Supplement

System-wide analysis of SUMOylation dynamics in response to replication stress reveals novel SUMO target proteins and acceptor lysines relevant for genome stability

Authors

Zhenyu Xiao¹, Jer-Gung Chang¹, Ivo A. Hendriks¹, Jón Otti Sigurðsson², Jesper V. Olsen² and Alfred C.O. Vertegaal¹*

Affiliation

¹Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands

²Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark

* To whom correspondence should be addressed: E-mail: vertegaal@lumc.nl

Running title

SUMOylation and replication stress

Legends Supplemental Figures

Figure S1. A strategy for identifying SUMO-2 acceptor lysines in endogenous proteins during replication stress.

A, Schematic representation of the His10-SUMO-2-K0-Q87R-IRES-GFP construct used in this project.

B, Cartoon depicting our strategy to identify SUMO-2 acceptor lysines and their dynamics during replication stress. U2OS cells expressing His10-SUMO-2-K0-Q87R were treated with 2 mM Hydroxyurea (HU) for 2 hours or 24 hours to induce DNA replication fork stalling and double strand breaks, respectively. U2OS cells expressing His10-SUMO-2-K0-Q87R cells were mock treated as negative controls. SUMO-2 target proteins were enriched on Ni-NTA beads. SUMOylated peptides were obtained by Lys-C digestion and Ni-NTA re-purification and subsequently analyzed by mass spectrometry.

Figure S2. A U2OS cell line stably expressing His10-SUMO-2-K0-Q87R.

Immunoblotting analysis was used to verify the expression levels of SUMO-2 in U2OS cells stably expressing His10-SUMO-2-K0-Q87R (His10-K0-S2-Q87R).

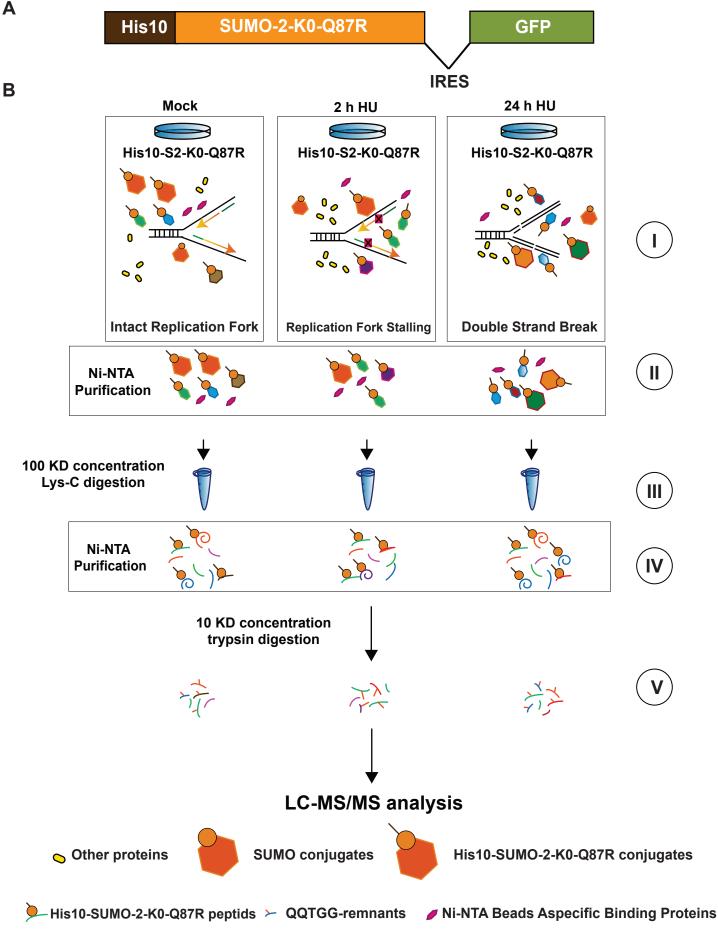
Legends Supplemental Tables

Supplemental Table 1. SUMO-2 target proteins. A complete list of 566 His10-SUMO-2 target proteins including gene names, intensities, PEP, ANOVA log(P value) and other relevant information.

Supplemental Table 2. Bioinformatics analysis of SUMOylated proteins. Complete term enrichment analysis of all SUMOylated proteins identified in our site-independent approach. Annotated terms include GOBP, GOMF, GOCC, CORUM, Keywords, KEGG, Pfam and GSEA.

Supplemental Table 3. Fully annotated list of all SUMOylated proteins.

Supplemental Table 4. HU-regulated SUMO-2 target proteins. Label-free quantification of SUMOylated proteins with significantly regulated proteins after 2 hours or 24 hours of HU treatment. The proteins are sorted by their average log₂ LFQ ratio for 2 hours HU treatment compared to control, and for 24 hours HU treatment compared to control.


Supplemental Table 5. SUMOylation sites. A list of SUMO-2 acceptor lysines obtained by our site-specific purification approach, including gene names, intensities, sequence windows, overlap with Hendriks *et al.*(39) and other relevant information.

Supplemental Table 6. SUMO-2 targets identified in a site-specific manner. A complete list of all proteins identified by SUMOylation site, with number of sites, gene names, site positions and other relevant information.

Supplemental Table 7. HU-regulated SUMOylation sites. Sites quantification with significantly regulated sites after 2 hours or 24 hours of HU treatment compared to the control. The SUMOylation sites are sorted by average log_2 ratio for 2h HU treatment compared to control, and for 24h HU treatment compared to control.

Supplemental Table 8. Overlap of dynamic SUMO-2 target proteins identified in our siteindependent and our site-specific approach. A comparison of dynamically regulated SUMO-2 target proteins identified, using the SUMOylation site-independent approach or the SUMOylation site-specific approach. Overlap, and other relevant information are provided.

Supplemental Table 9. Peptides co-modified by SUMOylation and phosphorylation. List of peptides simultaneously modified by both SUMO-2 and phosphorylation.

