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SUPPLEMENTARY MATERIAL 

A.  METHODS: Solution of eigenvalue problems by the method of weighted residuals 
Stability analyses of the linearized equations of motion and boundary conditions were performed by the 
method of weighted residuals [31] with up to 𝑁𝑁 = 16 trial functions to obtain a matrix form of the 
eigenvalue problem. In each of the cases considered here the equation for the eigenfunctions (mode 
shapes) can be written as  

𝜓𝜓�′′′′ − ℒ′′[𝜓𝜓�] + 𝜎𝜎�𝜓𝜓� = 0,    (A.1) 

where ℒ′′�𝜓𝜓�� = 𝑑𝑑2

𝑑𝑑𝑠𝑠̅2
ℒ�𝜓𝜓��, and ℒ is a linear operator. We can approximate 𝜓𝜓� by a linear combination of 

admissible trial functions [31], thus: 

𝜓𝜓�(�̅�𝑠) ≈ ∑ 𝑞𝑞𝑗𝑗𝑄𝑄𝑗𝑗(�̅�𝑠)𝑁𝑁
𝑗𝑗=1 ,      ℒ′′[𝜓𝜓�] ≈ ∑ 𝑞𝑞𝑗𝑗ℒ′′[𝑄𝑄𝑗𝑗]𝑁𝑁

𝑗𝑗=1    (A.2) 

This expression is substituted into the eigenfunction equation, and the residual error weighted by each 
of a set of test functions, 𝜙𝜙𝑖𝑖(�̅�𝑠), is set to zero. 

∑ 𝑞𝑞𝑗𝑗 �∫ 𝜙𝜙𝑖𝑖
1
0 𝑄𝑄𝑗𝑗′′′′𝑑𝑑�̅�𝑠 − ∫ 𝜙𝜙𝑖𝑖ℒ′′[𝑄𝑄𝑗𝑗]𝑑𝑑�̅�𝑠1

0  + 𝜎𝜎� ∫ 𝜙𝜙𝑖𝑖𝑄𝑄𝑗𝑗𝑑𝑑�̅�𝑠
1
0 �𝑁𝑁

𝑗𝑗=1 = 0,  𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁   (A.3) 

Each of the 𝑁𝑁 equations for the weighted residual error may be integrated by parts to obtain 

∑ 𝑞𝑞𝑗𝑗 �∫ 𝜙𝜙𝑖𝑖′′
1
0 𝑄𝑄𝑗𝑗′′𝑑𝑑�̅�𝑠 + ∫ 𝜙𝜙𝑖𝑖′ℒ′[𝑄𝑄𝑗𝑗]𝑑𝑑�̅�𝑠1

0  + 𝜎𝜎� ∫ 𝜙𝜙𝑖𝑖𝑄𝑄𝑗𝑗𝑑𝑑�̅�𝑠
1
0 �𝑁𝑁

𝑗𝑗=1         

+∑ 𝑞𝑞𝑗𝑗 ��𝜙𝜙𝑖𝑖�𝑄𝑄𝑗𝑗′′′ + ℒ′[𝑄𝑄𝑗𝑗]���
0
1 − �𝜙𝜙𝑖𝑖′𝑄𝑄𝑗𝑗′′��0

1�𝑁𝑁
𝑗𝑗=1 = 0,  𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁 (A.4) 

This set of equations can be rewritten simply as 

[𝐾𝐾 +  𝜎𝜎�𝐶𝐶]𝒒𝒒 = 𝟎𝟎,      (A.5) 

Where the 𝑁𝑁 ×𝑁𝑁  matrices 𝐾𝐾 and 𝐶𝐶 contain the coefficients of 𝑞𝑞𝑗𝑗 in the 𝑖𝑖𝑡𝑡ℎ equation above:    

 𝐶𝐶𝑖𝑖𝑗𝑗 = ∫ 𝜙𝜙𝑖𝑖𝑄𝑄𝑗𝑗𝑑𝑑�̅�𝑠
1
0          (A.6) 

𝐾𝐾𝑖𝑖𝑗𝑗 = ∫ 𝜙𝜙𝑖𝑖′′
1
0 𝑄𝑄𝑗𝑗′′𝑑𝑑�̅�𝑠 + ∫ 𝜙𝜙𝑖𝑖′ℒ′[𝑄𝑄𝑗𝑗]𝑑𝑑�̅�𝑠1

0 + �𝜙𝜙𝑖𝑖�𝑄𝑄𝑗𝑗′′′ + ℒ′[𝑄𝑄𝑗𝑗]���
0
1 − �𝜙𝜙𝑖𝑖′𝑄𝑄𝑗𝑗′′��0

1
 .   (A.7) 

Note that 𝐾𝐾 may, in general, depend on 𝜎𝜎�. The matrix elements were calculated numerically and the 
resulting matrix eigenvalue problem was solved using MATLAB software (The Mathworks, Natick, MA).  
The free vibration modes of a uniform, fixed-free beam were used as trial functions (𝑄𝑄𝑗𝑗) for flagella with 
fixed-free boundary conditions, and the modes of a uniform free-free bar were used as trial functions 
for the swimming flagellum. 

The approach above is general, and Eqs. A.5-A.7 may be applied to each model with the only difference 
being in the specific form of the linear operator associated with the shear force. 
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For the sliding-controlled model:   ℒ′′�𝜓𝜓�� = �̅�𝜒𝜓𝜓�′′.      (A.8) 

For the curvature-controlled model:   ℒ′′�𝜓𝜓�� = 𝛿𝛿�

1+𝜂𝜂�𝜎𝜎�
𝜓𝜓�′′′.    (A.9) 

For the geometric clutch model:  ℒ′′�𝜓𝜓�� = �𝑐𝑐1̅(𝜎𝜎)(1 − �̅�𝑠)𝜓𝜓�′�′′ + 𝑐𝑐2̅(𝜎𝜎)𝜓𝜓�′′. (A.10) 

 

For example, the components of the stiffness matrix for the geometric clutch model are: 

𝐾𝐾𝑖𝑖𝑗𝑗
(1) = ∫ 𝜙𝜙𝑖𝑖′′

1
0 𝑄𝑄𝑗𝑗′′𝑑𝑑�̅�𝑠        (A.11a) 

𝐾𝐾𝑖𝑖𝑗𝑗
(2) = ∫ 𝜙𝜙𝑖𝑖′ ��𝑐𝑐1̅(𝜎𝜎)(1− �̅�𝑠)𝑄𝑄𝑗𝑗′�

′ + 𝑐𝑐2̅(𝜎𝜎)𝑄𝑄𝑗𝑗′� 𝑑𝑑�̅�𝑠
1
0     (A.11b) 

𝐾𝐾𝑖𝑖𝑗𝑗
(3) = �𝜙𝜙𝑖𝑖𝑄𝑄𝑗𝑗′′′ −  𝜙𝜙𝑖𝑖′𝑄𝑄𝑗𝑗′′��0

1
       (A.11c) 

𝐾𝐾𝑖𝑖𝑗𝑗
(4) = 𝜙𝜙𝑖𝑖 ��𝑐𝑐1̅(𝜎𝜎)(1− �̅�𝑠)𝑄𝑄𝑗𝑗′�

′ + 𝑐𝑐2̅(𝜎𝜎)𝑄𝑄𝑗𝑗′��0
1

     (A.11d) 

𝐾𝐾 = 𝐾𝐾(1) + 𝐾𝐾(2) + 𝐾𝐾(3) + 𝐾𝐾(4)      (A.12) 

The matrix 𝐾𝐾 is then used with the matrix 𝐶𝐶 (from Eq. A.6) in the matrix eigenvalue problem (Eq. A.5).  
Analogous matrices may be constructed for the sliding-controlled and curvature-controlled models. The 
matrix 𝐶𝐶 is the same for each model. 

The following trial and test functions were used for each eigenanalysis, based on the free vibration 
modes of the uniform, fixed-free, Euler-Bernouilli beam: 

𝑄𝑄𝑖𝑖(�̅�𝑠) = 𝑎𝑎𝑖𝑖(cos𝑏𝑏𝑖𝑖�̅�𝑠 − cosh𝑏𝑏𝑖𝑖�̅�𝑠) + (sin𝑏𝑏𝑖𝑖�̅�𝑠 + sinh𝑏𝑏𝑖𝑖�̅�𝑠)    (A.13) 

𝜙𝜙𝑖𝑖(�̅�𝑠) = 𝑎𝑎𝑖𝑖(−cos𝑏𝑏𝑖𝑖�̅�𝑠 − cosh𝑏𝑏𝑖𝑖�̅�𝑠) + (−sin𝑏𝑏𝑖𝑖�̅�𝑠 + sinh𝑏𝑏𝑖𝑖�̅�𝑠)   (A.14) 

where the coefficients are: 

𝑏𝑏𝑖𝑖 = 1.875, 4.694, 7.855, 10.996, 14.137, … , (2𝑖𝑖−1)𝜋𝜋
2

 (𝑖𝑖 > 5), …   (A.15) 

𝑎𝑎𝑖𝑖 = (−sin𝑏𝑏𝑖𝑖 + sinh𝑏𝑏𝑖𝑖)/(cos𝑏𝑏𝑖𝑖 + cosh𝑏𝑏𝑖𝑖)     (A.16) 
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B. EXAMPLES: STABILITY ANALYSIS OF AXIALLY-LOADED EULER-BERNOUILLI BEAMS 

The stability analysis procedures are demonstrated by applying them to identify and characterize the 
buckling and flutter modes of an axially loaded beam. In the first case the direction of the load 𝑃𝑃 
(positive in compression) is held constant (horizontal as shown in inset to Fig. S1a). In the second case 
the load remains tangent to the beam (a “follower” load; see inset to Fig. S3a).  The inertia of the beam 
(mass per unit length 𝜌𝜌𝜌𝜌)   is included; it is embedded in a viscous fluid which provides a transverse 
resistive force 𝑓𝑓𝑁𝑁 = −𝑐𝑐𝑁𝑁𝑣𝑣𝑁𝑁. 
 
The linearized equation for small-amplitude motion in both cases is [1] 

𝐸𝐸𝐸𝐸𝜓𝜓,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + P𝜓𝜓,𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑁𝑁𝜓𝜓,𝑡𝑡 + 𝜌𝜌𝜌𝜌𝜓𝜓,𝑡𝑡𝑡𝑡 = 0    (B.1) 
After substitution of the assumed solution 𝜓𝜓(𝑠𝑠, 𝑡𝑡) = exp(𝜎𝜎𝑡𝑡)𝜓𝜓� (𝑠𝑠) the non-dimensional equation for 
the mode shapes is: 

𝜓𝜓�′′′′ + P�𝜓𝜓�′′ + (𝜎𝜎� + 𝛾𝛾𝜎𝜎�2)𝜓𝜓� = 0,    (B.2) 
where 𝜎𝜎� = 𝜎𝜎𝑐𝑐𝑁𝑁𝐿𝐿4/𝐸𝐸𝐸𝐸 as before,  𝑃𝑃� = 𝑃𝑃𝐿𝐿2/𝐸𝐸𝐸𝐸,   and 𝛾𝛾 = 𝜌𝜌𝜌𝜌𝐸𝐸𝐸𝐸/𝑐𝑐𝑁𝑁2𝐿𝐿4. 
 
For the constant horizontal load the boundary conditions are 

(S.2) (i)   Zero angle at base:     𝜓𝜓�(0) = 0  
(S.2) (ii)   Zero normal motion at base:    𝜓𝜓�′′′(0) + 𝑃𝑃�𝜓𝜓�′(0) = 0 
(S.2) (iii) Zero bending moment at distal end:   𝜓𝜓�′(1) = 0 
(S.2) (iv) (Horizontal) Transverse force balance at distal end: 𝜓𝜓�′′(1) + 𝑃𝑃�𝜓𝜓�(1) = 0 

For the follower (tangent) load, at the distal end the boundary condition becomes  
(S.2) (i) (Follower) Zero transverse force at distal end:  𝜓𝜓�′′(1) = 0 

The characteristic polynomial is 

𝛽𝛽4 + P�𝛽𝛽2 + (𝜎𝜎� + 𝛾𝛾𝜎𝜎�2) = 0.      (B.3) 

For the constant load the eigenvalue problem is: 

⎣
⎢
⎢
⎡
⋯ 1 ⋯
⋯ 𝛽𝛽𝑛𝑛3 + P�𝛽𝛽𝑛𝑛 ⋯
⋯ 𝛽𝛽𝑛𝑛𝑒𝑒𝛽𝛽𝑛𝑛 ⋯
⋯  𝛽𝛽𝑛𝑛2𝑒𝑒𝛽𝛽𝑛𝑛 + P�𝑒𝑒𝛽𝛽𝑛𝑛 ⋯⎦

⎥
⎥
⎤
�

𝜌𝜌1
𝜌𝜌2
𝜌𝜌3
𝜌𝜌4

� = �

0
0
0
0

�,    n=1, 2, 3, 4  (B.4) 

For the follower load the eigenvalue problem is: 

⎣
⎢
⎢
⎡
⋯ 1 ⋯
⋯ 𝛽𝛽𝑛𝑛3 + P�𝛽𝛽𝑛𝑛 ⋯
⋯ 𝛽𝛽𝑛𝑛𝑒𝑒𝛽𝛽𝑛𝑛 ⋯
⋯  𝛽𝛽𝑛𝑛2𝑒𝑒𝛽𝛽𝑛𝑛 ⋯⎦

⎥
⎥
⎤
�

𝜌𝜌1
𝜌𝜌2
𝜌𝜌3
𝜌𝜌4

� = �

0
0
0
0

�,    n=1, 2, 3, 4  (B.5) 

For both cases, when 𝜎𝜎� is a valid eigenvalue the determinant, 𝐷𝐷(𝜎𝜎�), of the matrix on the left hand side 
vanishes. 
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Case 1 - Buckling under constant-direction horizontal load 

Initially, the modes of the beam’s response are decaying oscillations; the non-dimensional eigenvalue 
(characteristic exponent 𝜎𝜎� = 𝛼𝛼� + 𝑖𝑖𝜔𝜔)  have small negative real parts (𝛼𝛼� < 0) and non-zero imaginary 
parts (𝜔𝜔� ≠ 0) corresponding to damped natural frequencies of transverse vibration of the beam.  As the 
horizontal load increases, the magnitudes of 𝜔𝜔� decrease, until at a critical load of  𝑃𝑃� = 𝜋𝜋2/4 two 
eigenvalues converge on the real axis and one crosses into the right half-plane (Fig. S1a-b). At 𝑃𝑃� = 3, 
the locations of the eigenvalues are shown as minima of the determinant 𝐷𝐷(𝜎𝜎�) (Fig. S1c). For each of 
the three lowest-frequency modes, the corresponding mode shape (eigenfunction) is shown in Fig. S2. 
The eigenvalue 𝜎𝜎� of the first mode has zero imaginary part (𝜔𝜔� = 0) and positive real part, (𝛼𝛼� > 0), 
which are the hallmarks of static instability. In physical beams, and beam models that include nonlinear 
stiffening terms, this instability leads to a pitchfork bifurcation. 

Case 2 -Flutter due to follower load 

As the follower load increases, pairs of eigenvalues collide and split, with one eigenvalue from each 
collision crossing into the right half-plane with non-zero imaginary part (𝜔𝜔� ≠ 0, Fig. S3a-b). This dynamic 
instability (“flutter”) arises as predicted by Plaut and Infante [2]; in fully nonlinear beam models it leads 
to a Hopf bifurcation and limit cycle behavior above the critical load. The locations of the eigenvalues at 
a load of 𝑃𝑃� = 130 are seen as minima of 𝐷𝐷(𝜎𝜎�) (Fig. S3c). The mode shapes corresponding to the three 
least stable eigenvalue are shown in Fig. S4. 

For both the constant-direction and follower load, the current approach identifies well-known buckling 
and flutter instabilities at the correct parameter values [1, 2]. Notably, for a given set of parameters, 
multiple modes are found that satisfy the equation of motion. In these cases, even if one mode is 
periodic or decaying, an unstable mode will dominate the response.  
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Figure S1. Buckling instability of the beam with horizontal tip load (inset). (a) Real part 𝛼𝛼� of eigenvalue 
(characteristic exponent 𝜎𝜎�) vs non-dimensional load 𝑃𝑃�. (b) Path of eigenvalues in the complex plane for 
0 < 𝑃𝑃� < 3 (o: start; +: end). (c) Image of ln |𝐷𝐷(𝜎𝜎�)| as a function of 𝜎𝜎� = 𝛼𝛼� + 𝑖𝑖𝜔𝜔�. Eigenvalues are found at 
local minima (blue) of the magnitude of the determinant, |𝐷𝐷(𝜎𝜎�)|. Unstable modes have 𝛼𝛼� > 0. Note 
that the two local minima close to the origin, corresponding to real eigenvalues in panel (b), exist but 
are barely perceptible. 
 

 
Figure S2. First three (lowest-frequency) mode shapes of the Euler-Bernouilli beam with horizontal tip 
load 𝑃𝑃� = 3. Mode shapes are shown in terms of angle 𝜓𝜓(�̅�𝑠) on the left and transverse displacement 
𝑦𝑦(�̅�𝑠) on the right. Non-dimensional eigenvalue for each mode are 𝜎𝜎� = 𝛼𝛼� + 𝑖𝑖𝜔𝜔� with: (a) 𝛼𝛼� = 0.325; 𝜔𝜔� =
0 (unstable). (b)  𝛼𝛼� = −0.02; 𝜔𝜔� = 3.94 (stable). (c)  𝛼𝛼� = −0.02; 𝜔𝜔� = 11.96 (stable). The first mode is 
statically unstable (buckling mode: 𝛼𝛼� > 0, 𝜔𝜔� = 0); the remaining modes are oscillatory but stable. Each 
panel contains two curves:  solid line: real part of the mode shape; dashed line: imaginary part. 
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Figure S3. Flutter instability of the beam with follower tip load (inset). (a) Real part 𝛼𝛼� of eigenvalue vs 
non-dimensional load 𝑃𝑃�. (b) Path of eigenvalues in the complex plane for 0 < 𝑃𝑃� < 130 (o: start; +: end). 
(c) Image of ln |𝐷𝐷(𝜎𝜎�)| as a function of 𝜎𝜎� = 𝛼𝛼� + 𝑖𝑖𝜔𝜔�. Eigenvalues are found at local minima (blue) of the 
magnitude of the determinant, |𝐷𝐷(𝜎𝜎�)|. Unstable modes have 𝛼𝛼� > 0. 
 

 
Figure S4. First three mode shapes of the Euler-Bernouilli beam with follower tip load 𝑃𝑃� = 130.  Mode 
shapes are shown in terms of angle 𝜓𝜓(�̅�𝑠) on the left and transverse displacement 𝑦𝑦(�̅�𝑠) on the right. 
Non-dimensional eigenvalues for each mode are  𝜎𝜎� = 𝛼𝛼� + 𝑖𝑖𝜔𝜔� with: (a) 𝛼𝛼� = 9.73; 𝜔𝜔� = 1.60 (unstable). 
(b)  𝛼𝛼� = 1.27; 𝜔𝜔� = 7.29 (unstable). (c)  𝛼𝛼� = −0.02; 𝜔𝜔� = 26.58 (stable). The first two modes are 
dynamically unstable (flutter modes:  𝛼𝛼� > 0, 𝜔𝜔� ≠ 0); the remaining modes are oscillatory but stable. 
Solid line: real part of the mode shape; dashed line: imaginary part. 
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C. SENSITIVITY OF EIGENVALUES OF FLAGELLAR MODELS TO PARAMETERS 

The sensitivity of flagella behavior to model parameters can be determined from the changes in 
eigenvalues as the parameter is varied. Figure S5 shows the effects of flagellar length, 𝐿𝐿, flexural rigidity, 
𝐸𝐸𝐸𝐸, and resistive force coefficient, 𝑐𝑐𝑁𝑁. The real part of each eigenvalue describes relative stability (the 
rate of exponential growth or decay) and the imaginary part describes the frequency of oscillations.  

Figure S5. Eigenvalue paths as physical parameters are varied. (Column 1, SC1) Sliding-controlled model 
with sliding at the base; (Column 2, SC 2) Sliding-controlled model with no sliding at the base; (Column 3, 
CC) Curvature-controlled model; (Column 4, GC) Geometric clutch model. Row 1 (a-d): Eigenvalue paths 
as length, 𝐿𝐿, is increased from 50 µm to 60 µm. Row 2 (e-h): Eigenvalue paths as flexural rigidity, 𝐸𝐸𝐸𝐸, is 
decreased from 2000 to 1500 pN- µm2. Row 3 (i-l): Eigenvalue paths as resistive force coefficient, 𝑐𝑐𝑁𝑁, is 
increased from 0.0025 to 0.005 pN-s/ µm2. In each case the red “x” symbol denotes the final eigenvalue. 
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D. MOVIES: ANIMATIONS OF UNSTABLE OR NEUTRALLY-STABLE MODES  

Movie S1: Periodic mode of sliding-controlled model with sliding at the base (Case 1): 𝛼𝛼=0, 𝜔𝜔/2𝜋𝜋=20.6 
Hz.  

Movie S2: Unstable mode of sliding-controlled model with sliding at the base (Case 1): 𝛼𝛼=51.3/s, 
𝜔𝜔/2𝜋𝜋=3.3 Hz.  

Movie S3: Periodic mode of sliding-controlled model with no sliding at the base (Case 2): 𝛼𝛼=0, 𝜔𝜔/2𝜋𝜋=28 
Hz.  

Movie S4: Oscillatory unstable mode of curvature-controlled model: 𝛼𝛼=5.49/s, 𝜔𝜔/2𝜋𝜋=36.3 Hz.  

Movie S5: Oscillatory unstable mode of geometric clutch model: 𝛼𝛼=38.5/s, 𝜔𝜔/2𝜋𝜋=43.2 Hz.  
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