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1 Parameter estimation

We detail the motivation for the parameter estimates used in Tables 1, 2 of the main text, which are
recapitulated here for convenience in Supplementary Information Table 1.

The flagellar length L and the beat frequency T−1 are those of uncapacitated human sperm [8]. The
predicted sperm trajectory is independent of the viscosity of the surrounding medium, µ, as the mass-
scale does not enter the mapping between non-dimensional and dimensional trajectories and hence a
viscosity estimate is not presented, though it must be such that the sperm flagellar waveforms used
in this study are reasonable. The parameter α governs the flagellum wave chirality and a selection
of values are considered, with α = 0 constituting a planar waveform, α > 0 a right handed helix as
found in mouse [38] and α < 0 gives a left handed helix, as observed for human sperm with α = −0.2
[16, 17]. The parameter Γ controls the level of flagellar wave asymmetry, with infinite Γ corresponding
to a symmetric flagellum whilst Γ/L = 0.5 gives circular swimming trajectories with a diameter
of roughly the flagellum length, L, in Fig. 5 of the main text whilst sea urchin with asymmetric
flagella waveforms have been observed to execute circles with diameters as small as 25 microns [37]
or approximately 100 microns [23], depending on experimental details. The parameters k, B further
describe the flagellar waveform, and the parameter estimates given are those of Dresdner and Katz
[8], though in general these parameters are variable; finally the flagellar radius is based on images of
the human sperm proximal flagellum, indicating a radius of approximately 500nm, though we do not
consider the geometry of the tapering outer dense fibres found in mammalian sperm [11, 13].
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Parameter Interpretation Value
L Flagellar length 56µm

1/T = ω/[2π] Beat frequency 14 Hz
α Chirality parameter ±{0, 0.01, 0.05, 0.1, 0.2}

Γ/L Asymmetric waveform parameter {0.5,∞}
kL Wavenumber 3π
B Flagellar envelope parameter 0.2L
a Flagellar radius 0.01L
γ̇ Background shear flow strength 0.1T−1

g/µ Repulsion potential magnitude 10LT−1

d Repulsion potential lengthscale 0.005L

Table 1: Supplementary Information Table 1. Reference parameter values for the flagellum waveform,
the shear flow strength and the repulsive surface potential.

To consider the shear flow strength, recall that x = (x1, x2, x3) ≡ (x, y, z) are coordinates in the
laboratory reference frame, and that the boundary where the repulsive surface potential is imposed
corresponds to z = 0. Then, the extent of shear is given by γ̇ and defined via the background
flow velocity vector field, u∞(x) = −γ̇ze2. The fact γ̇T is small indicates that we are considering
a relatively weak shear flow relative to the velocity scales of sperm swimming at cell lengthscales
away from z = 0, as generally required to prevent sperm washout from the system. The parameter
g is the magnitude of the assumed repulsive surface forces at z = 0. Its scaling with viscosity, µ,
is for convenience – we simply take g to be sufficiently high to ensure sperm do not crash into the
boundary at z = 0; this is consistent with human sperm behaviour in glassware experiments once
dilute human serum albumin is present in the media, which prevents sperm colliding with and sticking
to the glassware [28].

Finally, the parameter d = 0.005L = 280nm is a measure of the repulsion potential decay length,
which is larger than the measured scale of 50nm for bacteria [22], but the details close to the
surface are qualitative only as the surface potential varies with the cell, solutes and surface and
is not documented for sperm. The impact of variation in d on the quantitative details of trajectory
curvatures is briefly presented in Fig 2d below, which shows that d influences trajectory curvatures,
though not the qualitative details. Thus such uncertainty in the surface potential represents a source
of modelling uncertainty which mitigates against the additional computational expense of including
virtual sperm heads in the modelling. Further justification for this particular approximation follows
in the next section.

2 Justifying the neglect of the sperm head

For sperm, the head is relatively small compared to the lengthscale of the flagellum and so we
consider the errors associated with neglecting the head in calculating sperm trajectories, especially
their curvature and thus the impact of rheotactic guidance cues.

For a small amplitude resistive force theory calculation, with a tangential resistance coefficient CT , a
spherical sperm head of lengthscale q and a flagellar wavenumber, k, head effects induce a correction
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in the swimming speed at the order of [15]
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given the parameter values of Table 1 and q ∼ 1.6µm, which is representative of human sperm.

We proceed to consider the scale of the head torque to the scale of the flagellum torque. Let X(s, t)
denote the location of the flagellum at time t and arclength s ∈ [0, L], and F denote the viscous drag
per unit arclength at this location. Then the torque ratio is of the order of
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For a trajectory with radius of curvature rc, with Tc the time for a complete revolution if the angular
velocity and translational velocities were fixed, one has Ω ∼ 2π/Tc and U ∼ [2πrc]/Tc so that Ω/U ∼
1/rc. For the tightest turning circle we consider in the results section of the main text rc ∼ L/2
whence the ratio of toque scales becomes

44
q3

L3
≈ 10−3.

Hence the head torque scale is three orders of magnitude smaller than the flagellum torque scale,
essentially as the ratio of head to flagellar torques scales with the cube of q/L rather than linearly,
and thus head torques are subordinate and can be neglected.

Hence neglecting the sperm head entails that angular velocities are generally accurate and linear
velocities are of the correct scale; further the linear velocity is always overestimated and hence the
trajectory curvature underestimated. Thus neglecting the sperm head gives the correct scale of the
rheotactic effect with a relatively small underestimation error motivating the neglect of the head,
especially given quantitative accuracy is not feasible due to the modelling uncertainties associated
with the parameter estimation of the repulsive surface potential.

3 The numerical algorithm and its validation

In this section, the numerical methods and algorithms are documented, together with modelling
validation, including primary simulations for elliptical helicoidal beating sperm near a no-slip surface
in the absence of background flow.

3.1 Numerical schemes

As spermatozoa are small enough to neglect inertia, the flow around the cell obeys Stokes’ equations,
which can be solved to within asymptotically small errors using the regularized Stokeslet method
(RSM), as first developed by Cortez [6], though our implementation is analogous to that used in
Gillies et al.’s computational study of human sperm [14].

The RSM method requires the regularized Stokeslet, which is a fundamental solution of Stokes’
equations for an external force localised to within a lengthscale of ε of the point x0. There is not
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a unique choice but a standard one is that the force at location x is given by Fψε(x,x0), with F
constant, ψε = 15ε4(r2 + ε2)−7/2/8π, r = |x − x0| and, with L denoting the flagellum length, ε is the
regularisation lengthscale, with ε/L the parameter governing the asymptotic accuracy of the method.

In this instance, the regularized Stokeslet is given by

εGS
ij(x − x0; ε) =

(r2 + 2ε2)δij + rirj

(r2 + ε2)3/2
. (3.1)

In presence of a rigid no-slip infinite plane wall, the regularized Stokeslet can be constructed by
introducing additional localized functions [1], which reduce to the singular Blakelet solution [2] as
ε→ 0. We denote this regularised Blakelet by GB and employ the representation in Smith [29], which
modified the typographical sign error in Ainley et al. [1].

For a flat surface with no tangential stress, such as an air-water surface with high surface tension [19],
another regularized Stokeslet can be constructed as in the singular Stokeslet case,

εGI
ij(x,x0) = εGS

ij(x,x
0) + (δik − 2δi3δk3)εGS

kj(x,x
0∗), (3.2)

where x∗
0 is the mirror image of x with respect to the boundary, given by x∗

0 = x0 − 2(x · ez)ez

with ez the unit vector in the z-direction. Throughout this paper, we refer to this solution (3.2) as a
regularized Imagelet, and utilise it when considering a virtual sperm near a flat surface at z = 0 for a
fixed tangential stress associated with a shear flow, so that the perturbation of the flow field due to
the swimmer does not change the tangential stress at z = 0.

While the boundary conditions associated with fixed tangential stress and a flat surface, that is zero
normal velocity, at z = 0 may not be relevant in most physical situations, and thus similarly for
the Imagelet solutions, these solutions are nonetheless very informative in assessing the extent to
which hydrodynamic interactions between the surface and the cell influence the rheotactic response.
Analogous comments also hold for the Stokeslet solutions.

3.1.1 The boundary integral equation of the regularised Stokeslet method

Let p∞(x), u∞(x) denote the pressure and velocity field of the background shear flow, which satisfy
Stokes’ equations and let p, u denote the flow field for the virtual sperm in this background flow.
The linearity of Stokes equations ensures that p− p∞, u− u∞ also satisfy Stokes equations and thus
the flow velocity field around a flagellum is asymptotically approximated by the regularised Stokeslet
method [14] via the boundary integral equation

ui(x0) − u∞i (x0) = − 1
8πµ

∫ L

0

[
εG

(B,I,S)
ji (X(s, t),x0)fj(X(s, t))

]
ds. (3.3)

In the above, there is summation over repeated indices, µ is the fluid viscosity, X(s, t) is the laboratory
frame location of the point an arclength s along the flagellum from its proximal end-point at ξ(s, t) = 0
in the flagellar reference frame, at time t, and f(X(s, t)) is an unknown stress field defined on the
flagellar centreline. The integral kernel εG

(B,I,S)
ij is the regularized version of the singular Blakelet,

Imagelet or Stokeslet, according to the boundary conditions imposed at z = 0. Note that with the
regularised Blakelet, the no-slip boundary conditions at x3 = 0 is automatically satisfied by u − u∞
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and hence u up to O(ε), and analogously for the tangential stress and zero normal velocity boundary
conditions associated with the Imagelet. The regularization parameter, ε, is chosen as ε = 0.32∆s
with ∆s = L/N the discretisation length of the flagellum, where the number of discretisation points
along the flagellum, N , is set to be N = 60. These particular choices are validated when the flagellum
radius varies as a curved ellipsoid with minor axis equal to 0.01L, as detailed in Gillies et al. [14].

The flagellar location in the laboratory frame, X(s, t) is related to its location with respect to the
flagellar frame, ξ(s, t), by a translation and rotation: X(s, t) = X(0, t)+R ·ξ(s, t). Hence, the no-slip
condition at location x̂0 on the boundary of the flagellum, approximated by enforcing it at the nearest
point on the flagellar centreline x0 ≡ X(s0, t), is given by the constraint that

u(x0) = U + Ω ∧ X(s0, t) + R · ξ̇(s0, t),

where U and Ω are respectively the linear and rotation velocity, given by Ẋ(0, t) = U , and Ṙ = Ω∧R.

Thus, u∞(x0) is the known background velocity flow field and one can write u(x0) in terms of the
flagellar waveform, specified by the known function ξ(s, t), together with a linear combination of the
components of the a priori unknowns, U , and Ω. For a collocation of the flagellar centreline with N
points we thus have 3N + 6 scalar unknowns: U , Ω and the stress field f at each collocation point.
Enforcing equation (3.3) at each collocation point gives 3N scalar equations, whilst the final 6 scalar
equations required for closure are given by the fact swimming occurs with no net force and torque, a
further consequence of the negligible influence of inertia for cellular microswimmers.

Neutral buoyancy is implicitly assumed in these force and torque balances, as justified by the observa-
tions of Winet et al. [36] that boundary accumulation and rheotaxis completely dominate gravitational
effects, and that sperm sedimentation speeds are 1-2 orders of magnitude slower than swimming speeds.
Thus gravity is safely neglected. Taking into account the repulsive potential, the required six scalar
force and torque balance equations for the sperm are explicitly given by

0 =
∫ L

0
[f + f rep] ds =

∫ L

0
X ∧ [f + f rep] ds, (3.4)

where f rep is the force density due to the repulsive potential.

We refrain from using DVLO theory to determine this potential as this has been observed to be
inaccurate with increasing osmolarity, even before physiological isotonicity is achieved [26], since the
Debye layer shrinks to nanometer scales and other interactions dominate the surface interactions
between the cell and a solid surface on the scale of tens to one hundred nanometres. Hence instead a
simple repulsive potential, as also used by Spagnolie et al. [32], is implemented with

f rep(x) = g
e−z/d

1 − e−z/d
ez, (3.5)

arising from non-hydrodynamical interactions, such as van der Waals forces, at z = 0. The parameters
are presented in Supplementary Information, Table 1, and with this choice of d = 0.005L, sperm
swimming is prohibited within a distance of approximately 0.01L = 2d from z = 0. As can be seen
in Fig. 2(d)(e) changes in d do affect the surface induced-trajectory curvature as the cell boundary
accumulation height changes, though we cannot distinguish a choice of d given the available data
and, in any case, the surface repulsion potential is highly variable [22]. Nonetheless the qualitative
conclusions are unaffected and thus so are the conclusions drawn in the main text.
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Finally, the 3N+6 scalar algebraic equations associated with a collocation point discretisation of (3.3)
and (3.4) at a fixed point in time are subjected to singular preconditioning prior to solution via an
LU factorisation. This yields the unknown surface stress f and, more importantly for our purposes,
the linear and the angular velocities, U and Ω at a fixed point in time. Thus the sperm position and
orientation can be updated using these velocities. Iterating this process, which is performed via Heun’s
method [30, 20, 21], the sperm trajectory is generated, allowing the exploration of sperm boundary
accumulation and rheotaxis.

3.2 Scheme validation

3.2.1 A comparison with other algorithms

For the validation of the RSM scheme above, we evaluated the swimming velocity during one beat
cycle of a headless sperm flagellum in the absence of a surface repulsion potential or a boundary at
z = 0. In addition we use the parameters

α = 0, B = 1/2π, k = 2π, ω = 1/2π,

with length and time in units of the flagellar length L and beat period T whilst the cell is initially
located so that the body-fixed and the laboratory frame coincide. In Figure 1 these results for the
RSM algorithm are compared with those obtained from Johnson’s slender-body theory (SBT), as
documented in Smith et al. [30], and direct numerical computation via the boundary element method
(BEM), as detailed in Ishimoto & Gaffney [20, 21], analogously to the validation studies within Gillies
et al. [14]. Figure 1 indicates the RSM scheme provides sufficient accuracy to analyse and discuss cell
movement. More generally, mechanically based models have been shown to produce agreement with
observation using flagellar waves extracted from video-microscopy, for instance [12, 14], emphasising
that understanding sperm swimming can often be reasonably considered in terms of mechanics.

We also briefly note that it is inappropriate to quantitatively compare the regularised Stokeslet results
here to the multi-particle collision results presented by Elgeti et al. [9, 10] and the slender body theory
results of Smith et al., [30, 31] for the purposes of validation as the representation of surface forces
differs across all three papers. In addition this entails that the results presented in this manuscript
should not be used to distinguish between the discrepancy in the conclusions of Elgeti et al. [9] and
Smith et al., [30], as documented in a correspondence [10, 31], whereby Elgeti et al. conclude that
hydrodynamic flow fields induce sperm surface capture at much closer distances than Smith et al., who
report boundary accumulation heights of very roughly 10 microns for a planar beater. Furthermore,
we also note the results in the main text predict both larger mean boundary accumulation heights
(main text, Fig 5b, red and orange curves, with mean boundary accumulation heights of about 8.5
microns) and also much closer surface swimming (Fig 5b, blue curve). Hence, even neglecting the
absence of control for the surface forces, the results once more cannot be used to distinguish the
discrepancy reported in the correspondence between Elgeti et al. and Smith et al. [9, 31].

3.2.2 A comparison with observations

We proceed to consider the behaviour of a virtual mouse sperm with no head and an elliptical helicoidal
waveform near a no-slip surface at x3 ≡ z = 0, in the absence of a background shear flow, with the
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Figure 1: The linear velocity of the model spermatozoon during one beat cycle with three different
numerical schemes: the regularized Stokeslet method (RSM), Johnson’s slender-body theory (SBT),
and direct numerical simulation via the boundary element method (BEM). Figure axes are non-
dimensionalised using the flagellum length L as the lengthscale and the beat period T as the timescale.

parameters of Table 1, except that the flagellar length is L = 120µm, matching that of CD1 mice [34].
We further use a chirality parameter of α = 0.2, matching the parity of mouse sperm chirality, and
take Γ = ∞ so that the flagellar waveform is symmetric; the waveform is fully specified by equation
(2.1) of the main text. A surface repulsion force, as given by equation (3.5) is also present in these
simulations.

As generally the case with flagellar waveforms with non-trivial chirality, this virtual sperm is predicted
to roll as it swims rather than asymptoting to a fixed orientation relative to the laboratory frame.
Furthermore, boundary accumulation is predicted with the virtual sperm swimming adjacent to the
no slip surface such that the axis of symmetry associated with the elliptical helicoidal waveform is
rotated; hence the flagellar envelope is just offset from parallel to the no slip surface, as shown in Fig
2b. This gives a good qualitative comparison to Fig 2a, which is the sideview of flagellar beat patterns
presented by Woolley as an illustration of the typical conical helicoid flagellar beat pattern exhibited
by sperm near a no-slip surface [38]. Note however that these observations were made from above
the cover slip but presented in a sideview, and thus assumed sufficient symmetry of the waveform,
as is the case for a perfect conical helicoid. However, clearly Woolley’s images suffer from making
this approximation in that the flagellum penetrates the surface. In addition this alignment with a
no-slip boundary for a sperm with an elliptical helicoid beat pattern is also seen in the slender body
simulations of Smith et al. [30], though these latter simulations cannot be continued once the sperm
approaches the surface, due to sperm crashing as no repulsion surface potential force is considered.

Woolley [38] also presented the projection of the trajectories of CD1 mouse sperm onto the no-slip
surface, as reproduced in Fig 2c, with the analogous predictions for the virtual sperm presented in Fig
2d. Note that the direction of the predicted circling in Fig 2d agrees with observation, as does the
presence of a lateral oscillatory displacement about the mean trajectory. Furthermore, the idealised
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Figure 2: Sperm dynamics with elliptical helicoid beating, but no shear flow. (a) Observations of an
elliptical helicoid beat at snapshots in time for individual Chinchilla sperm, scale bar 25µm [38]. (b)
Snapshots of the elliptical helicoid beat, in sideview, for a virtual mouse sperm, which is predicted
to swim adjacent to a no-slip boundary at z = 0; the simulations use the parameters given in Table
1 except that L = 120µm, the length of CD1 mice sperm observed by Vernon and Woolley [34]. In
addition, the parameter choice of a symmetric flagellar wave with positive chirality was used, with
Γ = ∞, α = 0.2, X(s = 0, t = 0) = (0, 0, 0.1) and the initial inclination of the flagellum relative
to the no slip plane at z = 0 was taken to be θinit = 0.2π. The snapshots for times t, given by
t/T ∈ {10, 11, . . . 15}, are superimposed, where T is the beat period. (c) The observed trajectories
of CD1 mouse sperm, viewed from above, after accumulating at an upper coverslip [38]; scale bar
50µm. (d) The corresponding trajectory from computational simulations for the virtual CD1 mouse
sperm used to generate plot (b), after projection onto the plane of the no-slip surface with an arrow
depicting the direction of sperm swimming and the effect of varying d, in units of the flagellar length,
L, depicted. (e) The trajectory of the lefthand trajectory of observed CD1 mice sperm in plot (c) is
traced on the computed trajectory of virtual CD1 mice sperm for these different vales of d. Finally
note that unit of length in plots (b), (d) is given by CD1 mouse flagellar length L = 120µm, and
that (a), (c) have been reproduced from Woolley [38], with permission (Licence No. 3596460518634,
Copyright c© 2003, Society for Reproduction and Fertility).
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Figure 3: The effect of initial orientation on sperm trajectories for elliptical helicoid beating in
a background flow, whose direction is depicted by the large arrow. The virtual sperm swimming
trajectories are projected onto the x-y plane, with all axes in units of flagellum length, L. The
simulations use the parameters presented in Table 1, with Γ = ∞ and α = 0.2, and the cells are
initially located at X(s = 0, t = 0) = (0, 0, 0.1L) with a trivial initial attack angle, θinit = 0, and
thus are oriented parallel to the x-y plane. The initial orientation of the virtual sperm within the
x-y plane however is taken from the values {0, 0.2π, . . . , 1.8π} and the resulting projections of the cell
trajectories are plotted on the x-y plane, with small arrows depicting the direction of swimming.

waveform produces a trajectory that essentially agrees with observation, as shown in Fig 2e, where the
leftmost trajectory of Fig 2c is superimposed with the trajectories of Fig 2d, after rescaling so that the
lengthscales of each figure match. The only discrepancy is that the extent of the lateral displacement
in the trajectory is slightly underestimated by the virtual sperm simulations, most likely due to our use
of an idealised waveform; in particular note that prior studies demonstrating quantitative agreement
featured the extraction of flagellar waveforms from video-microscopy. Nonetheless, here we observe
predictions for the swimming sperm trajectory that qualitatively match observed trajectories for a
number of CD1 mice sperm, overlapping with one from the cell sample in terms of the“ value-
averaged path”used in sperm diagnostics [35], which neglects lateral displacement as this does not
contribute to sperm propagation on longer timescales.

4 The trajectories of sperm with different initial orientations

In the main text, the virtual sperm is initially oriented so that the ξ3 axis coincides with x axis; this
constraint is nonetheless without loss of generality. In Fig. 3, simulations for sperm with a symmetrical
helical beat (Γ = ∞, α = 0.2) and different initial orientations are shown. The virtual cells are always
initially located at X(s = 0, t = 0) = (0, 0, 0.1L) with a no-slip boundary at z = 0, a background
shear flow and trivial initial attack angle, θinit = 0, so that the cells are initially parallel to the x-y
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plane. All further parameters are as in Table 1, though the initial direction of the sperm within the
x-y plane is varied such that the angle made by the flow direction and initial sperm orientation takes
the values {0, 0.2π, . . . , 1.8π}. This includes an initial orientation directly into, and directly away
from, the background flow. The resulting trajectories, as presented in Fig. 3, emphasise that the
initial direction of the sperm does not affect the basic dynamics of sperm rheotaxis, as all trajectories
ultimately exhibit the same asymptotic direction for the projection onto the x-y plane.

5 The trajectories of sperm with an asymmetric beat pattern and
small chirality

Consider an asymmetric beat as illustrated in Fig. 1b of the main text. As observed in various marine
species spermatozoa, such as sea urchin and Ciona [23, 27], an extensively asymmetric planar flagellar
beat leads to a circling trajectory, in which the direction of the orbit is often selected so that all the
cells rotate in the same direction. This selection is considered to be driven by a small chirality of the
flagellar beat [18]. We explore the swimming trajectory of the asymmetric beating flagella in Fig. 4
using the parameters of Table 1, with Γ = 0.5, and a range of chiralities, α ∈ {0,±0.001,±0.01}. The
cell is initially located at (0, 0, L) with the initial angle θinit = 0, so that it is oriented parallel to the
laboratory x-y plane z = 0, which is a no-slip boundary in the simulations, and the surface repulsive
potential force, equation (3.5), is also imposed.

The trajectory of the sperm with a planar beat (α = 0, red curve) is a closed planar circle with
transverse oscillations and a counterclockwise swimming direction when viewed above. With a slight
chirality, the projected trajectory is not appreciably altered, though there is a slow drift in the z
direction, which is reversed with a change in the sign of the chirality. With a further increase of
the magnitude of chirality, the perpendicular drift is increased. Thus the counter-clockwise circling
trajectory near a bottom boundary can only be found in a cell with a positive chirality, as negative
chirality cells would not approach this boundary. If there was a no-slip boundary, for instance a
coverslip, at z = constant > 1, the negative chirality cell would approach the coverslip and thus
exhibit a counter-clockwise rotation when viewed from above, corresponding to a clockwise trajectory
viewed from the fluid, namely the opposite rotation direction to cells with positive chirality. Hence
chirality is predicted to select the observed rotational direction for such swimmers. As a final remark,
with a further increase in the magnitude of the chirality, the sperm trajectory becomes straighter, and
thus tight circling in one direction near a boundary is only observed when the flagellar beat is both
strongly asymmetric and nearly planar.

6 Estimates of rheotactic criteria

Sea Urchin Sperm Consider the sperm of the sea urchin Lytechinus, which have with L ≈ 45µm,
[4], a planar beat of frequency ω ≈ 30Hz and a swimming speed of 160µm [3]. Assuming a shear
free turning circle of radius Rturn ≈ 25µm, which is intermediate in the range reported by Woolley
and Vernon [37] and Miki and Clapham [23], the above rheotactic condition for planar beaters, R :=
URturn/[LωH] � 4 requires that the accumulation height satisfies H � 750nm. Furthermore the
shear rate must be increased to beyond S := γ̇Rturn/[ωL] � 4, and thus there is a lower bound of
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Figure 4: Sperm dynamics with an asymmetric beat pattern, but no shear flow. The simulations use
the parameters given by Table 1, with Γ = 0.5 and α as depicted. The cells are initially located at
X(s = 0, t = 0) = (0, 0, L) with the initial angle θinit = 0, and thus oriented parallel to the x-y plane.
The no-slip boundary condition is imposed on z = 0, together with the repulsive surface potential
force and all axes are in units of flagellum length, L, in the plots. (a) The projection of the sperm
trajectories onto the x-y plane, which corresponds to trajectories viewed from above. All the cells
reveal counter-clockwise rotation, reflecting the asymmetric beat. (b) Time evolution of z, the vertical
distance above the no-slip boundary, for these cells.

the shear rate required for rheotaxis, γ̇ � 140s−1. Firstly the accumulation height is much less than
the lengthscale of the sea urchin sperm head, as deduced by inspection of the micrographs in [3].
Secondly, observed shear rates between murine ampulla mucosal folds are substantially less than 1s−1

by inspection of Fig 1d in [23] and thus these values of γ̇ are orders of magnitude beyond the female
reproductive tract flows that that have guided experimental scales. Consequently the absence of sea
urchin rheotaxis in observational studies [23] is consistent with the modelling predictions.

CatSper-KO Sperm The CatSper-KO mouse spermatozoa examined in Miki & Clapham [23] were
CatSper1 null and did not rheotax whilst presenting with circular rotation near a substrate. We
assume mouse sperm parameters, L ≈ 80µm [7], with a CatSper1 null mutant angular beat frequency
of ω = 2π/T ≈ 30Hz, where T is the beat period, as reported by Carlson et. al. [5] in terms of
the frequency f = 1/T which was in the range [4Hz-8Hz]. From the observation of supplemental
information videos presented by Miki and Clapham [23] we also have U ≈ 36µm/s [23], and the
shear-free turning circle radius is Rturn ≈ 40µm. An estimation of the rheotactic criteria reveals
that the accumulation height must satisfy H � 150nm and the shear rate must satisfy γ̇ � 240s−1.
Once more these constraints differ by orders of magnitude from the conditions in Miki and Clapham’s
experimental studies and thus the absence of rheotaxis is predicted, consistent with observation.

Hyperactivated Sperm Hyperactivated human sperm beat with a frequency of about ω ∼ 15Hz
[24] whilst star-spin hyperactivated human sperm in media [25] exhibit tight circling on the scale of
roughly 30 microns [33]; combined with the human flagellum length of 56µm rheotaxis requires shear
rates on the scale γ̇ � 30s−1 which is over a magnitude larger than the observed physiological and
experimental scales. Hence rheotaxis is predicted to be absent under such conditions. In contrast, the
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hyperactivation of mouse sperm in viscous solution, leads to much straighter swimming in Miki and
Clapham’s studies [23], indicating that rheotaxis would be predicted to occur, at least if boundary
accumulation is present. However, the turning circle radius of these cells in the same study [23]
is difficult to estimate given the limited length of the trajectories captured, and most likely highly
variable preventing a more precise statement.
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