

Figure S1a. The modular dCas9 fusion system works efficiently to suppress and activate endogenous gene expression in *C. elegans*

A, a normal wild-type hermaphrodite N2 is shown.

B, a *dpy*-5-supressed F1 worm (Dpy) is shown. It is from F1 progeny of transgenic founder (P0) worms injected with P*dpy*-5::dCas9 DNA and seven ts-gRNA plasmids (1-7 All).

C, a *dpy-5*-supressed F1 worm (Dpy) is shown. It is from F1 progeny of transgenic founder (P0) worms injected with P*dpy-5*::dCas9-KRAB DNA and seven ts-gRNA plasmids (1-7 All).

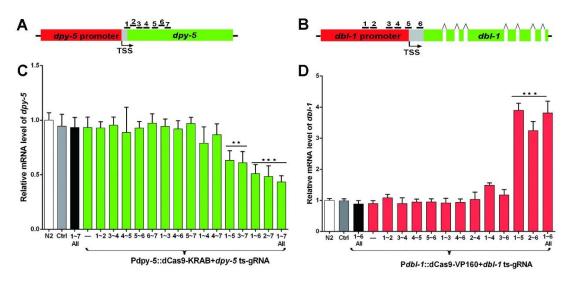
D, a *dbl-1*-activated F1 worm (Lon) is shown. It is from F1 progeny of transgenic founder (P0) worms injected with P*dbl-1*::dCas9-VP160 DNA and six ts-gRNA plasmids (1-6 All).

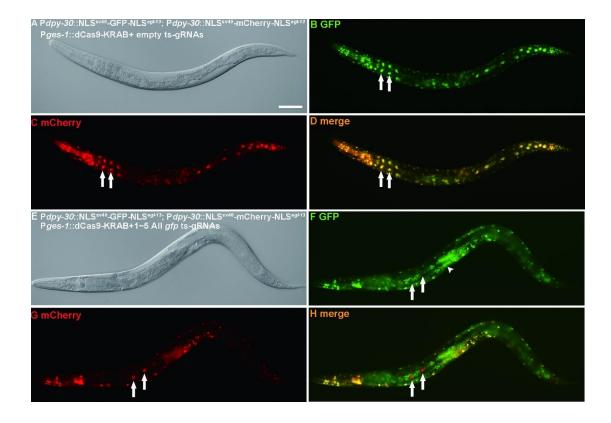
E, the measurement of average body length of the *dpy-5*-supressed worms is summarized. It reveals the requirement of multiple ts-gRNA sites in suppressing *dpy-5* expression. N2: wild-type (the white bar), Ctrl: Pcol-10::mCherry (the grey bar) and 1-7 All: all seven ts-gRNA plasmids in *pRF-4*[rol-6(su1006)] worms (the black bar). The ts-gRNA plasmids containing none, single target site (one of seven target sequences) or all seven sites (1-7 All) were co-expressed with Pdpy-5::dCas9 or Pdpy-5::dCas9-KRAB in N2 worms.

F, the measurement of average body length of the *dbl-1*-supressed worms is summarized. It reveals the requirement of multiple ts-gRNA sites in activating *dbl-1* expression. N2: wild-type (the white bar), Ctrl: Pcol-10::mCherry (the grey bar) and 1-6 All: all six ts-gRNA plasmids in pRF-4[rol-6(su1006)] worms (the black bar). The ts-gRNA plasmids containing none, single target site (one of six target sequences) or all

six sites (1-6 All) were co-expressed with Pdbl-1::dCas9/XR382 in N2 worms.

Each bar in E and F is displayed as mean \pm SEM of three independent experiments and normalized to wild-type N2. The scale bar is 100 μ m.




Figure S1b. Multiple sgRNAs are necessary for efficient knock-down and overexpression in C. *elegans*.

A, shown is dpy-5 locus, where TSS, (arrow), ORF (green bar), and seven (1-7) dpy-5ts-gRNA targeting sites (short black lines) are indicated. 'Cmikpgu''sti gv'y g'' pqp/vgo r rcvg'FPC''utcpf0 The red bar represents dpy-5 promoter. Pdpy-5::dCas9 or Pdpy-5::dCas9-KRAB was co-expressed with individual ts-gRNA plasmid (one of seven ts-gRNAs) or all seven ts-gRNA plasmids (1~7 All) in N2 worms.

B, shown is *dbl-1* locus, where TSS (an arrow), ORF (green bar), and six (1-6) *dbl-1*tsgRNA targeting sites (short black lines) are indicated. Lines 1, 2, 3, 4 and 6 target template DNA strand of *dbl-1*, while line 5 targets template DNA strand. Red bar represents *dbl-1* promoter and spaces in green bar represent seven *dbl-1* introns. P*dbl-1*::dCas9-VP160 was co-expressed with individual *dbl-1*ts-gRNA (one of six ts-gRNAs) or all six ts-gRNA plasmids (1~6 All) in N2 worms.

C, qRT-PCR results reveal requirement of multiple sgRNA sites in suppressing dpy-5 expression. N2: wild-type (the white bar), Ctrl: Pcol-10::mCherry (the grey bar), the combination of different ts-gRNAs and 1-7 All: all seven sgRNA plasmids in pRF-4[rol-6(su1006)] worms (the black bar).

D, qRT-PCR results also reveal requirement of multiple sgRNA sites in activating *dbl-1* expression. N2: wild-type (the white bar), Ctrl: Pcol-10::mCherry (the grey bar) and 1-6 All: all six sgRNA plasmids in *pRF-4*[rol-6(su1006)] worms (the black bar). Total RNA was isolated from injected or un-injected embryos at 11hpf. Each bar is displayed as mean \pm SEM of three independent experiments and normalized to the wild-type values (C-F)Student's t test, ** indicates p < 0.01; *** indicates p < 0.001.

Figure S1c. Tissue-specific gene suppression by dCas9-KRAB and ts-gRNAs.

A-D, Live images of transgenic worm, ubiquitously expressing both GFP and mCherry, injected by Pges-1::dCas9-KRAB and ts-gRNAs (empty vector). DIC (A), green channel (B), FITC channel (C) and merged of B and C (D). Arrows indicates the intestine unclei. Scale bar is $100\mu m$.

E-H, The double transgenic worms were injected by Pges-1::dCas9-KRAB and $1\sim5$ All gfpts-gRNAs. Arrows indicate the intestine nuclei, and the arrow head indicates intestinal auto-fluorescence.

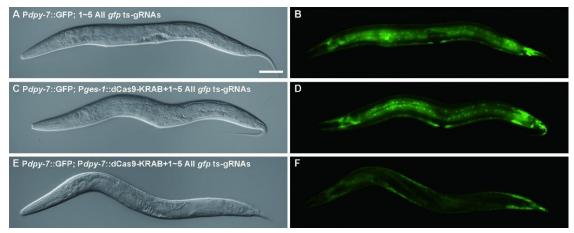
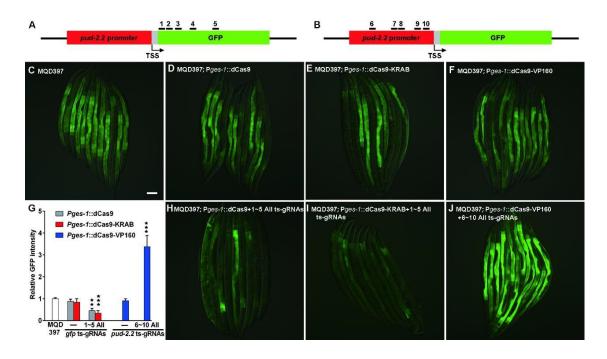
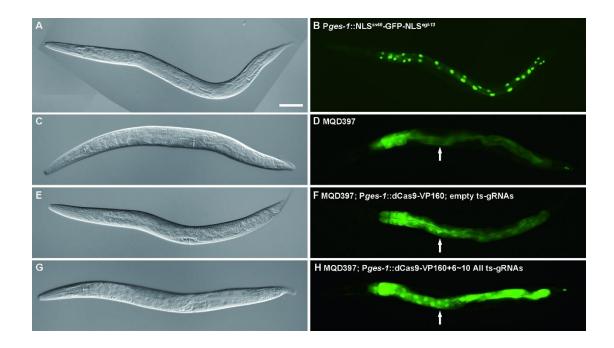



Figure S1d. dcas9 repress gene expression in a cell-autonomous manner.


A-B, transgenic worm, Pdpy-7:: GFP; PU6::1~5 *gfp*ts-gRNAs, shows GFP expression in hypodermal cells normally. Scale bar is 100 μ m.

C-D, transgenic worm, P*dpy-7*:: GFP; P*ges-1*::dCas9-KRAB; P*U6*::1~5 *gfp*ts-gRNAs, shows GFP expression is unchanged when dCas9-KRAB is present in the intestine. **E-F**, transgenic animal, P*dpy-7*:: GFP; P*dpy-7*::dCas9-KRAB; P*U6*::1~5 *gfp*ts-gRNAs, shows decreased GFP expression in hypodermal cells when dCas9-KRAB is driven by P*dpy-7* promoter.

Figure S1e. Imaging the changes of GFP expression in F1 progeny from the injected P0.

A-B, shown in A is the transgene cassette in which five (1-5) sites (short black lines) target 5' UTR (1, 2) and ORF (3, 4, 5) of *gfp*, respective, while five sites target non-template strand (6, 8, 10) and template strand (7, 9) of *pud-2.2* promoter, respectively (B). TSS (arrow), *gfp* ORF (green bar), and *pud-2.2* promoter (red bar) are shown. **C-J**, compared to control (MQD397) worms (C), P*ges-1*::dCas9 (D), P*ges-1*::dCas9-KRAB (E) or P*ges-1*::dCas9-VP160 (F) alone does not affect endogenous *gfp* significantly, and this conclusion is also judged by GFP intensity measurements (G). When these suppression or activation constructs are co-expressed with (1-5 All) or (6-10 All) ts-gRNAs, down-regulated (H, I) or elevated (J) *gfp* expression is evident. In all qRT-PCR experiments, relative values equal to means<u>+</u>SEM of three independent experiments normalized to wild-type/control animals. *p* values were calculated using unpaired Student's t-test. * indicates *p*<0.05; ** *p*<0.01; and *** *p*<0.01.The scale bar is 200µm.

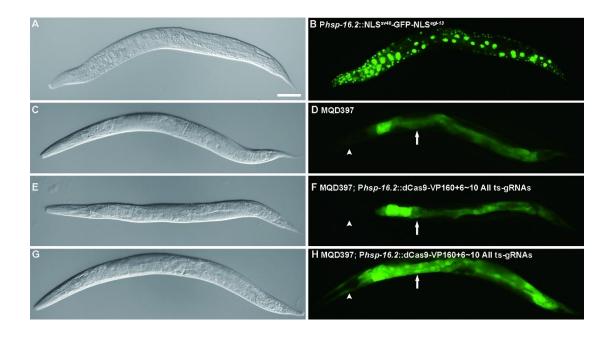


Figure S1f. Intestine-specific *ges-1* promoter enhances GFP expression only in the intestine.

A-B, ges-1 promoter drives intestine-specific GFP expression.

C-H, in control worms (MQD 397), GFP is observed mainly in the intestine (C-D). While in the presence of P*ges-1*::dCas9-VP160 and all five *pud-2.2*ts-gRNAs(6~10) GFP is enhanced mainly in the intestine (G-H), otherwise, the enhancement is minimal without any *pud-2.2*ts-gRNAs (E-F).

The scale bar is 100µm. Arrows point to areas where intestinal cell nuclei are visible.

Figure S1g. *hsp-16.2* promoter drives ubiquitous GFP expression.

A-B, When transgenic worm (PLD2017, mfdEx2017[Phsp-16.2::NLS^{$2\times SV40$}-GFP-NLS^{egl-13}-unc-54 3UTR; Pcol-10::mCherry) is heat shocked at 35 °C, GFP is detected in every cell. The scale bar is 100µm.

C-D, in control worm (MQD 397), GFP is observed mainly in the intestine (arrow) and weakly in the epidermis.

E-F, without heat shock, in the presence of Phsp-16.2::dCas9-VP160 and all five *pud*-2.2ts-gRNAs(6~10), transgenic animals show no change in GFP expression compared with control worm (MQD 397)

G-H, upon heat shock, GFP expression is enhanced significantly in the intestine (arrow) and epidermis (arrowhead).

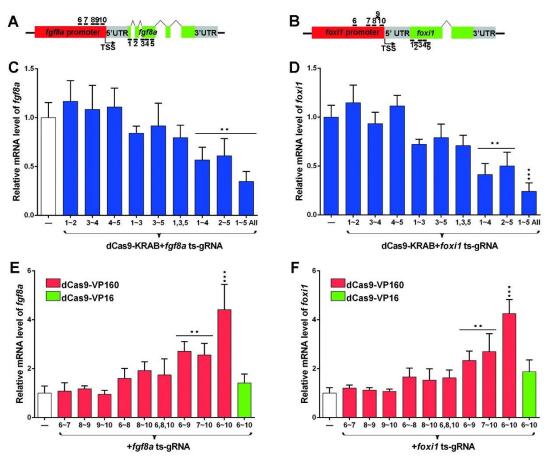


Figure S1h. Multiple sgRNAs are necessary for efficient knock-down and overexpression in zebrafish.

A-B, shown is zebrafish *fgf8a* (A) or *foxi1* (B) locus, where TSS (arrow), ORF (green bar interrupted by intron(s)), and five (1-5) ts-gRNA targeting sites (short black lines below) are indicated. The red bar represents the *fgf8a* or *foxi1* promoter and short black lines above are five (6-10) ts-gRNA targeting sites.

C-D, qRT-PCR experiments reveal requirement of multiple ts-gRNAs in suppressing fgf8a (C) or foxi1 (D) expression: injecting the empty ts-gRNA scaffold, in the presence of dCas9-KRAB mRNA (the white bar), the combination of two, three or four ts-gRNAs. 1~5 All: injecting all five ts-gRNAs and dCas9-KRAB mRNA (the blue bar). **E-F**, qRT-PCR experiments also reveal requirement of multiple ts-gRNAs in activating fgf8a (E) or foxi1 (F) expression: injecting the empty ts-gRNA scaffold, in the presence of dCas9-XR382 mRNA (the white bar), the combination of two, three or four ts-gRNAs. 6~10 All: injecting all five ts-gRNAs and dCas9-VP160 mRNA (the red bar) or dCas9-VP16 mRNA (the green bar).

Total RNA was isolated from injected embryos at 11hpf. Each bar is displayed as mean \pm SEM of three independent experiments and normalized to the wild-type values (C-F). Student's t test, ** indicates p < 0.01; *** indicates p < 0.001.

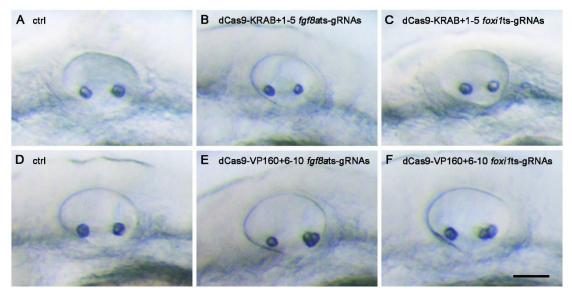
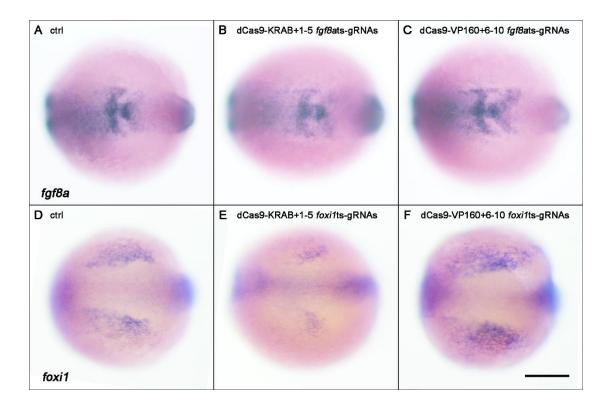



Figure S1i. Otic development is affected by dCas9 fusion system-mediated regulation of *fgf8a* or *foxi1*.

A-F, Lateral views of live embryo ears at 32hpf. Injected embryo with dCas9-KRAB mRNA and empty gRNA scaffold (A), and embryos injected with dCas9-KRAB mRNA and all $1\sim5 fgf8a$ ts-gRNAs or $1\sim5 foxi1$ ts-gRNAs (B, C). Injected embryo with dCas9-VP160 mRNA and empty gRNA scaffold (D), and embryo injected with dCas9-VP160 mRNA and all $6\sim10 fgf8a$ ts-gRNAs or $6\sim10 foxi1$ ts-gRNAs (E, F). The scale bar is 50µm.

Figure S1j. Suppression and activation of endogenous genes using dCas9 fusion system

A-B, the dCas9 fusion systems work efficiently to regulate fgf8a during zebrafish embryogenesis. Compared to wild type (A, n=39), 71% embryos show decreased fgf8a expression (B, n=34) with dCas9-KRAB mRNA and 1~5 fgf8ats-gRNAs, while 59% embryos show increased fgf8a expression by injecting dCas9-VP160 mRNA and 6~10 fgf8ats-gRNAs (C, n=32).

D-F, the dCas9 fusion systems regulate *foxi1*. Compared to wild type (A, n=44), 68% embryos show decreased *foxi1* expression (B, n=40), while 54% embryos show increased *foxi1* expression (C, n=59).

In situ hybridization probe is anti-sense *fgf8a* or *foxi1* RNA. Dorsal views with anterior to right. 11.67hpf. The scale bar is 200µm.

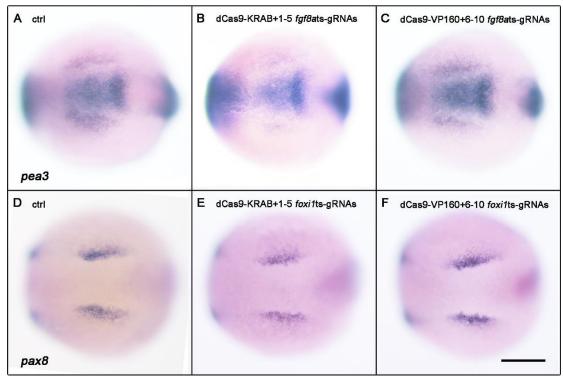
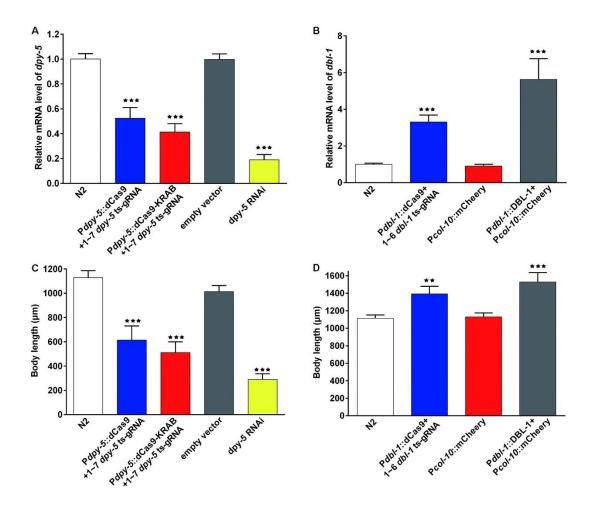
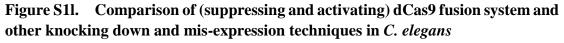
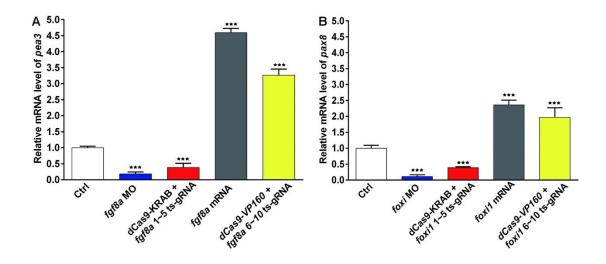




Figure S1k. Downstream genes of dCas9 fusion system-targeted endogenous genes are also affected.

A-C, *fgf8a* downstream gene *pea3* is also regulated accordingly. Compared to control (A, n=35), 75% embryos show decreased *pea3* expression (B, n=20) by injecting dCas9-KRAB mRNA and all $1\sim 5$ *fgf8a*ts-gRNAs, while 53% embryos show increased *pea3* expression by injecting dCas9-VP160 mRNA and all $6\sim 10$ *fgf8a*ts-gRNAs (C, n=38).


D-F, *foxi1* downstream gene *pax8* is regulated accordingly. Compared to control (D, n=27), 63% embryos show decreased *pax8* expression (E, n=33) by injecting dCas9-KRAB mRNA and all $1\sim 5$ *foxi1* ts-gRNAs, while 56% embryos show increased *pax8* expression by injecting dCas9-VP160 mRNA and all $6\sim 10$ *foxi1* ts-gRNAs (F, n=34). Dorsal views with anterior to right. 11.67hpf. The scale bar is 200µm.

A and C, the reduction of endogenous dpy-5 expression (A) and body length (C) in worms co-expressing dCas9 or dCas9-KRAB and seven ts-gRNAs (blue and red bars) is less severe than that of dpy-5 RNAi (yellow bars). White bars: N2 wild-type worms and gray bars: the RNAi (empty) vector.

B and **D**, an increase of endogenous *dbl-1* expression (B) in worms co-expressing dCas9-VP160 and six ts-gRNAs (blue bar) is detected by qRT-PCR, compared to N2 worms. In *Pcol-10*::mCherry transgenic worms, the expression of *dbl-1* is normal (red bar). The *dbl-1* expression is increased significantly by *Pdbl-1*::DBL-1 (grey bar). As to the body length measurements (D), the difference between dCas9-VP160 and six ts-gRNAs worms (blue bar) and *Pcol-10*::mCherry transgenic worms (grey bar) is less pronounced.

Figure S1m. Comparison of (suppressing and activating) dCas9 fusion system and other knocking down and mis-expression techniques in zebrafish embryos

A, the reduction of endogenous *pea3* expression in dCas9-KRAB and five ts-gRNAs (recognizing five sites of *fgf8a* coding region) (red bar) is comparable to that of *fgf8a*MO injection (blue bar). Ctrl: the un-injected wild-type embryos (white bar). The increase of endogenous *pea3* expression in dCas9-VP160 and five ts-gRNAs worms (yellow bar) is comparable to that of *fgf8a* mRNA injection (dark grey bar).

B, the reduction of endogenous *pax8* expression in dCas9-KRAB and five ts-gRNAs (recognizing five sites of *foxi1* coding region) (red bar) is comparable to that of *foxi1*MO injection (blue bar). Ctrl: the un-injected wild-type embryos (white bar). The increase of endogenous *pax8* expression in dCas9-VP160 and five ts-gRNAs (yellow bar) is comparable to that of *foxi1* mRNA injection (dark grey bar).

Each bar is displayed as mean \pm SEM of three independent experiments and normalized to the wild-type values.