S1 Derivation

M-Step Parameter Equation Derivations

The optimal parameters that maximize the data log-likelihood under the gener-
ative model can be sought by Expectation Maximization (EM) algorithm (see
eg., [1]), which iteratively optimizes a lower bound F(©,q) of the likelihood
w.r.t. the parameters © and a distribution ¢:
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Each iteration consists of an E-step and an M-step. The E-step optimizes the
lower bound w.r.t. to the distributions ¢,(s|©) by setting them equal to the
posterior distributions g, (s|©) « p(s |y, ©) while keeping the parameters ©
fixed, denoted by ©’. The M-step then optimizes F (O, go’ ) w.r.t. the parameters
© keeping the distributions ¢, (s|©’) fixed. If we are given many samples of s
for the posterior then we wish to find:

0 — argmaxg F (0, g ). (3)
This is maximised with the maximum likelihood estimate:
ettt — argmaxg (log p(7, 5| ®)>q(§‘|@(t)). (4)

To keep the derivation focused, we present a simple derivation of the update
equations only for a single element of W. The other parameters are similarly
derived and are not covered here. For pedagogical purposes we first derive an
update equation without a max rule, then we show how this rule should be
modified when the max rule is used. Assuming the data y( is distributed as
follows:
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where ¢ ~ N'(pu = 0;02). for w. This gives the conditional probability as:
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In log space this is a quadratic function:
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and is summed over all datapoints n. The maximum likelihood solution dif-
ferentiates this sum with respect to w (this function is linear in ¢ and when
differentiated o can be discarded) to find the maximum:
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From which the maximum is given by:
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However, we care about finding the ML solution for the max rule:
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If the new estimates of W}, do not change significantly then the simple derivation
for w will apply to Wp, but only the data for which W}, is the maximum will
be used. The data is going to vary over: the number of images N, the number
of samples per image K, and we will estimate W}, per latent dimension A and
observed dimension (or pixel) d. This leads to:
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which corresponds to the results given in equation (9) of the main paper.
§(h is max) is used to identify the index for which Wj,4sF  is the maximal cause
of the data, if it is not the maximal cause, then §(-) returns 0, and the term
does not contribute to the sum.
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