SUPPORTING MATERIAL

Single-cell rheology of human primary immune cells reveals distinct mechanical properties that are modified by inflammatory conditions

Nathalie Bufi,*° Michael Saitakis,†‡° Stéphanie Dogniaux†‡, Oscar Buschinger,* Armelle Bohineust†‡, Alain Richert,* Mathieu Maurin†‡, Claire Hivroz†‡# and Atef Asnacios*#

*Laboratoire Matières et Systèmes Complexes, Université Paris-Diderot & CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France.

⁺ Institut Curie, Centre de Recherche, Pavillon Pasteur, Paris, France.

‡ Institut National de la Santé et de la Recherche Médicale, Unité 932, Immunité et Cancer, Paris, France.

° Contributed equally

Co-corresponding authors

Address reprint requests and inquiries to:

- C. Hivroz, E-mail: claire.hivroz@curie.fr or
- A. Asnacios, E-mail: atef.asnacios@univ-paris-diderot.fr

Figure S1

Figure S1. Example of storage modulus G'_0 and loss modulus G''_0 from a single-cell dynamic mechanical experiment. Both moduli behave as a power law of frequency. For each cell the pre-factors of the fits $G'(f) = G'_0 f^{\alpha}$; $G''(f) = G''_0 f^{\alpha}$ were extracted and used to compile statistics in each cell type and inflammatory condition. Measurements were performed on at least 15 individual cells from at least 3 different donors.

Figure S2. Complex viscoelastic measurement of single cells using the microplates assay. A) For each cell, the norm of the complex viscoelastic modulus $|G_0^*| = \sqrt{G_0'^2 + G_0''^2}$ was plotted according to frequency. Data were fitted by a power law to extract the viscoelastic modulus G_0 and exponent α : $|G_0^*| = G_0 f^a$, whose means were used as a comparison between (B) cell types and (C) inflammatory conditions . (* p<0.05, **p<0.01, ***p<0.001, Mann-Whitney-U test compared to untreated. N: number of cells tested, from at least 3 different donors).

Figure S3

Figure S3. Estimation of Jurkat cell Young's modulus from single-cell viscoelastic measurements. Stress σ and strain ε are obtained from the equations presented in the methods section. After plotting σ as a function of ε (red dots), the Young's modulus is obtained by fitting the stress-strain curve (grey line) for strains below 15% (corresponding to experimental conditions). Dashed lines represent the standard error on the fit. The Young's modulus obtained for Jurkat cells is $E = 90 \pm 10$ Pa.

Figure S4

Figure S4. Equivalence between G'_0 and E_{app} for Jurkat cells. For n = 8 cells, both step-wise compression (E_{app} in dark circles) and dynamic mechanical analysis (G'_0 in white circles) were performed. The distributions and mean represented respectively by full lines for step-wise compression and dashed lines for dynamic mechanical analysis are equal for both types of measurement performed.

Figure	S 5

Figure S5. Antigen presenting cells (M, DC, MPH) were labeled with phalloidin, an anti-Myosin IIA antibody and DAPI. A representative confocal midplane is shown for each cell type. A labeled T cell is shown for comparison. Scale bar: 5 μm.

Figure S6. Values of equivalent Young's modulus E_{eq} , total F-Actin content and total myosin IIA heavy chain are shown for comparison of the effect of inflammatory conditions (TNF α +PGE₂, IFN γ or LPS) on A) DC, and B) MPH. (*p<0.05, **p<0.01, Mann-Whitney-U test compared to untreated, *p<0.05, **p<0.01, ****p<0.001, ****p<0.0001, unpaired t test with Welch's correction compared to untreated).

Figure S7. Plots of ratios: A) $[E_{eq} / F$ -Actin] vs myosin IIA total content, and B) $[E_{eq} / myosin$ IIA] vs F-Actin total content for Monocytes (•); T cells (•); DC (•) and MPH (•) for various inflammatory conditions.