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Figure S1. Example of storage modulus G,and loss modulus G; from a single-cell dynamic
mechanical experiment. Both moduli behave as a power law of frequency. For each cell the
pre-factors of the fits G'(f)=G,f“;G"(f) =G, f“ were extracted and used to compile

statistics in each cell type and inflammatory condition. Measurements were performed on at

least 15 individual cells from at least 3 different donors.
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Figure S2. Complex viscoelastic measurement of single cells using the microplates assay. A)

For each cell, the norm of the complex viscoelastic modulus ‘GO‘ = W/G(;2 + G(’)’2 was plotted
according to frequency. Data were fitted by a power law to extract the viscoelastic modulus
G,and exponent a: ‘GO‘ =G, f“, whose means were used as a comparison between (B) cell

types and (C) inflammatory conditions . (* p<0.05, **p<0.01, ***p<0.001, Mann-Whitney-U

test compared to untreated. N: number of cells tested, from at least 3 different donors).
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Figure S3. Estimation of Jurkat cell Young’s modulus from single-cell viscoelastic
measurements. Stress o and strain € are obtained from the equations presented in the
methods section. After plotting o as a function of £ (red dots), the Young’s modulus is
obtained by fitting the stress-strain curve (grey line) for strains below 15% (corresponding to
experimental conditions). Dashed lines represent the standard error on the fit. The Young’s

modulus obtained for Jurkat cells is E =90 +10 Pa.
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Figure S4. Equivalence between G(') and E,,, for Jurkat cells. For n = 8 cells, both step-wise
compression (E,pp in dark circles) and dynamic mechanical analysis ( G; in white circles) were

performed. The distributions and mean represented respectively by full lines for step-wise
compression and dashed lines for dynamic mechanical analysis are equal for both types of

measurement performed.
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Figure S5. Antigen presenting cells (M, DC, MPH) were labeled with phalloidin, an anti-
Myosin IIA antibody and DAPI. A representative confocal midplane is shown for each cell

type. A labeled T cell is shown for comparison. Scale bar: 5 um.
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Figure S6. Values of equivalent Young’s modulus E.q, total F-Actin content and total myosin

IIA heavy chain are shown for comparison of the effect of inflammatory conditions

(TNFo+PGE,, IFNy or LPS) on A) DC, and B) MPH. ("p<0.05, "p<0.01, Mann-Whitney-U test

compared to untreated, "p<0.05, “'p<0.01, "p<0.001, " p<0.0001, unpaired t test with

Welch's correction compared to untreated).
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Figure S7. Plots of ratios: A) [Eeq / F-Actin] vs myosin IIA total content, and B) [Eeq / myosin

[IA] vs F-Actin total content for Monocytes (e); T cells (e); DC (e) and MPH (e) for various

inflammatory conditions.



