
0

200

400

600

800

1000

1200

1400

2 4 6 8 10 12 14 16 18 20

N
u

m
b

er
 o

f 
P

ro
te

in
s

Non-redundant matches

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
P

ro
te

in
s

Specific matches

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25

N
u

m
b

er
 o

f 
P

ro
te

in
s

# of protein relatives

Figure S1

A

B

C

D

Cell Line

0

0.2

0.4

0.6

0.8

1

M
C

F1
0

A
M

C
F7

B
T4

7
4

SK
B

R
3

B
T2

0
B

T5
4

9
D

U
4

4
7

5
H

C
C

3
8

H
C

C
1

1
4

3
H

C
C

1
5

9
9

H
C

C
1

8
0

6
H

C
C

1
9

3
7

H
S5

7
8

T
M

D
A

M
B

1
5

7
M

D
A

M
B

2
3

1
M

D
A

M
B

4
3

6
M

D
A

M
B

4
5

3
M

D
A

M
B

4
6

8
M

FM
2

2
3

SW
5

2
7

R
ep

lic
at

e 
C

o
rr

el
at

io
n

 (
R

2
) Mean = 0.92 +/- 0.03

E

(0.1,1) (1,10) (10,100) (102,103) (104,105)(103,104)

iBAQ (protein abundance)

C
o

ef
fi

ci
en

t 
o

f 
V

ar
ia

ti
o

n 1.2

1.0

0.8

0.6

0.4

0.2



Figure S2

FOXA1

TGFB1

0

2

4

6

8

10

12

14

16

-6 -4 -2 0 2 4 6

-L
o

g 1
0
(p

-v
al

u
e)

Log10(cluster 1/other samples)

Cluster 1 – Luminal-like
P

ro
te

in
 A

b
u

n
d

an
ce

 (
iB

A
Q

)
A

B

0

50

100

150

200

TGFB1

0

250

500

750

SK
B

R
3

M
C

F7

B
T4

74

M
D

A
M

B
4

53

M
FM

22
3

D
U

4
47

5

H
C

C
15

99

M
C

F1
0

A

SW
52

7

H
C

C
18

06

M
D

A
M

B
4

36

H
C

C
38

H
C

C
11

43

H
C

C
19

37

B
T2

0

M
D

A
M

B
4

68

B
T5

49

H
S5

7
8

T

M
D

A
M

B
2

31

M
D

A
M

B
1

57

Tu
m

o
r_

A

Tu
m

o
r_

B

Tu
m

o
r_

C

Tu
m

o
r_

D

FOXA1

Legend

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Tumors



Focal adhesion

Non-homologous 
end joining

Angiogenesis Cell adhesion

Figure S3
N

o
rm

al
iz

ed
 iB

A
Q

N
o

rm
al

iz
ed

 iB
A

Q

Oxidative 
phosphorylation

Cell Cycle

P
ro

te
in

 A
b

u
n

d
an

ce
 (

iB
A

Q
)

Legend

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Tumors

Glycolysis/
Gluconeogenesis

A

B

0

200

400

PPM1A

0

250

500

750

HID1

0.1

100

100000

POSTN

0.1

10

1000

MYLK

10

1000

100000

SK
B

R
3

M
C

F7

B
T4

74

M
D

A
M

B
4

53

M
FM

22
3

D
U

4
47

5

H
C

C
15

99

M
C

F1
0

A

SW
52

7

H
C

C
18

06

M
D

A
M

B
4

36

H
C

C
38

H
C

C
11

43

H
C

C
19

37

B
T2

0

M
D

A
M

B
4

68

B
T5

49

H
S5

78
T

M
D

A
M

B
2

31

M
D

A
M

B
1

57

Tu
m

o
r_

A

Tu
m

o
r_

B

Tu
m

o
r_

C

Tu
m

o
r_

D

HLA-A

0

20000

40000

SK
B

R
3

M
C

F7

B
T4

74

M
D

A
M

B
4

53

M
FM

22
3

D
U

4
47

5

H
C

C
15

99

M
C

F1
0

A

SW
52

7

H
C

C
18

06

M
D

A
M

B
4

36

H
C

C
38

H
C

C
11

43

H
C

C
19

37

B
T2

0

M
D

A
M

B
4

68

B
T5

49

H
S5

78
T

M
D

A
M

B
2

31

M
D

A
M

B
1

57

Tu
m

o
r_

A

Tu
m

o
r_

B

Tu
m

o
r_

C

Tu
m

o
r_

D

AGR2



Cytoskeletal Nuclear Receptors

Phosphatidylinositol Kinases

Lo
g 1

0
(i

B
A

Q
)

Lo
g 1

0
(i

B
A

Q
)

Lo
g 1

0
(i

B
A

Q
)

Legend

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Tumors

A

B C D

E F

H I J

Figure S4

JAK/STAT

Lo
g 1

0
(i

B
A

Q
)

TGF/SMAD

Lo
g 1

0
(i

B
A

Q
)

Phospholipases

Lo
g 1

0
(i

B
A

Q
)

MAP4K
Lo

g 1
0
(i

B
A

Q
)

G

Autocrine Ligands

Lo
g 1

0(
iB

A
Q

)

Checkpoint

Lo
g 1

0(
iB

A
Q

)

PKC

Lo
g 1

0(
iB

A
Q

)



MCF7

BT474

MDAMB453

MFM223

HCC1806

HCC38

HCC1937

BT20

BT549

HS578T

MDAMB231

MDAMB157

RPS6KB1 RPS6KB2
PF-4708671 

(S6K inhibitor) 

PAK1

RPS6KB2RPS6KB1

Figure S5

A

C

PAK2

D

0

50

100

150

200

250

SK
B

R
3

M
C

F7
B

T4
74

M
D

A
M

B
4

53
M

FM
22

3
D

U
4

47
5

H
C

C
15

9
9

M
C

F1
0

A
SW

5
2

7
H

C
C

18
0

6
M

D
A

M
B

4
36

H
C

C
38

H
C

C
11

4
3

H
C

C
19

3
7

B
T2

0
M

D
A

M
B

4
68

B
T5

49
H

S5
7

8
T

M
D

A
M

B
2

31
M

D
A

M
B

1
57

Tu
m

o
r_

A
Tu

m
o

r_
B

Tu
m

o
r_

C
Tu

m
o

r_
D

AKT2

P
ro

te
in

 A
b

u
n

d
an

ce
 

AKT

MTOR

S6K

MK-2206

PF-4708671

protein synthesis

cell survival

B

E

Not quantified in
tumors (27%)

Quantified in
tumors (73%)

>5-fold in at least
one tumor (5%)



Figure S1 | Statistics of protein identification and quantification, related to Figure 1 
(A) Distribution of the number of non-redundant peptide matches (peptides with a unique amino 
acid sequence) per protein. (B) Distribution of the number of specific peptide matches (peptides 
matching to no other protein in the dataset) per protein. (C) Distribution of the number of protein 
relatives (proteins sharing at least one peptide with one other protein in the dataset) per protein. 
(D) Correlation coefficient between replicates for each cell line. (E) Coefficient of variation 
versus absolute protein abundance. Protein abundances were binned as indicated in the x-axis.  
 
Figure S2 | Identification of subtype-associated proteins using volcano plots, related to 
Figure 3 
(A) Volcano plot enables selection of proteins significantly underexpressed (top left, e.g. 
TGFB1) or overexpressed (top right, e.g. FOXA1) in the samples from subtype cluster 1 versus 
other samples. (B) Protein expression of transforming growth factor beta 1 was only expressed 
in TNBC samples. Expression of Forkhead box A1 (FOXA), also known as hepatocyte nuclear 
factor 3-alpha, was almost exclusive to samples in cluster 1. Sample labels are shown in the 
bottom panel. Color corresponds to cluster assignment from Figure 3A. Error bars represent 
S.D. 
 
Figure S3 | Additional subtype-associated proteins and pathways, related to Figure 3 
(A) Proteins associated with cluster 1, representing luminal-like breast cancer versus triple-
negative breast cancer. Protein phosphatase 1A (PPM1A), down-regulated in multiple cancers 1 
(HID1), and anterior gradient protein 2 (AGR2) expression were significantly decreased in triple-
negative breast cancer. Periostin (POSTN), myosin light chain kinase (MYLK), and MHC class I 
antigen A (HLA-A) were increased in TNBC. Error bars represent S.D. (B) Boxplot distribution of 
protein abundance for each cluster within gene ontology pathways as indicated. Color 
corresponds to cluster assignment from Figure 3A.  
 
Figure S4 | Absolute abundance distribution of additional signaling sub-networks and 
components, related to Figure 4 
Distribution of absolute abundance across samples for each protein in the indicated signaling 
networks. Each dot represents a sample, color coded according to cluster assignment from 
Figure 4A. 
 
Figure S5 | Correlation of signaling components and drug sensitivity, related to Figure 7 
(A) S6K expression was inversely correlated with sensitivity to an S6K inhibitor. Left two panels: 
protein abundance (iBAQ) across cell lines of RPS6KB1 and RPS6KB2. Right panel: drug 
sensitivity (inverse IC50, M-1) across the same cell lines of S6K inhibitor (PF-4708671). (B) 
Schematic of negative feedback signaling between S6K and AKT. S6K expression is associated 
with sensitivity to AKT inhibitor (MK-2206) but inversely associated with S6K inhibitor (PF-
4708671). (C) Immunofluorescent images of U2OS cells from the Human Protein Atlas 
(http://www.proteinatlas.org/) (Uhlen et al., 2010) showing the subcellular localization for 
RPS6KB1 (nuclear), RPS6KB2 (cytoplasmic), PAK2 (nuclear), and PAK1 (cytoplasmic). Green: 
protein, Blue: nucleus, Red: microtubules. (D) Percentage of proteins used in the drug 
sensitivity analysis that were also quantifiable in tumors. (E) Protein kinase AKT2 was most 
highly expressed in a tumor sample. 
 



Table S1 | TNBC proteome 
Intensity-based protein abundance (iBAQ) profile of each sample. Values represent the 
summed peptide intensity normalized by total proteome intensity for that sample and by the 
number of theoretically observable peptides for the protein. 
 
Table S2 | TNBC drug screen IC50 data, related to Figure 7 
Half maximal inhibitory concentrations (IC50) for each of the TNBC cell lines. Values are 
reported as log10(molar concentration) 
 
Table S3 | TNBC drug screen full dose response data, related to Figure 7 
Raw dose response data for each of the TNBC cell lines 
 
  



Supplemental Experimental Procedures 
 
Cell Culture 
Triple negative breast cancer cell lines were purchased from ATCC (American Type Culture 
Collection, Manassus, VA). MCF7, SKBR3, BT474, and MCF10A cells were obtained from Dr. 
Hanna Irie (Mt. Sinai Hospital). MCF10A were grown in DMEM-F12 (Gibco) with addition of 5% 
horse serum (Gibco), 20ng/mL EGF (Peprotech), 0.5mg/mL hydrocortisone (Sigma), 100ng/mL 
cholera toxin (Sigma), 10µg/mL insulin (Sigma). All other cell lines were grown in RPMI-1640 
(Gibco) with addition of 10% fetal bovine serum (Gibco) and penicillin-streptomycin-glutamine 
(Gibco). Patient tumor specimens were purchased from Indivumed GmbH. 
 
Sample preparation 
Cultured cells were washed 3 times quickly with ice cold phosphate buffered saline and flash 
frozen on liquid nitrogen. They were scraped directly into chilled denaturing buffer containing 
50mM Tris pH 8.2, 75mM NaCl, 9M urea, complete EDTA-free protease inhibitor cocktail 
(Roche), and phosphatase inhibitors (50mM sodium fluoride, 1mM sodium orthovanadate, 
10mM sodium pyrophosphate, 50mM β-glycerophosphate) and sonicated on ice for two cycles 
of 30s each. Tumor tissues were dounce homogenized on ice in the same lysis buffer above 
prior to sonication. All lysates were centrifuged at 12,000 g for 10 min to pellet insoluble 
material, the supernatant assayed for protein content using the bicinchoninic acid method and 
saved for analysis at -80°C. Protein extracts were reduced with 5mM DTT at 55°C and alkylated 
with 15mM iodoacetamide at room temperature in the dark. Extracts from each sample (25µg) 
were diluted and digested in solution overnight with either lysyl-endopeptidase (Lys-C) (Wako) 
or sequencing grade trypsin (Promega). Digestion products were acidified to pH ~2 and loaded 
directly onto pre-equilibrated stop-and-go-extraction tips constructed in-house from SDB-XC 
Empore wafers (3M)(Rappsilber et al., 2007). Peptides were desalted and fractionated on the 
tips by basic reverse-phase using a step-wise gradient of increasing acetonitrile (5%, 10%, 
15%, 25%, 80%) in 0.1% NH4OH. Finally, fractions were dried by vacuum centrifugation and 
resuspended in 3% MeCN, 4% formic acid for analysis by LC-MS/MS. 
 
LC-MS/MS 
Peptide fractions were injected onto a 40cm x 100µm column packed in-house with 1.9µm 
Reprosil C18 reverse phase material (Dr. Maisch GmbH), separated by liquid chromatography 
gradient on an EASY-nLC-1000 (Thermo) equipped with column oven set to 50°C, and 
analyzed online by tandem mass spectrometry in a hybrid quadrupole-orbitrap Q-Exactive mass 
spectrometer (Thermo). Mass spectra were acquired in centroid mode using a data dependent 
acquisition strategy where the twenty most intense precursors were selected for fragmentation, 
and fragmented ions were excluded from further selection during 40s. Full MS scans were 
acquired from 300 to 2000 m/z at 70,000 FWHM resolution with a maximum injection time of 
100ms and fill target of 3e6 ions. MS/MS fragmentation spectra were collected at 17,500 FWHM 
with maximum injection time of 50ms using a 2.0 m/z precursor isolation window and fill target 
of 5e4 ions. Acquisition time for each fraction was 90min, and included column wash and 
equilibration. 
 
 
 



Data processing 
Raw spectra were converted to the mzXML open data format and searched using Sequest 
(release 2012.01.0 of UW Sequest) against a concatenated forward and reverse version of the 
Uniprot human protein sequence database (v11/29/2012), allowing for up to two missed 
cleavages, methionine oxidation (+15.9949 Da), and protein N-terminal acetylation (+42.0105 
Da).  Cysteine carbamidomethylation (+57.0214 Da) was set as a fixed modification. Precursor 
mass tolerance was set to 50ppm and fragment ion tolerance set to 0.01 Da. Peptide spectral 
matches for all fractions corresponding to the same sample were filtered to reach a protein 
identification false discovery rate of less than 1%, resulting in an aggregate peptide-level FDR of 
less than 0.1%. Peptides were assembled into proteins using parsimony principles (Nesvizhskii 
and Aebersold, 2005). Integrated MS1 intensity over time peak areas for identified peptides 
were calculated using an in-house peptide quantification algorithm. Protein quantifications were 
calculated using the intensity-based absolute quantitation (iBAQ) approach (Schwanhäusser et 
al., 2011). For each sample (including all fractions), summed peak areas for all peptides 
matching to the same protein were divided by the maximum number of observable peptides, 
and normalized to the total sum intensity of the observed proteome. Common contaminants 
(e.g. keratins, serum proteins) were excluded prior to normalization. Mass spectrometry data 
was also analyzed using the standalone MaxQuant platform (Cox and Mann, 2008), for which 
we obtained similar number of peptide and protein identifications as well as quantification values 
(data not shown).  
 
Drug screen and curve fitting 
Cells were added to 384-well plates at a density of 2,000 cells per well in 50µL of RPMI 1640 
containing penicillin-streptomycin using a Matrix WellMate liquid handler (Thermo Scientific), 
and incubated overnight to allow attachment.  Compounds were added (50nL ranging from 5pM 
to 100µM) to cells using the CyBi-Well Vario Workstation (CyBio) and incubated at 37°C, 5% 
CO2 for 96 hours. The final solvent (DMSO) concentration in the assay was 0.1%. Cell viability 
was measured by luminescence using quantitation of ATP as an indicator of metabolically active 
cells. CellTiter-Glo reagent (Promega) was dispensed into individual wells with the WellMate 
following the manufacturer’s recommended procedures and, following 20 minutes incubation on 
an orbital shaker, luminescence was measured on an EnVision Multi-label plate reader (Perkin 
Elmer). Measurements were corrected for background luminescence and percentage cell 
viability is reported as relative to the DMSO solvent control. Non-linear curve fitting was 
performed using MATLAB’s 'nlinfit' function.  After curve fitting, IC50 values were extracted 
based on the curve fits, similar to the Cancer Cell Line Encyclopedia (CCLE)(Barretina et al., 
2012). External drug sensitivity data (IC50) was downloaded from the “Genomics of Drug 
Sensitivity in Cancer” resource (Yang et al., 2013), release 2.0 (http://www.cancerrxgene.org). 
 
Bioinformatics 
Hierarchical clustering and PCA (principal component analysis) were performed using Cluster 
3.0. Average iBAQ values were normalized to a scale from 0 to 1 and filtered for presence in at 
least 25% of samples and differentially regulated proteins (by S.D.). Protein isoforms were not 
considered and missing values were not imputed. Unweighted clustering was performed in both 
dimensions using centered correlation as the similarity metric with centroid linkage. Gene 
ontology (GO) mapping and enrichment analysis was performed using DAVID 6.7 (Database for 
Annotation, Visualization and Integrated Discovery)(Huang et al., 2009). The cancer gene 



census, copy number, and exome data were downloaded from COSMIC (catalog of somatic 
mutations in cancer)(Forbes et al., 2011). For the cell line SKBR3, mutational data was acquired 
from CCLE (Barretina et al., 2012). Associations between census gene mutations and protein 
expression were assessed by using a heteroscedastic unpaired t-test on log10 transformed 
protein expression values. To generate a network of common gene-protein relationships, we 
applied a significance threshold (P < 0. 001) to differences in protein expression that were 
associated with cancer census gene mutations. These were plotted using Cytoscape version 
3.1.0 (Shannon et al., 2003) with a spring-embedded layout. Drug sensitivity associations were 
assessed by pairwise Pearson’s correlation of protein abundance versus inverted IC50 using 
the ‘cor’ function in R. Correlation significance was assessed using default settings of the 
‘cor.test’ function in R (a Fisher’s Z transformation), and corrected for multiple hypothesis testing 
using the Benjamini and Hochberg method. 
 
Statistical analysis 
Significance tests and correlation analysis were performed using built-in functions within 
Microsoft Office Excel 2013 or R statistical computing environment version 3.1.0. Gene 
enrichment significance testing was performed in DAVID version 6.7 using the EASE metric, a 
modified Fisher’s exact test (Huang et al., 2009). All error bars represent standard deviation 
unless otherwise noted. 
 
  



Supplemental References 

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., 
Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables 
predictive modelling of anticancer drug sensitivity. Nature 483, 603–607. 

Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized 
p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 
1367–1372. 

Forbes, S.A., Bindal, N., Bamford, S., Cole, C., Kok, C.Y., Beare, D., Jia, M., Shepherd, R., 
Leung, K., Menzies, A., et al. (2011). COSMIC: mining complete cancer genomes in the 
Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950. 

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. 

Nesvizhskii, A.I., and Aebersold, R. (2005). Interpretation of shotgun proteomic data: the protein 
inference problem. Mol. Cell. Proteomics MCP 4, 1419–1440. 

Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purification, enrichment, 
pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–
1906. 

Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and 
Selbach, M. (2011). Global quantification of mammalian gene expression control. Nature 473, 
337–342. 

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., 
Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated 
models of biomolecular interaction networks. Genome Res. 13, 2498–2504. 

Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., 
Kampf, C., Wester, K., Hober, S., et al. (2010). Towards a knowledge-based Human Protein 
Atlas. Nat. Biotechnol. 28, 1248–1250. 

Yang, W., Soares, J., Greninger, P., Edelman, E.J., Lightfoot, H., Forbes, S., Bindal, N., Beare, 
D., Smith, J.A., Thompson, I.R., et al. (2013). Genomics of Drug Sensitivity in Cancer (GDSC): 
a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–
D961. 

 


	Lawrence_TNBCproteomes_SuppFigures
	Lawrence_TNBCproteomes_Supplement_Inventory



