
S1 Derivation

M-Step Parameter Equation Derivations

The optimal parameters that maximize the data log-likelihood under the gener-
ative model can be sought by Expectation Maximization (EM) algorithm (see
eg., [1]), which iteratively optimizes a lower bound F(Θ, q) of the likelihood
w.r.t. the parameters Θ and a distribution q:

L(Θ) ≥ F(Θ, qΘ′) =

N∑
n=1

∑
s

qn(~s|Θ′) log
p(y(n), ~s|Θ)

qn(~s|Θ′)
(1)

= 〈log p(~y,~s |Θ)〉q(~s|Θ′) + H[q(~s|Θ′)]. (2)

Each iteration consists of an E-step and an M-step. The E-step optimizes the
lower bound w.r.t. to the distributions qn(s |Θ) by setting them equal to the
posterior distributions qn(s |Θ)← p(s | y(n),Θ) while keeping the parameters Θ
fixed, denoted by Θ′. The M-step then optimizes F(Θ, qΘ′) w.r.t. the parameters
Θ keeping the distributions qn(s |Θ′) fixed. If we are given many samples of s
for the posterior then we wish to find:

Θ(t+1) = argmaxΘF(Θ, qΘ(t)). (3)

This is maximised with the maximum likelihood estimate:

Θ(t+1) = argmaxΘ〈log p(~y,~s |Θ)〉q(~s|Θ(t)). (4)

To keep the derivation focused, we present a simple derivation of the update
equations only for a single element of W . The other parameters are similarly
derived and are not covered here. For pedagogical purposes we first derive an
update equation without a max rule, then we show how this rule should be
modified when the max rule is used. Assuming the data y(n) is distributed as
follows:

y(n) = ws(n) + ε (5)

where ε ∼ N (µ = 0;σ2). for w. This gives the conditional probability as:

p(y(n) | s(n), w) =
1

σ
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2π
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−1
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σ

)2
)

(6)

In log space this is a quadratic function:

log p(y(n) | s(n), w) = c− log σ − 1

2

(
y(n) − ws(n)

σ

)2

(7)

and is summed over all datapoints n. The maximum likelihood solution dif-
ferentiates this sum with respect to w (this function is linear in σ and when
differentiated σ can be discarded) to find the maximum:

d

dw

[∑
n

(
y(n) − s(n)w

)2
]

= 0. (8)

1



From which the maximum is given by:

w =

∑
n s

(n)w(n)∑
n s

(n)2
. (9)

However, we care about finding the ML solution for the max rule:

y(n) = max
h

{
Whs

(n)
h

}
+ ε (10)

If the new estimates of Wh do not change significantly then the simple derivation
for w will apply to Wh, but only the data for which Wh is the maximum will
be used. The data is going to vary over: the number of images N , the number
of samples per image K, and we will estimate Whd per latent dimension h and
observed dimension (or pixel) d. This leads to:

Whd =

∑N
n

∑K
k δ(h is max)s

(k)
hn y

(n)
d∑N

n

∑K
k δ(h is max) s

(k)
hn

2 (11)

which corresponds to the results given in equation (9) of the main paper.
δ(h is max) is used to identify the index for which Whds

k
hn is the maximal cause

of the data, if it is not the maximal cause, then δ(·) returns 0, and the term
does not contribute to the sum.
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