defined as r ¼ (A/(4p))1/2, with tissue surface area

A ¼ R
G d~S. Changes in aggregate shape symmetry are quantified by

the factor b/a with minor and major inner aggregate axis b and a, respec-

tively. Here, a is defined as the radius of the smallest possible sphere Ba

with Ba I U, and b as the radius of the largest possible sphere Bb with

Bb 3 U and the same center as Ba. The symmetry breaking time tSB is

defined as the moment at which the system geometry initially reaches a

certain asymmetry, namely if b/a < 0.95 holds. Swelling rate s has been

determined by linear regression of r(t) for t ˛ [0,trupt[, where trupt is the

moment of first tissue rupture, averaged over the first three cycles.
Biophysical Journal 108(9) 2396–2407
Data analysis of the Turing model

We consider a linear reaction-diffusion system vtu¼ DDuþ Ju on a sphere

Sr0 of radius r0. Here, u is a vector of two or three components, D is the

diagonal matrix of the diffusion coefficients, and J is the Jacobian of the

kinetic system evaluated at the homogeneous steady state. DDI occurs

if 1) J has only eigenvalues with negative real parts, and 2) there is a value

‘R1 such that the matrix J‘ðr0Þ :¼ J � ð‘ð‘þ 1Þ=r20ÞD has an eigenvalue

with positive real part. Using the Routh-Hurwitz theorem (Gantmacher

(52)), we see that these conditions require a sufficient spread of the diffu-

sion coefficients and that J is not s-stable (compare to Satnoianu et al.

(53) for the general definition and the Supporting Material for systems of

two and three equations).

We use the method of least-squares under nonlinear constraints to

find parameters (entries of D and J) such that there is a minimal devia-

tion between the experimentally given symmetry breaking time and

logðu=c‘ðr0ÞÞ=l1ðr0Þ, where l1(r0) is the largest eigenvalue of J1(r0).
The initial guess for fitting involves randomly generated matrices D0 and

J0, where D0 is diagonal with nonnegative ordered entries and J0 is in the

Turing space (compare to the Supporting Material).

Data analysis of the curvature increasing model

In Mercker et al. (40), it has been shown that the parameter space of the

curvature-increasing model can be reduced to three independent constants

~g, ~z, and LXc
. Here, LXc

influences only the timescale, ~g controls the size of

appearing morphogen patches (and scales with the system size), and ~z in-

fluences the distance between these patches and does not depend on system

size (40). Within this model, we define the symmetry breaking time tSB as

the time at which a certain morphogen concentrationF is exceeded, namely

if maxfFð~sÞ��~s˛S2g>0:1. To fit the model-based curve of tSB(r0) to experi-

mental data, for each value ~z, we varied the temporal (i.e., LXc
) and spatial

scaling of the curvature-increasing model such that a minimum of the devi-

ation between model and experimental data has been achieved. Because

system size itself has been varied, ~g has been always set to a constant.

Data analysis of the SOC model

We used the SOC model and parameters as proposed in Gamba et al. (37).

The only difference is a square lattice instead of a hexagonal lattice, as orig-

inally proposed by Olami et al. (50). We numerically verified that our

square lattice model qualitatively reproduces the behavior of the hexagonal

model, such as size distribution of Ks1-positive expression domains at

different time-steps, including criticality (results not shown). Knowing

that an aggregate of size r0 ¼ 138 mm corresponds to a network of c ¼
104 cells (19), we deduce the relation c ¼ 104r0

2/1382 to convert the

network size into the initial radius r0 of a Hydra shell.

As proposed by Gamba et al. (37), we assume that the axis of the Hydra

aggregate is locked at the moment where a certain Ks1-positive cluster size

is exceeded, i.e., the symmetry breaking moment tSB. Alternatively, we

define tSB as the moment when Ks1 expression becomes scale free, which

appears to experimentally coincide with symmetry breaking (27).

To compare the behavior of tSB(r0) between the SOC model and the ex-

periments, we varied the temporal scaling of the SOC model as to minimize

the deviations between numerical and experimental data.

Temperature gradients

In experiments with Hydra aggregates it has been shown that temperature

gradients direct the orientation of the body axis and the localization of

the head, which has been reproduced by simulations of the corresponding

SOC model (27,37). To investigate the influence of temperature on the

outcome of the curvature-increasing and Turing models, we introduce

linear gradients along the z axis in each reaction or diffusion constant k

within the corresponding model. Especially, we consider the values k þ
dT k at the upper end and k � dT k at the lower end of the aggregate. We

performed for each model and each dT ˛ {0.0, 0.2, 0.5} a total of 20 sim-

ulations. Head orientation has been subsequently evaluated by calculating
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the angle q between the center of the first appearing morphogen patch

and 0�, the latter defining the coldest part of the aggregate. We always

use projections of the three-dimensional sphere on the z,x plane.
RESULTS AND DISCUSSION

Behavior of the OMC model

In the following, we use simulations of the OMC model to
investigate osmomechanochemical mechanisms leading to
symmetry breaking in Hydra aggregates.

Shape oscillations

To begin, we investigate osmotically induced shape oscilla-
tions of an aggregate before symmetry breaking by simu-
lating the OMC model for short times, which minimizes
the influence of chemical processes on the system. We
show that shape oscillations generated by the OMC model
agree with corresponding experimental data. We consider
the oscillations of a system with initial radius r0 ¼
138 mm within different osmotic milieus, the latter given
by DCeff. Corresponding simulation results fit the
experimental data: Evolution of the radius r follows a
sawtooth time pattern with a nearly linear swelling and fre-
quency increasing with higher inner ion concentration
(Fig. 3, A and D). Furthermore, averaging the swelling
FIGURE 3 Numerical simulations and comparison with experiments conside

sawtooth-like shape oscillations depend on both ion concentration and aggregate

inner axes b/a. Symmetry breaking time tSB coincides with low values of b/a. (

Kücken et al. (36).) For (D) and (E), we used a system of initial size r0 ¼ 138
rate s over the first three cycles reveals that s depends lin-
early on the ion concentration difference DCeff (Fig. 3, B
and E). Finally, changing the initial system size r0
but keeping the ion concentrations constant reveals (simi-
larly to experiments) an almost linear dependence of s on
the radius r0 in the range of 100–200 mm (Fig. 3, C
and F). However, especially for larger systems, simulation
results reveal a saturation effect of s(r0). In summary, nu-
merical results suggest that our system reproduces the
experimentally observed shape oscillations qualitatively
and quantitatively.

Based on this, in the following, we investigate the OMC
model for times sufficient for the system to pass from phase
I (before symmetry breaking) to phase II (after symmetry
breaking) to allow chemical processes play a noticeable
role. In agreement with experiments (19,32), we observe
in our simulations a relatively abrupt change in the mecha-
nochemical properties of the system: At tSB, the sawteeth are
smaller (see Fig. 3, G and H, upper panel) and the previ-
ously constant value b/a z 1 starts to peak at lower values
(see Fig. 3, G and H, lower panel), with the latter indicating
the loss of symmetry. Furthermore, an important observa-
tion is that the times at which b/a reaches minima coincide
with moments of tissue collapse in both experiments and
simulations.
ring osmotically driven shape oscillations. (A–F) Frequency and slope of

size. (G and H) Evolution of radius r and ratio between the minor and major

A, B, and G are taken with permission from Soriano et al. (19) and C from

mm.

Biophysical Journal 108(9) 2396–2407
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With the change in mechanical symmetry, the sphere
also develops a chemical asymmetry at tSB: Whereas
morphogens appear equally distributed before symmetry
breaking (Fig. 4 A), after tSB, a distinct morphogen patch
becomes apparent (Fig. 4 C). Due to the proposed feedback
loop, this patch causes a local weakening of the tissue lead-
ing to both the mechanical system asymmetry (i.e., low
values of b/a) and earlier tissue rupture reducing the saw-
teeth size. This local tissue weakening probably causes
an effect shared by simulations and experimental observa-
tions (19): In phase I, tissue rupture occurs at random pla-
ces whereas in phase II, rupture only occurs at the center of
the morphogen patch, representing an early organizer (re-
sults not shown). Finally, simulations also show instances
of anisotropic inflation-deflation in phase II, as described
for aggregates by Soriano et al. (19) (Fig. 4 C, right-
hand side). Interestingly, the difference with respect to
experimental data is that here, an opposed motion is only
restricted to one side of the aggregate. In contrast, the
data of Soriano et al. (19) show this behavior at two oppo-
site points.

Symmetry breaking time

To further investigate our model, we compared simulations
to experimental dependence of tSB on swelling rate s, ion
concentration difference DCeff, and system size r0. Unex-
pectedly, simulations also reproduce the experimentally
observed nonlinear dependence of tSB on swelling rate and
ion concentration difference, respectively. This behavior
has been previously ascribed to viscoelastic cell properties
(19) and was not expected in a purely elastic system.
Because the simulation results reproduce experiment strik-
ingly well (Fig. 5, B and C), this behavior must be linked
to shape oscillations rather than to rheological cell
properties.
Biophysical Journal 108(9) 2396–2407
We propose that, instead, a simple delaying impact of
shape oscillations on symmetry breaking time tSB is the
cause for this behavior (see Fig. 5 A): As we see in Fig. 3,
G and H, tSB coincides with moments of maximal tissue
stretch, i.e., tissue rupture at upper tip of a sawtooth. This
means that even if the system could establish symmetry
breaking at time toptSB , the actual symmetry breaking time
tSB is delayed, depending on the moment when the next tis-
sue rupture occurs for a truptRtoptSB . Hence, tSB occurs within
the interval ½toptSB ; t

opt
SB þ x½, where x is the time of an

oscillation (see Fig. 5 A). The exact location of
tSB˛½toptSB ; t

opt
SB þ x½ may differ for different aggregates due

to individual differences; however, the mean value is given
by tSB. Trigonometry provides that tSB ¼ toptSB þ u=s, where
u ¼ rrupt – r0, rrupt is the radius at time trupt and s is the
swelling rate. Based on Fig. 5 C, we roughly estimate
toptSBz20 h considering s / N. As we can see in Fig. 5 C,
tSB (dashed line) approximates tSB(s) better than the function
a/(bx0.3 � 1) previously proposed in Soriano et al. (19)
(solid lines in Fig. 5, B and C). Hence, a purely elastic tissue
model appears to be sufficient to describe the main aspects
of Hydra tissue behavior.
Which morphogen patterning mechanism is
involved?

So far, all presented simulation results are partly indepen-
dent of the chemical aspect of symmetry breaking and
pattern formation: Until now only the fact that tissue stretch
causes morphogen patterning was required, but not what this
dependence and the patterning mechanism looks like in
detail.

To understand the role of chemistry in the process of sym-
metry breaking, we considered the dependence of tSB on the
initial aggregate radius r0. Here, the simulation results for
FIGURE 4 Snapshots of numerical simulations

before and after symmetry breaking. (A) Symmet-

rical behavior before symmetry breaking changes

to an asymmetrical shape and chemical patterning

after symmetry breaking (C). (B) Sectional plane

used for (A) and (C). (Open arrows) Direction of

tissue motion; (purple color) high levels of acti-

vator morphogen FA. Please note that there are

moments of anisotropic inflation-deflation after

symmetry breaking (lower panel, right-hand

side). All simulations consider the OMC model

of initial size r0 ¼ 138 mm. To see this figure in

color, go online.



FIGURE 5 Scheme, simulations, and experi-

ments considering symmetry breaking time tSB.

(A) Schematic dependence of tSB on shape oscilla-

tions. The molecular mechanism of symmetry

breaking allows tSB to occur earliest at toptSB . Solid

(dashed) lines represent sawteeth with tSB close to

(away from) toptSB (solid and dashed arrows indicate

corresponding moments of tSB, respectively).

Delays of tSB are caused by the fact that tSB always

coincides with the moment of largest tissue stretch

(upper tip of sawteeth). Thus, tSB happens always

within a certain interval (shaded in dark gray)

with length x and mean value tSB, the latter depend-
ing on toptSB , swelling rate s, and radius r. (C and D)

The tSB value depending on swelling rate s in exper-

iments (B) and our simulations (C). The curve tSB
(dashed line in C) fits tSB(s) better than the function

a/(bx0.3 – 1) (solid lines in B and C), the latter pre-

viously ascribed to viscoelastic cell properties (19).

(D and E) Experimentally determined dependence

of tSB on system radius r differs distinctly between

experiments (D) and numerical data (E), the latter

based on Turing-like patterning. (B) and (D) are

taken with permission from Soriano et al. (19).)

To see this figure in color, go online.
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the OMC model strongly differ from the experimental re-
sults (Fig. 5, D and E). As a next step, we compared exper-
imental data (Fig. 5 D) to the results for the Turing-, SOC-,
and curvature-increasing models. These purely chemical
models have been investigated in systems without shape
oscillations. In contrast, the experimental results depicted
in Fig. 5 D are the result of both chemical and mechanical
effects influencing tSB. This means that, in a direct com-
parison, we assume 1) that the delaying impact of shape
oscillations is negligible in the considered range of r0; and
that 2) parameters depending on periodic tissue stretch
can be represented by constant values, i.e., we assume that
a tissue constantly stretched at a medium level behaves
approximately like the oscillating system.

The first assumption can be easily justified by pointing
out that the above-mentioned delaying effect is only visible
for swelling rates x % 4 mm/h (Fig. 5, B and C), which cor-
responds (within the ion concentration regime used for
Fig. 5 D) to aggregate sizes <100 mm (see Fig. 3 G), i.e.,
below the range considered in in Fig. 5 D. Regarding the
second assumption, we cannot exclude that the oscillating
system produces (beside the delaying impact) other effects
we cannot describe using constant parameters. One possibil-
ity: finite size synchronization effects between oscillating
mechanical and chemical processes (54) that may cause
fluctuations in Ks1-expression depend on the sphere size
in a nontrivial way. Nevertheless, we assume that the
following studies present the main characteristics of the
three investigated pattern formation models, and we post-
pone coupling them to shape oscillations to future research.

Turing patterning

Although we found several different sets of parameters for
Turing systems of two and three equations approximating
the experimental data provided in Fig. 5 D, they were all
indistinguishable to the naked eye. One example is given
in Fig. 6 A. As we can see, the Turing mechanism fits exper-
imental data quite well, including the loss of symmetry
breaking below sizes of r0 < 100 mm. For larger systems,
our numerical data predict an acceleration of symmetry
breaking with characteristic upward peaks of tSB at each sys-
tem size where an additional morphogen patch appears.
However, to our knowledge, corresponding experimental
data are not available so far. Hence, the experimental inves-
tigation of tSB for larger (multiple head) aggregates could
serve as a key step to validate an underlying DDI mecha-
nism inHydra aggregates. In contrast to experimental obser-
vations (27), simulations of the Turing model do not show
Biophysical Journal 108(9) 2396–2407



FIGURE 6 Different models considering symmetry breaking time tSB de-

pending on system size. (A) Turing model. (B) Curvature-increasing model.

(C) SOC model. (Black solid lines) Approximated experimental data taken

from Soriano et al. (19). (Dashed blue lines and red points) Model data.

(Gray shaded) Regions without symmetry breaking. To see this figure in

color, go online.

FIGURE 7 Angular orientation of the Hydra aggregate head orientation

within a temperature gradient, simulated for different patterning mecha-

nisms. (A) Schematic view. (B) Rosette-diagram of the curvature-increasing

versus the Turing model. 0� corresponds to the cold side. To see this figure

in color, go online.
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dependence of axis orientation on temperature gradients
(Fig. 7).

The morphogen Wnt3 fulfills properties of the activator
molecule: It appears early during head formation (26); is
strongly restricted to the organizer region (25); and its regu-
lation contains elements for an autoregulatory feedback (via
the molecules Tcf and b-catenin) and a repressor (31)—as
Biophysical Journal 108(9) 2396–2407
required within Eq. 8. However, a possible molecular candi-
date for the long-range inhibitor is still missing, and for both
Wnt3-activator and -inhibitor molecules, various binding
sites have been identified (31). Furthermore, it has been
recently proposed that Wnt molecules may act as both acti-
vators and, after processing, inhibitors (24).

Tissue curvature-driven patterning

As depicted in Fig. 6 B, the curvature-increasing mecha-
nism fits experimental data, including the loss of sym-
metry breaking for small aggregates. However, the
behavior of tSB for larger aggregates differs distinctly
from that of a Turing-driven mechanism: Above r0 z
110 mm, symmetry breaking occurs, starting with two
patches for 110 mm ) r0 ) 180 mm, three patches for
180 mm ) r0 ) 240 mm, and four patches for r0 U
240 mm. Hence, in this model, the smallest possible num-
ber of morphogen patches is 2, in contrast to one organizer
appearing experimentally in small aggregates. However,
two patches still define one body axis. Additional mecha-
nisms are required leading to the selection and dominance
of one organizer. In accordance with experimental data
(27,37), simulations of the curvature-increasing model
reveal that the orientation of the body axis depends criti-
cally on temperature gradients: Defining the first of the
two (40) appearing morphogen patches as the head, we
find that weak temperature gradients (dT ¼ 0.2) result in
preferred head formation at the cold (q z 0�) or the
warm (q z 180�) site, while stronger gradients (dT ¼
0.5) lead to heads only at the cold side (Fig. 7 B).

Wnt3 molecules appear early during head formation and
are restricted to outwardly curved tissue regions, such as
head and budding zones (25,26). Thus, one of the various
binding sites regulating Wnt3-expression (31) could be
influenced by local tissue deformations, finally stimulating
Wnt3-expression in evaginated tissue regions. In turn, it
has been experimentally shown that Wnt-signaling induces
local tissue evaginations in Hydra (35), which could consti-
tute the other part of the curvature-driven feedback loop. In
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contrast to Turing models, we do not need the existence of a
molecular long-range inhibitor, because this role is played
by regions where the tissue is not outwardly curved (40).

To obtain a more complete model, such curvature-driven
morphogen patterning might need additional coupling to
osmomechanical processes, as assumed for Turing-driven
patterning within the OMC model (Fig. 1). The morphogen
could again lower the resistance to lateral tissue stretch if
the production of this morphogen depends on tissue curva-
ture as well as tissue stretch (Fig. 2). Thus, tissue curvature
and stress could jointly influence morphogen patterning,
leading to symmetry breaking only in case of periodic shape
oscillations. Numerical investigation of such a coupling is
postponed to future research.

SOC-driven patterning

We tested different possible mechanisms defining symmetry
breaking in the context of the SOC model. Assuming that
the exceedance of a critical (relative) Ks1-positive cluster
size, Nrel

crit, locks the head localization, the dependence of
tSB on system size shows neither a parabolic shape nor a
loss of symmetry breaking for small systems, but changes
monotonously. The same holds true if we define the moment
of scale-free Ks1 expression as the moment of symmetry
breaking (results not shown). However, if we assume that
a critical absolute Ks1-positive cluster size Nabs

crit defines
the axis, the shape of tSB(r0) is qualitatively similar to exper-
imental results: for small aggregates, we do not observe
symmetry breaking whereas for larger systems, tSB shows
an almost parabolic shape (Fig. 6 C). In contrast to the
Turing and the curvature-induced mechanism (Fig. 6, A
and B), here, tSB increases monotonously for larger systems
with 150 mm ) r0 ) 350 mm. We find the best match to
experimental data for Nabs

crit ¼ 2250, which is of the same
order as the critical sizes estimated in Gamba et al. (37).
Although the agreement of these simulations with experi-
mental data is not as good as in the case of the Turing or
the curvature-increasing model, the exact shape of tSB(r0)
could be influenced by other parameters of the SOC model,
such as neighbor numbers or production rates, which have
not been varied in our studies.

As mentioned above, the SOC mechanism reproduces the
dependence of head localization on weak and strong temper-
ature gradients, as previously shown in Soriano et al. (27)
and Gamba et al. (37).

Assuming that Ks1-patterning defines the head localiza-
tion, it might act upstream of morphogen expression pat-
terns related to the organizer, such as Wnt3 (25,26).
Although a direct interaction between Ks1 andWnt3-regula-
tory elements probably does not take place (31), interest-
ingly, regulatory elements of Ks1 and Wnt3 were both
identified to specifically bind the same type of mole-
cules—nuclear proteins from the basal tissue (29,31).

Similarly to the Turing- or the curvature-driven patterning,
a complete model of symmetry breaking might involve the
coupling of the SOC mechanism to OMC shape oscillations
of the Hydra aggregate (Fig. 1). A natural coupling involves
Ks1-expressing cells lowering the resistance to lateral tissue
stretch, and in turn, tissue stretch accelerating protein pro-
duction and/or discharge processes (Fig. 2).
CONCLUSIONS

In this article we model interplay among osmotic, chemical,
and mechanical processes leading to symmetry breaking in
Hydra aggregates. Simulations demonstrate that a simple
feedback loop between tissue mechanics and morphogen
patterning can qualitatively and quantitatively reproduce a
wide range of experimental data. In particular, we assume
that tissue stretch induces morphogen clustering, and
morphogen lowers the resistance to lateral stretching. To
elucidate the chemical part of this mechanochemical
interplay, we compared previously proposed morphogen
patterning models, namely the Turing, SOC, and curva-
ture-increasing models. Comparison to experimental data
neither strongly supports nor excludes any of these mecha-
nisms. We showed that the dependence of symmetry
breaking time tSB on system size r0 distinctly differs among
these three mechanisms for aggregates with r0 U 180 mm.
Thus, we suggest experimental investigations of larger
aggregates as a key step to gain further insights into the
molecular mechanisms of Hydra symmetry breaking.
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PARAMETERS AND INITIAL CONDITIONS

In the following, we show the detailed parameter values we have used for
presented simulations.
OMC model: Due to the reduced complexness of the used model (e.g.,
curved 2D surfaces instead of real 3D bodies) a direct parametrization by
experimentally determined parameters was not possible. Instead, model
parameters have been chosen such that simulated space and time scales
fit to the experimental results, guided by the behavior of an aggregate of
“ideal size”. Especially, parametrization has been chosen such that symme-
try breaking occurs after five oscillations where tSB = 21.4h is minimal for
a size of r = 138µm (1). By setting vphys = εv vabs, we transformed tem-

poral (v = t) and spatial (v = ~X) abstract dimensionless quantities vabs by
a characteristic unit of measure εv into a physical reasonable variable vphys.
Concretely, we used εt = 173.97h for temporal and εX = 138µm for spacial
scales. Most other variables we have kept dimensionless; especially we have
used (as not otherwise stated): ∆Ceff = 30, α = 1, κ1 = 100, λ = 300,
ξ = 500, κ3 = 1, β = (1.25)2, theal − trupt = 5min, L = 1, DA = 27.5,
CA = 174, D̃B = 5250 and CB = 350. As initial morphogen distribution we
have always set ΦA and ΦB stochastically and uniformly distributed in the
interval [1.0, 1.1].
Turing model: We use c1(r0) = 0.0004362997r0 − 0.0209382395 and
uthreshold = e. For every fit, we generated randomly an initial guess ful-
filling the Turing conditions and use them for MATLABs built-in function
fmincon. We assume that Du < Dv(< Dw) and use the transformation
t̃ = Dut to reduce the parameter space.
Curvature-increasing model: Based on the model presented in Mercker
et al. (2), we have always used the parameters LX = 1.0, κ = 0.01, γ = 0.4,
δ = 1.0 and β = 1.0, where ζ (respectively ζ̃) and system size have been
varied. For all simulations of this model we assumed as the initial tissue
geometry a sphere as well as a stochastic distribution for the morphogen
concentration Φ, uniformly distributed in the interval [0, 0.05].
SOC model: In accordance with the model of Gamba et al. (3) we have
used an average conservation level of C = 0.95. Furthermore, we have con-
sidered the ν → 0 limit as described by Jensen (4). All SOC simulations
were started with an always newly generated stochastic distribution for the
Ks1 -promoting factor, uniformly distributed below the threshold value.
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FITTING PARAMETERS

Here, we present parameters for analytical fitting curves used within differ-
ent figures in the main manuscript.
Fig. 2E : grey solid line: −0.234 ∆Ceff + 0.015.
Fig. 2 F : grey solid line: 10.323 (tanh(0.0117 r0 − 1.680) + 0.747).
Fig. 4 C : grey dashed line: 64.646/(2.551 s0.3 − 1).
Fig. 4 C : grey solid line: 20.+ 34.285/(2s).
Fig. 4 E : grey solid line: linearly interpolated values as a guide to the eye.
Fig. 5 A-C : black solid line: experimental data given by 21.4+152.3(r0/138−
1)2 (taken from Soriano et al. (1)).
Fig. 5 A: Diffusion coefficients Du = 2724, Dv = 4723677, entries of the
Jacobian fu = 0.931, fv = 1, gu = −2fugv, gv = −158.276.
Fig. 5 B : For simulation data we have used ζ = 8.0 with temporal scaling
1.3 tc = t h and spacial scaling 189 rc = r µm (where vc are the abstract
dimensionless variables used within the model).
Fig. 5 C : For simulation data we have used the temporal scaling (1/57) z =
t h, where z is the number of cascades.

CALCULUS OF VARIATIONS

To obtain the detailed dynamic tissue surface equations (eq. 7, main ma-
nuscript), we need to calculate normal variations (i.e., with respect to ~X ·
~n), in the following in the strong formulation denoted by δ⊥

δ ~X
F
[
...
]
, in the

weak formulation by δ⊥[...]. For technical details and further definitions
concerning this approach, we refer to Mercker et al. (5). Since variations
of Fbend can be already found in Mercker et al. (5), here, we restrict our
calculations to normal variations of Fosm and Fcomp, respectively.
Lemma 1 : It holds:

δ⊥

δ ~X

[
Fosm

]
= κ1

( ∫
Ω
d~V − V (t)

)
.

Proof: Using the product rule as well as δ⊥

δ ~X
[c
∫

Ω d~V ] = c for any constant

c (6, 7) yields

δ⊥

δ ~X

[
Fosm

]
= κ1

( ∫
Ω
d~V − V (t)

) δ⊥
δ ~X

[ ∫
Ω
d~V
]

= κ1

( ∫
Ω
d~V − V (t)

)
. �
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Lemma 2 : It holds:

δ⊥

δ ~X

[
Fcomp

]
=
√
gHκ2(

√
g −√g0)/

√
g0.

Proof: Using the product rule as well as δ⊥[
√
g] = H

√
gψ with test function

ψ (7) yields

δ⊥
[
Fcomp

]
=

∫
S2

κ2(
√
g −√g0)/

√
g0δ

⊥[
√
g] d~s. �

TURING CONDITIONS

Here, we describe the conditions for the entries of 2× 2 and 3× 3 matrices
leading to diffusion-driven instability. We denote the eigenvalues of the
Laplacien by µ`(r0) = `(`+ 1)/r2

0.

The matrix J =

(
fu fv
gu gv

)
has eigenvalues with negative real parts iff tr J < 0

and det J > 0. The matrix J`(r0) may have positive eigenvalues if fu > 0 or
gv > 0 holds. For suitable diffusion coefficients this leads for a certain range
of r0 to

det J2
` (r0) = detJ − (fuDv + gvDu)µ`(r0) +DuDvµ

2
` (r0) < 0.

For the 3× 3 matrix J =

(
fu fv fw
gu gv gw
hu hv hw

)
, we define

ΣJ :=det

(
fu fv
gu gv

)
+det

(
fu fw
hu hw

)
+det

(
gv gw
hv hw

)
.

J has eigenvalues with negative real parts, if and only if it holds (8)

tr J < 0, det J < 0 and trJ · ΣJ − det J < 0.

J`(r0) may have eigenvalues with positive real parts if at least one of the
conditions

fu<0, gv<0, hw<0, det

(
fu fv
gu gv

)
>0,det

(
fu fw
hu hw

)
>0 and det

(
gv gw
hv hw

)
>0

is violated. For suitable choices of the diffusion coefficients this leads for a
certain range of r0 to

det J`(r0)=det J−µ`(r0)

(
Dudet

(
gv gw
hv hw

)
+Dvdet

(
fu fw
hu hw

)
+Dwdet

(
fu fv
gu gv

))
+ µ2

` (r0) (fuDvDw + gvDuDw + hwDuDv)− µ3
` (r0)DuDvDw > 0
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or to

tr J`(r0) · ΣJ`(r0)− det J`(r0) = (trJ · ΣJ − det J)

− µ`(r0)
(
(Du+Dv)det

(
fu fv
gu gv

)
+(Du+Dw)det

(
fu fw
hu hw

)
+ (Dv+Dw)det

(
gv gw
hv hw

)
+ (fu + gv + hw)

(
fu(Dv +Dw) + gv(Du +Dw) + hw(Du +Dv)

))
+ µ2

` (r0)
(

2(fu+gv+hw)(DuDv+DuDw+DvDw)

+ fu(D2
v+D2

w)+gv(D
2
u+D2

w)+hw(D2
u+D2

v)
)

− µ3
` (r0)

(
D2
u(Dv+Dw)+D2

v(Du+Dw)+D2
w(Du+Dv)+2DuDvDw

)
> 0.
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