Biophysical Journal

Supporting Material

CNS Cell Distribution and Axon Orientation Determine Local Spinal Cord Mechanical Properties

David E. Koser,^{1,2} Emad Moeendarbary,¹ Janina Hanne,¹ Stefanie Kuerten,^{2,3} and Kristian Franze^{1,*}

¹Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; ²Department of Anatomy I, University of Cologne, Cologne, Germany; and ³Department of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany

SI Figures:

FIGURE S1 Raw indentation and creep data with fits. (A) Representative force-distance curve of an indentation experiment in *blue*. *Black line* shows baseline fit for each indentation. The 2 μ m, 2.5 μ m, 3 μ m and full indentation Hertz model fits (Eq. 1) in *solid red, dashed red, doted red* and *magenta*, respectively. (B) Representative strain-time curve of a creep experiment in *blue*. The Kelvin-Voigt model fit (Eq. 2) in *red*.

FIGURE S2 Representative height-time curve of a creep experiment. The four parts of the experiment in *blue, red, black* and *yellow*, respectively. First part: normal approach till 7 nN. Second part: 90 s constant 7 nN push-force. Third part: fast retraction till -1 nN. Fourth part: 30 s constant -1 nN pull-force (actual creep experiment; see S1 B).

FIGURE S3 Interindividual differences of *K*. Combined box and jittered scatter plots of *K* for the sagittal sections of all 5 animals displaying the difference between white and gray matter (*A*) and dorsal horn, ventral horn and white matter (*B*). *Red line, blue box* and *black dots* represent the median, Q_1 - Q_3 percentile, and single data points, respectively. * (p < 0.05); ** (p < 0.01); *** (p < 0.001).

FIGURE S4 Viscosity from creep experiments. Combined box and jittered scatter plots of the viscosity η of white and gray matter for coronal (2 sections, $n_g = 20$, $n_w = 24$), sagittal (2 sections, $n_g = 17$, $n_w = 15$) and transverse sections (3 sections, $n_g = 22$, $n_w = 30$). *Red line, blue box* and *black dots* represent the median, Q₁-Q₃ percentile, and single data points, respectively. * (p < 0.05); ** (p < 0.01); *** (p < 0.001).

FIGURE S5 Strain stiffening of spinal cord white and gray matter. (*A-D*) Histograms of *K* in the coronal plane for white (*A*, *C*) and gray matter (*B*, *D*) at 3 μ m (*A*, *B*) and full indentation (*C*, *D*). (*E*, *F*) Combined box and jittered scatter plots of *K* for white and gray matter for 2 μ m, 2.5 μ m, 3 μ m, 3.5 μ m and full indentation depth δ in the coronal plane. *Red line, blue box* and *black dots* represent the median, Q₁-Q₃ percentile, and single data points, respectively. At low indentations a shift of the median *K* towards higher values with growing indentation depth.