

Figure S1: D. americana (left) and D. virilis (right) pupae at stage 3 (see Materials and Methods).

Chr_5	2 M	bp	4,520,743 6 Mbp	8 Mbp	9,336,014	1 010-010	1,745,612	13,562,691		6,077,938	18,512,820	19,673,688	21,069,70122 Mb	p 24	Mbp	27,334,972
					-											
Rec. ID	st	95	pupal case	23	84	B	60	90	116	118	111	88	124	126	62	#progeny
759	Н	Α	А	A	А	А	A	A	A	A	А	A	Н	Н	Н	9
762	Н	Н	A	A	A	A	H	H	H	H	H	H	H	H	H	22
763	A	A	A	A	A	A	H	H	H	H	H	H	H	H	H	23
794	A	A	A	A	A	A	н	н	н	H	H	н	A	A	A	10
817	A	A	A	A	A	A	н	H	H	H	H	H	H	н	H	20
861	A	A	A	A	A	A	н	H	П	н	П	н	н	н	н	31 14
004 966		A	A	A	A	A						п ц	п ц	п Ц	п ц	14
931	н	н	Δ	Δ	Δ	Δ	Δ	н	н	н	н	н	н	н	н	14 21
935		Δ	Δ	Δ	Δ	Δ	н	н	н	н	н	н	н	н	н	9
948	Δ	Δ	A	Δ	Δ	Δ	н	н	н	н	н	н	н	н	н	19
961	н	н	A	A	A	A	н	н	н	н	н	н	н	н	н	32
969	н	Α	A	A	A	A	A	Α	н	н	н	н	н	н	н	12
1039	Н	A	A	A	A	A	A	A	Н	Н	Н	Н	Н	Н	Н	11
1049	А	А	А	А	А	А	А	н	н	н	н	н	н	н	н	17
1052	Н	Н	А	А	А	А	А	А	А	А	А	А	А	А	н	13
1073	Α	А	А	А	А	А	А	Н	Н	Н	Н	Н	Н	Н	Н	21
1074	Н	А	А	А	А	А	Н	Н	н	Н	Н	Н	Н	А	А	13
1075	Н	А	А	А	А	А	А	Н	Н	Н	Н	Н	н	Н	Н	20
1092	Н	А	А	А	А	А	Н	Н	Н	Н	Н	Н	Н	Н	Н	27
1132	Н	Н	А	А	А	А	А	Н	Н	Н	Н	Н	Н	Н	Н	13
1151	Н	Н	А	А	А	А	А	Н	Н	Н	Н	Н	Н	Н	Н	17
1158	Н	А	А	А	А	А	Н	Н	Н	Н	Н	Н	Н	Н	Н	15
1232	Н	Н	А	А	А	А	А	А	А	А	А	А	А	Н	Н	10
1270	Н	Α	А	А	А	А	А	Н	Н	Н	Н	Н	Н	Н	Н	19
1309	Н	Н	А	А	А	А	А	А	А	А	А	А	А	А	Н	11
1321	A	А	А	A	А	А	Н	Н	Н	Н	Н	Н	Н	Н	Н	19
947	A	A	А	A	A	A	A	A	A	A	Н	Н	Н	Н	Н	11
1082	H	A	A	A	A	A	A	H	H	H	H	H	H	H	H	11
1121	H	A	A	A	A	A	H	H	H	H	H	H	H	H	H	25
///	H	H	н	H	A	A	H	H	H	H	H	H	H	H	H	43
827	H	H	н	A	A	A	A	A	A	A	A	A	A	н	н	22
926	H	H	н	H	H	A	A	H	н	H	H	н	н	н	H	12
938	H	H	н	A	A	A	н	H	H	H	H	H	H	н	A	15
949 1029				A	A	A										10
1028					A	A										12
1129		п ц	п ц			A		А Ц	A LI				п ц	п Ц	п	12
1147	н	ц	н Ц		A			н	н	н	н	ч	Ц	ц	ч	45
1172		н	н		Δ	Δ	н	н	н	н	н	н	н	н		29
1219	H	H_	Н	H_	A	A	Δ	Α	A	Α	Α	A	A	H_	H_	14
1226	H_	H_	н	H_	H_	A	Δ	н	H	H_	H	н	H	H	H_	27
1240	H_	H	н	H_	A	A	н	H	H	H_	H	H_	H	H	H_	_, 15
1055	A	H	Н	Н	A	A	H_	H	H	H	H	H	H	H	H	14
1278	H_	Н_	н	H_	Н_	Α	А	А	А	А	Δ	Α	H_	н_	Α	14

Figure S2: Genotype table of recombinant backcross males from the first round of genotyping (see Materials and Methods). Genotypes at each marker are indicted by letter and color (orange/A = *D. americana* homozygote, gray/H = heterozygote). Pupal case genotype is inferred from progeny pupal case colors and is indicated at the putative location (green) between markers SSR95 and SSR23 (red).

Figure S3: Correspondence of *D. virilis* genome scaffolds (release droVir2, UCSC) to chromosome 5 (Muller Element C; Schaffer *et al.* 2008).

Figure S4: Boxplot distribution of mean red values in the thorax and scutellum across genotypes for the three pigmentation genes surveyed: Red mean values are partitioned into the three genotypic classes recovered in the F6 population (n=188). Dashed horizontal lines indicate the mean read value for A/A (brown) and N/N (orange) genotypes.

 Table S1: List of genetic markers used in this study, their coordinates, and primer sequences.

Name(type*)	Chr_5 coords.	scaffold_12875	Forward primer	Reverse primer	
		coords.			
St (VM)	4519096-4520743	922609-924256	N/A	N/A	
SSR58 (MS)	6545087-6545300	19509634-19509847	IGCCIAGCATTIGGCACITA	AAAAGAGCG1GGCAAAGAAA	
SSR95 (IVIS)	9335798-9336014	16/18920-16/19136	IGIGCCIGCIGACAAAACAI	ACACIGCUGCUGCATUA	
SSR138 (IVIS)	1001/486-1001/694	1603/240-1603/448	ICGIACCAAIGIIGICAAIGC	ACAGGAAGIGGGIGGAAGIG	
55K139 (IVIS)		15693247-15693461			
SSR157 (1013)	10504504-10504720	15350214-15550450			
SSR155 (MS)	10621121-10621371	15449958-15450105	CGGGCAGAATCAACTCGTAG		
SSR150 (MS)	10864161-10864552	15190382-15190773	GCTATGTTGCTGGCAGTGA		
SSR149 (MS)	10955634-10955876	15099058-15099300	CAGTACATCGGGCAATTGTG	TGTGGGTGAAGTCAATGTTGT	
SSR148 (MS)	11054476-11054716	15000218-15000458	ACGTGCCACATTGCTCATAC	ACAACTTGTCGCGCACTAAA	
SSR170 (MS)	11062637-11062844	14992090-14992297	TTTTTCGTTTTCTTCCGTTTTT	ATCTAAGCAAGCGGGTTTCA	
SSR169 (MS)	11067738-11067901	14987033-14987196	CATCAAGGAGCTGGCCTATC	ACTTCTCCGCCGTACAACTG	
SSR168 (MS)	11080856-11080998	14973936-14974078	CTCCTGGCTGAAAAGCAAAC	CGGCAAACACAATGACAATC	
SSR165 (MS)	11083472-11083698	14971236-14971462	TTTGACCAGGGCATGACATA	AAGCACAAGCAAGCACACAC	
SSR167 (MS)	11086448-11086593	14968341-14968486	TTCGAATTTCCGCTTGATTT	TATAGCCGGCTCGTTGAAGT	
pF10 (SNP)	11089640-11089848	14965086-14965294	AGCTTTAGCTTCCCTTGTGC	TTGAAATTTCGCCGTCCTAC	
pE10 (SNP)	11090368-11090570	14964364-14964566	CGCGATCGCAGCTATTCTT	TCCAGATGTGCGGTAAGTGT	
pD10 (SNP)	11091748-11091976	14962958-14963186	TCGACGACGACATATTGAGC	GTCTGGCTTTCATCTAAGAGCA	
pC10 (SNP)	11093207-11093456	14961478-14961727	AGGGATCGGCCAACTTATC	AAACCCCTCAAGGACAACTG	
pB10 (SNP)	11095456-11095683	14959251-14959478	TACGCAACGCCTATCTGAAA	TCAAGCTGTCGTCGTAATCC	
pA10 (SNP)	11096841-11097053	14957881-14958093	GATCGTCGCGACTTTCACTA	CGATGGGCAATAATATGGAG	
SSR164 (MS)	11099701-11099906	14955028-14955233	TTGTGTTTGTGCTGATGCTG	GCAAAGCAAAAGCTGCGTA	
SSR147 (MS)	11129608-11129795	14925139-14925326	TAGGCGCTGTCACTCACAC	GLGTALAGLIGATAAGLALAG	
55K163 (IVIS)	111/9/10-111/98/6	148/5058-148/5224		GIIGUGGIAAAAIGGAIIUG	
55R102 (IVIS)	11205709-11205921		AGGIAAAIGIIGGCCAAIGC		
SSR23 (MS)	11745404-11745612	14309322-14309530			
SSR84 (MS)	13073885-13074040	12980894-12981049	CAGCATGGAGCATCTGTGTC	TGGAAGGGATGTCATGGACT	
B (VM)	13512463-13562691	12492265-12542347	N/A	N/A	
SSR60 (MS)	15084664-15084836	10970098-10970270	CAAAAGTGTTGCCTTGATGG	GGGTTCTAGCCCCCAAATAA	
SSR90 (MS)	16077689-16077938	9976996-9977245	ACTTTGCCAAGCTGTGAAGG	GCGTCTCGTATGCTCTGCTA	
SSR116 (MS)	17269263-17269460	8785474-8785671	CCCCATTGAAAGTTCATCCA	GTCAGGAGGCCACATTGTTT	
SSR118 (MS)	17695072-17695271	8359663-8359862	GCCCAAAATTCTTAGCCAAA	TGGCTTGGGTACTGGTTTCT	
SSR111 (MS)	17849127-17849347	8205587-8205807	TTTGATTGTTTCCCTCACTCG	TGTCATTGTCCTTGGCAAAA	
SSR88 (MS)	18040111-18040269	8014665-8014823	CCAAAAGGCAGGACCATAAA	TTGCGTAGACACCACAAGGT	
SSR124 (MS)	18512607-18512820	7542114-7542327	CGCTTAAACGATCCAACGAT	GTTCATAACCGGTGCTCGAT	
SSR126 (MS)	19673479-19673688	6381246-6381455	AATTGCCAAAGAAACCACCA	AGCGGCTCGTCGTCTGTA	
SSR128 (MS)	19839381-19839552	6215382-6215553	ACGACTTGTCGCTGATAGGC	CTGTTCTGGAACATGCAAGC	
SSR129 (MS)	20026180-20026357	6028577-6028754	ACCATGAGCAGGCATCAGA	CCGGCAATCGTTCTTTAACT	
SSR130 (MS)	20129136-20129321	5925613-5925798	ACACAGGTCCCAACACAACA	CAGAAAATGATGTGCGTCGT	
SSR133 (MS)	20473430-20473645	5581289-5581504			
55K134 (MS)		5452899-5453053			
55K136 (IVIS)	20858440-20858624	5196310-5196494			
55K62 (IVIS)	21069407-21069701	4985233-498552/	IGITAGIIGGLAGLGLAAI	GATTAIGCGIGIIGCAGICG	

*VM: visible marker, MS: microsatellite marker, SNP: single nucleotide polymorphism.

Samples compared (isoform)	t-value	<i>p</i> -value	Associated figure
Apre v. Vpre (A)	17.54	<0.00001	5b
Apup v. Vpup (A)	35.19	<0.00001	5b
Apos v. Vpos (A)	5.69	0.00046	5b
Apre v. Vpre (B)	4.63	0.00169	5b
Apup v. Vpup (B)	0.31	0.76582	5b
Apos v. Vpos (B)	2.99	0.01739	5b
Apre v. F1pre (A)	1.49	0.13674	5c
Apup v. F1pup (A)	0.27	0.40072	5c
Apos v. F1pos (A)	2.21	0.07916	5c
Vpre v. F1pre (A)	7.29	0.00915	5c
Vpup v. F1pup (A)	25.46	0.00081	5c
Vpos v. F1pos (A)	2.88	0.05133	5c
Apos v. F3Br (A)	2.05	0.05457	5c
Vpos v. F3Bl (A)	2.45	0.06719	5c
Apre v. Npre (A)	1.67	0.11882	5d
Apup v. Npup (A)	1.91	0.09801	5d
Apos v. Npos (A)	1.89	0.10008	5d
Apre v. Lpre (A)	7.92	0.00778	5d
Apup v. Lpup (A)	29.88	0.00056	5d
Apos v. Lpos (A)	32.38	0.00048	5d
Lpre v. Npre (A)	13.38	0.00277	5d
Lpup v. Npup (A)	36.6	0.00037	5d
Lpos v. Npos (A)	8.02	0.00761	5d
Lpre v. Vpre (A)	0.23	0.42108	5d
Lpup v. Vpup (A)	2.72	0.05652	5d
Lpos v. Vpos (A)	2.84	0.05235	5d

Table S2: Statistical analysis of RT-qPCR results. Two sample *t*-tests (one-tailed) for each relevant comparison are shown. Significant *p*-values (<0.05) are indicated in red.</th>

			Tukey HSD adjusted <i>p-value</i>							
Gene	Landmark	F value	Pr (>F)	N-A	H-A	N-H				
ebony	Abdomen	4.969	0.00244	0.00221	0.0389	0.31829				
	Scutellum	0.799	0.496	0.59866	0.46525	0.99959				
	Thorax	0.558	0.644	0.61987	0.74585	0.96329				
tan	Abdomen	4.85	0.00285	0.12649	0.07594	0.00205				
	Scutellum	0.935	0.425	0.89283	0.4431	0.91896				
	Thorax	0.177	0.912	0.99757	0.99912	0.99423				
Dat	Abdomen	0.162	0.922	0.93054	0.98801	0.97699				
	Scutellum	0.17	0.916	0.94041	0.89818	0.99981				
	Thorax	0.692	0.558	0.66698	0.99866	0.55199				

Table S3: Statistical analysis of adult pigmentation between *D. americana* and *D. novamexicana*. One-way ANOVA was performed for genotype at each of the three genes and mean red value at three adult landmarks. Significant *p*-values (<0.05) are indicated in red.

References:

Schaeffer, S. W. *et al.*, 2008 Polytene Chromosomal Maps of 11 *Drosophila* Species: The Order of Genomic Scaffolds Inferred From Genetic and Physical Maps. Genetics 179:1601-1655.

File S1

Nucleotide alignment in FASTA format.

Available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.174920/-/DC1