# **Electronic Supplementary Information for** *Chemical Communications*

## Surface roughness-induced speed increase for active Janus micromotors

Udit Choudhury,<sup>‡a</sup> Lluís Soler,<sup>‡a,b,</sup> John Gibbs,<sup>a,c</sup> Samuel Sanchez,<sup>\*a,d,e,</sup> and Peer Fischer<sup>a,f</sup>

<sup>a</sup>Max-Planck Institute for Intelligent Systems. Heisenbergstr.3, 70569 Stuttgart, Germany.
<sup>b</sup>Institute of Energy Technologies, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia, Spain.
<sup>c</sup>Department of Physics and Astronomy, Northern Arizona University, S. San Francisco Street, Flagstaff, Arizona 86011, United States
<sup>d</sup>Instituci Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
<sup>e</sup>Institut de Bioenginyeria de Catalunya (IBEC), Baldiri I Reixac 10-12,
08028 Barcelona, Spain
<sup>f</sup>Institute for Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
\**Email: sanchez@is.mpg.de*<sup>‡</sup>These authors contributed equally to the work.

## **Table of Contents**

S1 MSD of particles R<sub>1</sub>,R<sub>2</sub>,S<sub>1</sub>, and S<sub>2</sub> respectively

**S2** Theoretical fit to speed data from particles  $R_1, R_2, S_1$ , and  $S_2$ 

S3 Video details

S4 Reaction rates discussion

**S5** Experimental methods

## **Supplementary figure S1**



Fig. S1. 1a,1b,1c,1d are the plots of Mean Squared Displacement for Particles  $R_1, R_2, S_1$  and  $S_2$  respectively. MSD from 0 to  $\Delta t=2s$  is used to fit and calculate  $D_{diff}$  from the plots.

## Supplementary figure S2



Fig.S2 Theoretical fit of Equation 3 and Equation 5 to velocity of Particles  $R_1$ ,  $R_2$ ,  $S_1$  and  $S_2$  to obtain reaction rate constants  $k_1$  and  $k_2$ 

### Supplementary videos S3

Videos R1: Particle  $R_1$  at peroxide concentrations 0.5%, 1.5%, 2.5%, 5%, 9% and 15%.

Videos R2: Particle R2 at peroxide concentrations 0.5%,1.5%,2.5%,5%,9% and 15 %

Videos S1: Particle S1 at peroxide concentrations 0.5%, 1.5%, 2.5%, 5%, 9% and 15 %

Videos S2 : Particle S2 at peroxide concentrations 0.5%, 1.5%, 2.5%, 5%, 9% and 15 %.

### Supplementary discussions S4(Reaction rates)

Since the velocity plateaus at higher peroxide concentrations, and the diffusiophoretic velocity is directly proportional to the reaction rate , the breakdown can be modeled as a two-step process with rate constants  $\alpha_1$  and  $\alpha_2$ <sup>1,21</sup>:

$$2H_2O_2 + Pt \xrightarrow{\alpha_1} Pt.(H_2O_2)_2 \xrightarrow{\alpha_2} 2H_2O + O_2 + Pt$$
$$k = \alpha_2 \frac{[H_2O_2]_{vol}}{[H_2O_2]_{vol} + \alpha_2/\alpha_1},$$

with,

We can solve the unknown reaction rate constants  $\alpha 1$  and  $\alpha 2$  as a function of the H2O2 concentration by fitting equation (3) and equation (5) to the speed of particles R<sub>1</sub>, R<sub>2</sub>, S<sub>1</sub> and S<sub>2</sub> in Fig.4a. We assume a = 1Å and  $\lambda = 5$  Å,1 and obtain the best fit line for Eqn. (3) to the speed data (see supplementary Fig S2). The experimentally determined reaction rates for different particles at 10% H<sub>2</sub>O<sub>2</sub> concentrations are summarized in Table 1(main text).

Further, from the Oxygen evolution test for smooth wafer surfaces we find the rate of oxygen production is 0.6mmol cm<sup>-2</sup> Pt min<sup>-1</sup> which translates to  $6x10^{10}$  molecules  $\mu$ m<sup>-2</sup> s<sup>-1</sup>. This compares well with the reaction rate obtained for smooth surfaces (S<sub>1</sub> and S<sub>2</sub>) which are both close to 2.5 x  $10^{10}$   $\mu$ m<sup>-2</sup> s<sup>-1</sup>.

The surface coverage for smooth particles (S1) can be calculated by  $2\pi R^2 = 39\mu m^2$ . A direct comparison of the reaction rates yields the effective surface area for rough particles R<sub>1</sub> as 153  $\mu m^2$  and for particle R<sub>2</sub> as (39 x 5/2.5) =78  $\mu m^2$ . We can thus deduce that the effective catalytic surface area increased due to the growth of nanostructures on the surface.

Quantitative direct comparisons are not possible since the geometry of the systems are not identical. The rates are expressed in units of  $\mu$ m<sup>-2</sup> s<sup>-1</sup> to facilitate the comparison of surface reaction rates with turnover rates in homogeneous solutions.

#### Supplementary discussions S5 (Experimental methods)

After verifying the higher catalytic rates for the rough surfaces, we investigated the different swimming characteristics of the Janus microparticles. The Janus particles were released from the wafer into deionized water by sonication and the suspension was washed and purified by centrifugation. Aqueous suspensions of Janus micromotors were pipetted onto a silicon wafer piece, which was previously cleaned with O2 plasma, and increasing amounts of H2O2 were added sequentially to obtain the desired H2O2 concentration. The videos of the self-propelled particles were recorded with a Leica optical microscope coupled to a CCD camera recording at 30 fps.